Resolving Charge Recombination and Intermediate Stabilization: A Rational Design of In2O3/TiO2 S-Scheme Heterojunction for Efficient CH4 Production

Ming Sun , Yuerui Ma , Yuwei Tan , Jiacheng Wang , Guohua Mi , Jingying Luo , Chunhui Wang , Xin Tong , Xiaoli Zhao , Peng Chen , Ming Huang

SusMat ›› 2025, Vol. 5 ›› Issue (4) : e70011

PDF
SusMat ›› 2025, Vol. 5 ›› Issue (4) : e70011 DOI: 10.1002/sus2.70011
RESEARCH ARTICLE

Resolving Charge Recombination and Intermediate Stabilization: A Rational Design of In2O3/TiO2 S-Scheme Heterojunction for Efficient CH4 Production

Author information +
History +
PDF

Abstract

Photocatalytic CO2 reduction to CH4 is regarded as one of the most promising strategies for mitigating environmental and energy challenges, offering a sustainable pathway toward achieving carbon neutrality. However, its practical application is hindered by low catalytic performance and product selectivity, primarily owing to inefficient electron transfer and insufficient stabilization of key reaction intermediates. Herein, an S-scheme heterojunction of In2O3/TiO2 is synthesized via a two-step method to enhance photogenerated charge carrier separation and transfer. The optimized photocatalyst demonstrates exceptional performance, achieving a CH4 yield of 64.1 µmol g−1 h−1 accompanied by an ultrahigh electron selectivity of 96.0%. The integration of density functional theory (DFT) calculations with in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analyses demonstrates that the heterojunction significantly enhances CO2 activation, as evidenced by the upshifted d-band center and increased crystal orbital Hamilton population (COHP) values. Furthermore, the In2O3/TiO2 heterojunction exhibits enhanced adsorption of CO2 and key intermediates, thereby improving reaction kinetics and thermodynamics. These properties facilitate the hydrogenation of *COOH, ultimately promoting CH4 generation. This work not only provides a mechanistic understanding of S-scheme heterojunctions in CO2 photoreduction but also provides a new design strategy for developing highly efficient photocatalysts.

Keywords

CH4 production / charge transfer In2O3/TiO2 catalyst / photocatalytic CO2 reduction / S-scheme heterojunction

Cite this article

Download citation ▾
Ming Sun, Yuerui Ma, Yuwei Tan, Jiacheng Wang, Guohua Mi, Jingying Luo, Chunhui Wang, Xin Tong, Xiaoli Zhao, Peng Chen, Ming Huang. Resolving Charge Recombination and Intermediate Stabilization: A Rational Design of In2O3/TiO2 S-Scheme Heterojunction for Efficient CH4 Production. SusMat, 2025, 5(4): e70011 DOI:10.1002/sus2.70011

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. Hepburn, E. Adlen, J. Beddington, et al., “The Technological and Economic Prospects for CO2 Utilization and Removal,” Nature 575 (2019): 87-97.

[2]

M. Meinshausen, N. Meinshausen, W. Hare, et al., “Greenhouse-gas Emission Targets for Limiting Global Warming to 2 °C,” Nature 458 (2009): 1158-1162.

[3]

F. Arcudi, L. Ethordevic, N. Schweitzer, S. I. Stupp, and E. A. Weiss, “Selective Visible-light Photocatalysis of Acetylene to Ethylene Using a Cobalt Molecular Catalyst and Water as a Proton Source,” Nature Chemistry 14 (2022): 1007-1012.

[4]

J. Jin, G. Cao, Y. Liu, et al., “Metal-Organic-Frameworks Passivated CuBi2O4 Photocathodes Boost CO2 Reduction Kinetics,” Materials Reports: Energy 3, no. 4 (2023): 100229.

[5]

Z. Chen, G. Zhang, S. Cao, et al., “Advanced Semiconductor Catalyst Designs for the Photocatalytic Reduction of CO2,” Materials Reports: Energy 3, no. 2 (2023): 100193.

[6]

S. Li, C. You, F. Yang, G. Liang, C. Zhuang, and X. Li, “Interfacial Mo-S Bond Modulated S-scheme Mn0.5Cd0.5S/Bi2MoO6 Heterojunction for Boosted Photocatalytic Removal of Emerging Organic Contaminants,” Chinese Journal of Catalysis 68 (2025): 259-271.

[7]

S. Li, K. Rong, X. Wang, C. Shen, F. Yang, and Q. Zhang, “Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal,” Acta Physico-Chimica Sinica 40, no. 12 (2024): 2403005.

[8]

Q. Ren, Y. He, H. Wang, Y. Sun, and F. Dong, “Rapid Energy Exchange Between In Situ Formed Bromine Vacancies and CO2 Molecules Enhances CO2 Photoreduction,” Research 6 (2023): 0244.

[9]

Z. Jiang, X. Xu, Y. Ma, et al., “Filling Metal-organic Framework Mesopores With TiO2 for CO2 Photoreduction,” Nature 586 (2020): 549-554.

[10]

X. Li, J. Yu, M. Jaroniec, and X. Chen, “Cocatalysts for Selective Photoreduction of CO2 Into Solar Fuels,” Chemical Reviews 119, no. 6 (2019): 3962-4179.

[11]

H. Rao, L. C. Schmidt, J. Bonin, and M. Robert, “Visible-Light-Driven Methane Formation From CO2 With a Molecular Iron Catalyst,” Nature 548 (2017): 74-77.

[12]

J. Zhang, G. Yu, C. Yang, and S. Li, “Recent Progress on S-Scheme Heterojunction Strategy Enabling Polymer Carbon Nitrides C3N4 and C3N5 Enhanced Photocatalysis in Energy Conversion and Environmental Remediation,” Current Opinion in Chemical Engineering 45 (2024): 101040.

[13]

J. Zhang, C. Yang, H. Liu, G. Yu, Z. Duan, and S. Li, “Insights Into Interfacial S-scheme/Bulk Type II Dual Charge Transfer Mechanism Enabling Silver Oxide/N-rich Carbon Nitride Anti-Photocorrosion and Enhanced Photoactivity,” Applied Catalysis B: Environment and Energy 349 (2024): 123883.

[14]

Q. Li, Q. Wang, Y. Zeng, Y. Xu, X. K. Gu, and M. Ding, “Ag-Pt Alloy Nanoparticles Modified Zn-Based Nanosheets for Highly Selective CO2 Photoreduction to CH4,” Advanced Functional Materials 35, no. 11 (2025): 2416975.

[15]

E. Gong, S. Ali, C. B. Hiragond, et al., “Solar Fuels: Research and Development Strategies to Accelerate Photocatalytic CO2 Conversion Into Hydrocarbon Fuels,” Energy & Environmental Science 15 (2022): 880-937.

[16]

F. Dai, M. Zhang, Z. Li, J. Xing, and L. Wang, “Valence State Effect of Cu on Photocatalytic CO2 Reduction,” Materials Reports: Energy 3, no. 4 (2023): 100233.

[17]

F. Yue, Z. Fan, C. Li, et al., “Electro-Assisted Photocatalytic Reduction of CO2 in Ambient Air Using Ag/TNTAs at the Gas-Solid Interface,” Materials Reports: Energy 4, no. 2 (2024): 100269.

[18]

J. Yu, X. Yao, P. Su, et al., “Construction of Cu3Mo2O9/Mn0.3Cd0.7S S-Scheme Heterojunction for Photocatalytic Hydrogen Production via Water Splitting,” Journal of Liaocheng University 37 (2024): 52-61.

[19]

J. Fan, L. Shi, H. Ge, et al., “Regulating the Oxygen Vacancy on Bi2MoO6/Co3O4 Core-Shell Nanocage Enables Highly Selective CO2 Photoreduction to CH4,” Advanced Functional Materials 35, no. 1 (2024): 2412078.

[20]

S. Cheng, Z. Sun, K. H. Lim, et al., “Emerging Strategies for CO2 Photoreduction to CH4: From Experimental to Data-Driven Design,” Advanced Energy Materials 12, no. 20 (2022): 2200389.

[21]

J. Fu, K. Jiang, X. Qiu, J. Yu, and M. Liu, “Product Selectivity of Photocatalytic CO2 Reduction Reactions,” Materials Today 32 (2020): 222-243.

[22]

J. H. Cho, J. Ma, and S. Y. Kim, “Toward High-Efficiency Photovoltaics-Assisted Electrochemical and Photoelectrochemical CO2 Reduction: Strategy and Challenge,” Exploration 3, no. 5 (2023): 20230001.

[23]

C. A. Gärtner and J. A. Lercher, “Oxidative Dehydrogenation of Ethane: Common Principles and Mechanistic Aspects,” ChemCatChem 5, no. 11 (2013): 3196-3217.

[24]

J. Wang, S. Lin, N. Tian, T. Ma, Y. Zhang, and H. Huang, “Nanostructured Metal Sulfides: Classification, Modification Strategy, and Solar-Driven CO2 Reduction Application,” Advanced Functional Materials 31, no. 9 (2020): 2008008.

[25]

Y. He, Z. Yang, J. Yu, et al., “Selective conversion of CO2 to CH4 enhanced by WO3/In2O3 S-scheme Heterojunction Photocatalysts With Efficient CO2 Activation,” Journal of Materials Chemistry A 11 (2023): 14860-14869.

[26]

L. Zhang, J. Zhang, H. Yu, and J. Yu, “Emerging S-Scheme Photocatalyst,” Advanced Materials 34, no. 11 (2022): 2107668.

[27]

C. Tebar-Soler, V. Martin-Diaconescu, L. Simonelli, et al., “Low-oxidation-state Ru Sites Stabilized in Carbon-Doped RuO2 With Low-temperature CO2 Activation to Yield Methane,” Nature Materials 22 (2023): 762-768.

[28]

Y. S. Xia, M. Tang, L. Zhang, et al., “Tandem Utilization of CO2 Photoreduction Products for the Carbonylation of Aryl Iodides,” Nature Communications 13 (2022): 2964.

[29]

Y. He, P. Hu, J. Zhang, G. Liang, J. Yu, and F. Xu, “Boosting Artificial Photosynthesis: CO2 Chemisorption and S-Scheme Charge Separation via Anchoring Inorganic QDs on COFs,” ACS Catalysis 14, no. 3 (2024): 1951-1961.

[30]

O. Ola and M. M. Maroto-Valer, “Review of Material Design and Reactor Engineering on TiO2 Photocatalysis for CO2 Reduction,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews 24 (2015): 16-42.

[31]

F. Xu, K. Meng, B. Cheng, J. Yu, and W. Ho, “Enhanced Photocatalytic Activity and Selectivity for CO2 Reduction Over a TiO2 Nanofibre Mat Using Ag and MgO as Bi-Cocatalyst,” Chemcatchem 11, no. 1 (2018): 465-472.

[32]

Y. Yu, X. Dong, P. Chen, et al., “Synergistic Effect of Cu Single Atoms and Au-Cu Alloy Nanoparticles on TiO2 for Efficient CO2 Photoreduction,” ACS Nano 15, no. 9 (2021): 14453-14464.

[33]

S. Wang, M. Xu, T. Peng, et al., “Porous Hypercrosslinked Polymer-TiO2-graphene Composite Photocatalysts for Visible-light-driven CO2 Conversion,” Nature Communications 10 (2019): 676.

[34]

X. Deng, J. Zhang, K. Qi, G. Liang, F. Xu, and J. Yu, “Ultrafast Electron Transfer at the in2O3/Nb2O5 S-Scheme Interface for CO2 Photoreduction,” Nature Communications 15 (2024): 4807.

[35]

X. Li, Z. Wang, J. Zhang, K. Dai, K. Fan, and G. Dawson, “Branch-Like CdxZn1−xSe/Cu2O@Cu Step-Scheme Heterojunction for CO2 Photoreduction,” Materials Today Physics 26 (2022): 100729.

[36]

C. Liu, T. Bao, L. Yuan, et al., “Semiconducting MOF@ZnS Heterostructures for Photocatalytic Hydrogen Peroxide Production: Heterojunction Coverage Matters,” Advanced Functional Materials 32, no. 15 (2021): 2111404.

[37]

Y. Feng, X. Gong, S. Fan, et al., “Constructing Robust Interfacial Chemical Bond Enhanced Charge Transfer in S-Scheme 3D/2D Heterojunction for CO2 Photoreduction,” Advanced Functional Materials 34, no. 39 (2024): 2403502.

[38]

C. Cheng, B. He, J. Fan, B. Cheng, S. Cao, and J. Yu, “An Inorganic/Organic S-Scheme Heterojunction H2 -Production Photocatalyst and Its Charge Transfer Mechanism,” Advanced Materials 33, no. 22 (2021): 2100317.

[39]

V.-H. Nguyen, P. Singh, A. Sudhaik, P. Raizada, Q. V. Le, and E. T. Helmy, “Novel Step-scheme (S-scheme) Heterojunction Photocatalysts Toward Artificial Photosynthesis,” Materials Letters 313 (2022): 131781.

[40]

J. Wang, Z. Wang, K. Dai, and J. Zhang, “Review on Inorganic-organic S-scheme Photocatalysts,” Journal of Materials Science & Technology 165 (2023): 187-218.

[41]

Y. Wang, W. He, J. Xiong, et al., “MIL-68 (In)-derived in2O3@TiO2 S-Scheme Heterojunction With Hierarchical Hollow Structure for Selective Photoconversion of CO2 to Hydrocarbon Fuels,” Fuel 331 (2023): 125719.

[42]

Q. Xu, S. Wageh, A. A. Al-Ghamdi, and X. Li, “Design Principle of S-Scheme Heterojunction Photocatalyst,” Journal of Materials Science & Technology 124 (2022): 171-173.

[43]

L. Kuai, Z. Chen, S. Liu, et al., “Titania Supported Synergistic Palladium Single Atoms and Nanoparticles for Room Temperature Ketone and Aldehydes Hydrogenation,” Nature Communications 11 (2020): 48.

[44]

W. Xu, W. Tian, L. Meng, F. Cao, and L. Li, “Interfacial Chemical Bond-Modulated Z-Scheme Charge Transfer for Efficient Photoelectrochemical Water Splitting,” Advanced Energy Materials 11, no. 8 (2021): 2003500.

[45]

P. Hu, G. Liang, B. Zhu, W. Macyk, J. Yu, and F. Xu, “Highly Selective Photoconversion of CO2 to CH4 Over SnO2/Cs3Bi2Br9 Heterojunctions Assisted by S-Scheme Charge Separation,” ACS Catalysis 13, no. 19 (2023): 12623-12633.

[46]

F. Xu, K. Meng, B. Cheng, S. Wang, J. Xu, and J. Yu, “Unique S-Scheme Heterojunctions in Self-Assembled TiO2/CsPbBr3 Hybrids for CO2 Photoreduction,” Nature Communications 11 (2020): 4613.

[47]

Z. Wan, Q. Mao, and Q. Chen, “Proton-Dependent Photocatalytic Dehalogenation Activities Caused by Oxygen Vacancies of In2O3,” Chemical Engineering Journal 403 (2021): 126389.

[48]

H. Yang, J. Tian, Y. Bo, Y. Zhou, X. Wang, and H. Cui, “Visible Photocatalytic and Photoelectrochemical Activities of TiO2 Nanobelts Modified by In2O3 Nanoparticles,” Journal of Colloid and Interface Science 487 (2017): 258-265.

[49]

Q. Cheng, M. Huang, L. Xiao, et al., “Unraveling the Influence of Oxygen Vacancy Concentration on Electrocatalytic CO2 Reduction to Formate Over Indium Oxide Catalysts,” ACS Catalysis 13, no. 6 (2023): 4021-4029.

[50]

Y. Yang, B. Cheng, J. Yu, L. Wang, and W. Ho, “TiO2/in2S3 S-Scheme Photocatalyst With Enhanced H2O2-Production Activity,” Nano Research 16 (2021): 4506-4514.

[51]

Y. Yu, Y. He, P. Yan, S. Wang, and F. Dong, “Boosted C-C Coupling With Cu-Ag Alloy Sub-nanoclusters for CO2-to-C2H4 Photosynthesis,” Proceedings of the National Academy of Sciences of the United States of America 120, no. 44 (2023): e2307320120.

[52]

C. Luo, Q. Long, B. Cheng, B. Zhu, and L. Wang, “A DFT Study on S-Scheme Heterojunction Consisting of Pt Single Atom Loaded G-C3N4 and BiOCl for Photocatalytic CO2 Reduction,” Acta Physico Chimica Sinica 39, no. 6 (2023): 2212026.

[53]

H. Li, H. Gong, and Z. Jin, “In2O3-Modified Three-Dimensional Nanoflower MoSx Form S-Scheme Heterojunction for Efficient Hydrogen Production,” Acta Physico Chimica Sinica 38, no. 12 (2022): 2201037.

[54]

B. Su, M. Zheng, W. Lin, et al., “S-Scheme Co9S8@Cd0.8Zn0.2S-DETA Hierarchical Nanocages Bearing Organic CO2 Activators for Photocatalytic Syngas Production,” Advanced Energy Materials 13, no. 15 (2023): 2203290.

[55]

G. Chen, Z. Zhou, B. Li, et al., “S-Scheme Heterojunction of Crystalline Carbon Nitride Nanosheets and Ultrafine WO3 Nanoparticles for Photocatalytic CO2 Reduction,” Journal of Environmental Sciences 140 (2024): 103-112.

[56]

B. Su, H. Huang, Z. Ding, M. B. J. Roeffaers, S. Wang, and J. Long, “S-Scheme CoTiO3/Cd9.51Zn0.49S10 Heterostructures for Visible-Light Driven Photocatalytic CO2 Reduction,” Journal of Materials Science & Technology 124 (2022): 164-170.

[57]

F. Liu, J. Deng, B. Su, et al., “Poly(triazine imide) Crystals for Efficient CO2 Photoreduction: Surface Pyridine Nitrogen Dominates the Performance,” ACS Catalysis 15, no. 2 (2025): 1018-1026.

[58]

C. Ban, Y. Wang, Y. Feng, et al., “Photochromic Single Atom Ag/TiO2 Catalysts for Selective CO2 Reduction to CH4,” Energy & Environmental Science 17 (2024): 518-530.

[59]

Y. Cheng, R. Yang, L. Xia, et al., “Graphene Quantum Dot-mediated Anchoring of Highly Dispersed Bismuth Nanoparticles on Porous Graphene for Enhanced Electrocatalytic CO2 Reduction to Formate,” Nanoscale 16 (2024): 2373-2381.

RIGHTS & PERMISSIONS

2025 The Author(s). SusMat published by Sichuan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

23

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/