In Situ Polymerization Enhances Anion Solvation Structure for Stable High-Temperature Cycling in Quasi-Solid-State Sodium Metal Batteries

Ziyong Li , Yuxuan Liu , Binghao Zhang , Xiangjie Li , Xingyu Xiong , Zeshen Deng , Renheng Tang , Renzong Hu , Min Zhu

SusMat ›› 2025, Vol. 5 ›› Issue (4) : e70015

PDF
SusMat ›› 2025, Vol. 5 ›› Issue (4) : e70015 DOI: 10.1002/sus2.70015
RESEARCH ARTICLE

In Situ Polymerization Enhances Anion Solvation Structure for Stable High-Temperature Cycling in Quasi-Solid-State Sodium Metal Batteries

Author information +
History +
PDF

Abstract

While sodium metal batteries (SMBs) possess remarkable superiority for next-generation energy storage systems, interfacial reactions, and dendrite growth due to the dissolution of solid electrolyte interphase (SEI) have seriously hindered the large-scale application of SMBs, especially at high temperatures. Here, a vinyl ethylene carbonate-based quasi-solid electrolyte (PVEC-QSPE) capable of enhancing the high-temperature stability of Na anodes is successfully synthesized by in situ curing of oligomeric poly(vinyl ethylene carbonate) (PVEC). The increased steric hindrance of PVEC reduces the coordination ability of C═O toward Na+, which promotes the cooperative migration of Na+ with anions and the decomposition of anions to form the SEI. Furthermore, PVEC-QSPE significantly reduces the dissolution of SEI, which contains more organic components and fewer inorganic components, thereby minimizing the release of gases including CO2 and inhibiting the growth of sodium dendrites. The stable interface between PVEC-QSPE and Na helps Na|PVEC-QSPE|Na3V2(PO4)3 (NVP) batteries to operate stably at high temperatures, whose capacity retention rate reaches 80% at 80°C and 93.3% at 60°C after 3000 cycles employing high rate of 10 C. This work provides an efficient strategy to solve the problems of unstable SEI and dendrite growth, thereby promoting the development of safe and practical SMBs.

Keywords

dendrites / high temperature / quasi-solid-state electrolyte / SEI dissolution / sodium metal batteries

Cite this article

Download citation ▾
Ziyong Li, Yuxuan Liu, Binghao Zhang, Xiangjie Li, Xingyu Xiong, Zeshen Deng, Renheng Tang, Renzong Hu, Min Zhu. In Situ Polymerization Enhances Anion Solvation Structure for Stable High-Temperature Cycling in Quasi-Solid-State Sodium Metal Batteries. SusMat, 2025, 5(4): e70015 DOI:10.1002/sus2.70015

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

H. Wang, C. Wang, E. Matios, and W. Li, “Facile Stabilization of the Sodium Metal Anode With Additives: Unexpected Key Role of Sodium Polysulfide and Adverse Effect of Sodium Nitrate,” Angewandte Chemie International Edition 57, no. 26 (2018): 7734-7737.

[2]

T. Liu, Y. Zhang, Z. Jiang, et al., “Exploring Competitive Features of Stationary Sodium Ion Batteries for Electrochemical Energy Storage,” Energy & Environmental Science 12, no. 5 (2019): 1512-1533.

[3]

J.-Y. Hwang, S.-T. Myung, and Y.-K. Sun, “Sodium-Ion Batteries: Present and Future,” Chemical Society Reviews 46, no. 12 (2017): 3529-3614.

[4]

A. Yang, K. Yao, M. Schaller, et al., “Enhanced Room-Temperature Na+ Ionic Conductivity in Na4.92Y0.92Zr0.08Si4O12,” Escience 3, no. 6 (2023): 100175.

[5]

Z. Liu, R. Liu, S. Xu, et al., “Achieving a Deeply Desodiated Stabilized Cathode Material by the High Entropy Strategy for Sodium-Ion Batteries,” Angewandte Chemie International Edition 63, no. 29 (2024): e202405620.

[6]

F. Ding, P. Ji, Z. Han, et al., “Tailoring Planar Strain for Robust Structural Stability in High-Entropy Layered Sodium Oxide Cathode Materials,” Nature Energy 9 (2024): 1529-1539.

[7]

X. Rong, D. Xiao, Q. Li, et al., “Boosting Reversible Anionic Redox Reaction With Li/Cu Dual Honeycomb Centers,” Escience 3, no. 5 (2023): 100159.

[8]

D. Kundu, E. Talaie, V. Duffort, and L. F. Nazar, “The Emerging Chemistry of Sodium Ion Batteries for Electrochemical Energy Storage,” Angewandte Chemie International Edition 54, no. 11 (2015): 3431-3448.

[9]

R. Usiskin, Y. Lu, J. Popovic, et al., “Fundamentals, Status and Promise of Sodium-Based Batteries,” Nature Reviews Materials 6, no. 11 (2021): 1020-1035.

[10]

N. Yabuuchi, K. Kubota, M. Dahbi, and S. Komaba, “Research Development on Sodium-Ion Batteries,” Chemical Reviews 114, no. 23 (2014): 11636-11682.

[11]

J. Song, B. Xiao, Y. Lin, K. Xu, and X. Li, “Interphases in Sodium-ion Batteries,” Advanced Energy Materials 8, no. 17 (2018): 1703082.

[12]

R. Mogensen, D. Brandell, and R. Younesi, “Solubility of the Solid Electrolyte Interphase (SEI) in Sodium Ion Batteries,” ACS Energy Letters 1, no. 6 (2016): 1173-1178.

[13]

L. A. Ma, A. J. Naylor, L. Nyholm, and R. Younesi, “Strategies for Mitigating Dissolution of Solid Electrolyte Interphases in Sodium-Ion Batteries,” Angewandte Chemie International Edition 60, no. 9 (2021): 4855-4863.

[14]

M. Moshkovich, Y. Gofer, and D. Aurbach, “Investigation of the Electrochemical Windows of Aprotic Alkali Metal (Li, Na, K) Salt Solutions,” Journal of The Electrochemical Society 148, no. 4 (2001): E155-E167.

[15]

Y. Jin, Y. Xu, B. Xiao, et al., “Stabilizing Interfacial Reactions for Stable Cycling of High-Voltage Sodium Batteries,” Advanced Functional Materials 32, no. 40 (2022): 2204995.

[16]

J.-F. Ding, R. Xu, C. Yan, B.-Q. Li, H. Yuan, and J.-Q. Huang, “A Review on the Failure and Regulation of Solid Electrolyte Interphase in Lithium Batteries,” Journal of Energy Chemistry 59 (2021): 306-319.

[17]

S. K. Vineeth, C. B. Soni, Y. Sun, V. Kumar, and Z. W. Seh, “Implications of Na-Ion Solvation on Na Anode-Electrolyte Interphase,” Trends in Chemistry 4, no. 1 (2022): 48-59.

[18]

X. Zhou, Z. Li, W. Li, et al., “Regulating Na-Ion Solvation in Quasi-Solid Electrolyte to Stabilize Na Metal Anode,” Advanced Functional Materials 33, no. 22 (2023): 2212866.

[19]

Z. Tian, Y. Zou, G. Liu, et al., “Electrolyte Solvation Structure Design for Sodium Ion Batteries,” Advanced Science 9, no. 22 (2022): 2201207.

[20]

L. Lutz, D. Alves Dalla Corte, M. Tang, et al., “Role of Electrolyte Anions in the Na-O2 Battery: Omplications for NaO2 Solvation and the Stability of the Sodium Solid Electrolyte Interphase in Glyme Ethers,” Chemistry of Materials 29, no. 14 (2017): 6066-6075.

[21]

Q. Liu, Y.-H. Feng, X. Zhu, et al., “Stabilizing Cathode‒Electrolyte Interphase by Localized High-Concentration Electrolytes for High-Voltage Sodium-Ion Batteries,” Nano Energy 123 (2024): 109389.

[22]

X. Zhou, Q. Zhang, Z. Zhu, Y. Cai, H. Li, and F. Li, “Anion-Reinforced Solvation for a Gradient Inorganic-Rich Interphase Enables High-Rate and Stable Sodium Batteries,” Angewandte Chemie International Edition 61, no. 30 (2022): e202205045.

[23]

H. Chen, K. Chen, J. Yang, et al., “Designing Advanced Electrolytes for High-Safety and Long-Lifetime Sodium-Ion Batteries via Anion‒Cation Interaction Modulation,” Journal of the American Chemical Society 146, no. 23 (2024): 15751-15760.

[24]

L. Gao, J. Chen, Q. Chen, and X. Kong, “The Chemical Evolution of Solid Electrolyte Interface in Sodium Metal Batteries,” Science Advances 8, no. 6 (2022): eabm4606.

[25]

J. He, A. Bhargav, L. Su, et al., “Tuning the Solvation Structure With Salts for Stable Sodium-Metal Batteries,” Nature Energy 9, no. 4 (2024): 446-456.

[26]

X. Zhou, Y. Huang, B. Wen, et al., “Regulation of Anion-Na+ Coordination Chemistry in Electrolyte Solvates for Low-Temperature Sodium-Ion Batteries,” Proceedings of the National Academy of Sciences 121, no. 5 (2024): e2316914121.

[27]

Y. Li, Q. Zhou, S. Weng, et al., “Interfacial Engineering to Achieve an Energy Density of Over 200 Wh kg‒1 in Sodium Batteries,” Nature Energy 7, no. 6 (2022): 511-519.

[28]

X. Zhou, X. Chen, W. Kuang, et al., “Entropy-Assisted Anion-Reinforced Solvation Structure for Fast-Charging Sodium-Ion Full Batteries,” Angewandte Chemie International Edition 63, no. 42 (2024): e202410494.

[29]

N. Piao, J. Wang, X. Gao, et al., “Designing Temperature-Insensitive Solvated Electrolytes for Low-Temperature Lithium Metal Batteries,” Journal of the American Chemical Society 146, no. 27 (2024): 18281-18291.

[30]

Y. Jin, P. M. L. Le, P. Gao, et al., “Low-Solvation Electrolytes for High-Voltage Sodium-Ion Batteries,” Nature Energy 7, no. 8 (2022): 718-725.

[31]

V. Sabatini, S. Gazzotti, H. Farina, S. Camazzola, and M. A. Ortenzi, “The Case of 4-Vinyl-1,3-Dioxolane-2-One: Determination of its Pseudo-Living Behavior and Preparation of Allyl Carbonate-Styrene Co-Polymers,” ChemistrySelect 2, no. 33 (2017): 10748-10753.

[32]

X. Shan, M. Morey, Z. Li, et al., “A Polymer Electrolyte With High Cationic Transport Number for Safe and Stable Solid Li-Metal Batteries,” ACS Energy Letters 7, no. 12 (2022): 4342-4351.

[33]

D. C. Webster, “Cyclic Carbonate Functional Polymers and Their Applications,” Progress in Organic Coatings 47, no. 1 (2003): 77-86.

[34]

Y. Yoshida and T. Endo, “Radical Polymerization Behavior and Thermal Properties of Vinyl Ethylene Carbonate Derivatives Bearing Aromatic Moieties,” Polymer 102 (2016): 167-175.

[35]

L. Wu, H. Lv, R. Zhang, et al., “Ferroelectric BaTiO3 Regulating the Local Electric Field for Interfacial Stability in Solid-State Lithium Metal Batteries,” ACS Nano 18, no. 7 (2024): 5498-5509.

[36]

B. Kim, S. H. Yang, J. H. Seo, and Y. C. Kang, “Inducing an Amorphous Phase in Polymer Plastic Crystal Electrolyte for Effective Ion Transportation in Lithium Metal Batteries,” Advanced Functional Materials 34, no. 7 (2023): 2310957.

[37]

P. Li, S. Wang, J. Hao, et al., “Efficiencies of Various in Situ Polymerizations of Liquid Electrolytes and the Practical Implications for Quasi Solid-State Batteries,” Angewandte Chemie International Edition 62, no. 38 (2023): e202309613.

[38]

Q. Zhou, H. Zhao, C. Fu, et al., “Tailoring Electric Double Layer by Cation Specific Adsorption for High-Voltage Quasi-Solid-State Lithium Metal Batteries,” Angewandte Chemie International Edition 63, no. 29 (2024): e202402625.

[39]

L. Suo, O. Borodin, T. Gao, et al., “Water-in-salt″ Electrolyte Enables High-Voltage Aqueous Lithium-Ion Chemistries,” Science 350, no. 6263 (2015): 938-943.

[40]

C. Kang, J. Zhu, Y. Wang, et al., “Concentration Induced Modulation of Solvation Structure for Efficient Lithium Metal Battery by Regulating Energy Level of LUMO Orbital,” Energy Storage Materials 61 (2023): 102898.

[41]

K. Sodeyama, Y. Yamada, K. Aikawa, A. Yamada, and Y. Tateyama, “Sacrificial Anion Reduction Mechanism for Electrochemical Stability Improvement in Highly Concentrated Li-Salt Electrolyte,” The Journal of Physical Chemistry C 118, no. 26 (2014): 14091-14097.

[42]

Y. Yamada, K. Furukawa, K. Sodeyama, et al., “Unusual Stability of Acetonitrile-Based Superconcentrated Electrolytes for Fast-Charging Lithium-Ion Batteries,” Journal of the American Chemical Society 136, no. 13 (2014): 5039-5046.

[43]

H. J. Liang, Z. Y. Gu, X. X. Zhao, et al., “Ether-Based Electrolyte Chemistry Towards High-Voltage and Long-Life Na-Ion Full Batteries,” Angewandte Chemie International Edition 60, no. 51 (2021): 26837-26846.

[44]

Z. Hou, M. Dong, Y. Xiong, X. Zhang, Y. Zhu, and Y. Qian, “Formation of Solid-Electrolyte Interfaces in Aqueous Electrolytes by Altering Cation-Solvation Shell Structure,” Advanced Energy Materials 10, no. 15 (2020): 1903665.

[45]

X. Zheng, Z. Cao, Z. Gu, et al., “Toward High Temperature Sodium Metal Batteries via Regulating the Electrolyte/Electrode Interfacial Chemistries,” ACS Energy Letters 7, no. 6 (2022): 2032-2042.

[46]

X. Zhou, X. Chen, Z. Yang, et al., “Anion Receptor Weakens ClO4- Solvation for High-Temperature Sodium-Ion Batteries,” Advanced Functional Materials 34, no. 5 (2023): 2302281.

[47]

L. Zhang, C. Tsolakidou, S. Mariyappan, J.-M. Tarascon, and S. Trabesinger, “Unraveling Gas Evolution in Sodium Batteries by Online Electrochemical Mass Spectrometry,” Energy Storage Materials 42 (2021): 12-21.

[48]

B. Qin, Y. Ma, C. Li, et al., “Sodium Hydride Inspired the Clarification of the Ether-Carbonate Solvent Disparity in Sodium Metal Anodes,” Energy Storage Materials 61 (2023): 102891.

[49]

J. Zhang, J. Yang, L. Yang, H. Lu, H. Liu, and B. Zheng, “Exploring the Redox Decomposition of Ethylene Carbonate-Propylene Carbonate in Li-Ion Batteries,” Materials Advances 2, no. 5 (2021): 1747-1751.

[50]

S. E. Renfrew and B. D. McCloskey, “Residual Lithium Carbonate Predominantly Accounts for First Cycle CO2 and CO Outgassing of Li-Stoichiometric and Li-Rich Layered Transition-Metal Oxides,” Journal of the American Chemical Society 139, no. 49 (2017): 17853-17860.

RIGHTS & PERMISSIONS

2025 The Author(s). SusMat published by Sichuan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

23

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/