Operando X-Ray Absorption and Diffraction Investigations on Ni- and Co-MOF-74 Oxygen Evolution Electrocatalysts

Julia Linke , Thomas Rohrbach , Adam Hugh Clark , Michal Andrzejewski , Nicola Pietro Maria Casati , Eibhlin Meade , Mateusz Wojtas , Marco Ranocchiari , Thomas Justus Schmidt , Emiliana Fabbri

SusMat ›› 2025, Vol. 5 ›› Issue (3) : e70009

PDF
SusMat ›› 2025, Vol. 5 ›› Issue (3) : e70009 DOI: 10.1002/sus2.70009
SHORT COMMUNICATION

Operando X-Ray Absorption and Diffraction Investigations on Ni- and Co-MOF-74 Oxygen Evolution Electrocatalysts

Author information +
History +
PDF

Abstract

Metal organic frameworks (MOFs) have a promising perspective as oxygen evolution reaction (OER) electrocatalysts due to their high surface areas and tunable structures. However, one of the main challenges for their further application is inferior stability during alkaline OER. Herein, operando x-ray absorption spectroscopy and operando x-ray diffraction of NiCo-MOF-74 materials unveil their electrochemical transformations differentiating between electrolyte-induced, beam-induced, and electrochemically induced changes of the electronic state and local structure around the transition metal centers in addition to their overall crystal structure. An inferior electrolyte- and beam stability of Co-MOF-74 is revealed in comparison to a more stable performance of Ni-MOF-74 and Ni0.25Co0.75-MOF-74. Based on the operando measurement results, good experimental practices for future MOF OER electrocatalyst studies are presented.

Keywords

chemical stability / Ni/Co-MOF-74 OER electrocatalysts / operando x-ray absorption spectroscopy / operando x-ray diffraction / radiation stability / stability of MOFs

Cite this article

Download citation ▾
Julia Linke, Thomas Rohrbach, Adam Hugh Clark, Michal Andrzejewski, Nicola Pietro Maria Casati, Eibhlin Meade, Mateusz Wojtas, Marco Ranocchiari, Thomas Justus Schmidt, Emiliana Fabbri. Operando X-Ray Absorption and Diffraction Investigations on Ni- and Co-MOF-74 Oxygen Evolution Electrocatalysts. SusMat, 2025, 5(3): e70009 DOI:10.1002/sus2.70009

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. Wang, J. Wen, J. Wang, B. Yang, and L. Jiang, “Water Electrolyzer Operation Scheduling for Green Hydrogen Production: A Review,” Renewable and Sustainable Energy Reviews 203 (2024): 114779.

[2]

S. Sebbahi, A. Assila, A. Alaoui Belghiti, et al., “A Comprehensive Review of Recent Advances in Alkaline Water Electrolysis for Hydrogen Production,” International Journal of Hydrogen Energy 82 (2024): 583-599.

[3]

G. Gao, X. Chen, L. Han, et al., “Advances in MOFs and Their Derivatives for Non‑Noble Metal Electrocatalysts in Water Splitting,” Coordination Chemistry Reviews 503 (2024): 215639.

[4]

S. Zhao, C. Tan, C.-T. He, et al., “Structural Transformation of Highly Active Metal-Organic Framework Electrocatalysts During the Oxygen Evolution Reaction,” Nature Energy 5, no. 11 (2020): 881-890.

[5]

W. Cheng, X. Zhao, H. Su, et al., “Lattice-Strained Metal-Organic-framework Arrays for Bifunctional Oxygen Electrocatalysis,” Nature Energy 4, no. 2 (2019): 115-122.

[6]

Y. Li, L. Yang, X. Hao, et al., “Origin of Enhanced Oxygen Evolution in Restructured Metal-Organic Frameworks for Anion Exchange Membrane Water Electrolysis,” Angewandte Chemie (International ed in English) 24 (2024): e202413916.

[7]

W. Zheng, M. Liu, and L. Y. S. Lee, “Electrochemical Instability of Metal-Organic Frameworks: In Situ Spectroelectrochemical Investigation of the Real Active Sites,” ACS Catalysis 10, no. 1 (2019): 81-92.

[8]

S. M. Gowdru, C.-H. Lin, C.-C. Chang, et al., “Revealing the Structural Transformation Between the Activity and Stability of 2D and 3D Co-Mo Metal-Organic Frameworks for a Highly Active Oxygen Evolution Reaction,” ACS Sustainable Chemistry & Engineering 10, no. 37 (2022): 12297-12306.

[9]

Y. Mousazade, M. R. Mohammadi, P. Chernev, et al., “Revisiting Metal-Organic Frameworks for Oxygen Evolution: A Case Study,” Inorganic Chemistry 59, no. 20 (2020): 15335-15342.

[10]

D. J. Zheng, M. Görlin, K. McCormack, et al., “Linker-Dependent Stability of Metal-Hydroxide Organic Frameworks for Oxygen Evolution,” Chemistry of Materials 35, no. 13 (2023): 5017-5031.

[11]

J. Koh, C. Kwon, H. Kim, et al., “Defect-Driven Evolution of Oxo-Coordinated Cobalt Active Sites With Rapid Structural Transformation for Efficient Water Oxidation,” ACS Nano 18, no. 42 (2024): 28986-28998.

[12]

F. Shi, Z. Wang, K. Zhu, X. Zhu, and W. Yang, “Enhancing Activity and Stability of Co-MOF-74 for Oxygen Evolution Reaction by Wrapping Polydopamine,” Electrochimica Acta 416 (2022): 140293.

[13]

X. Lin, X. Li, L. Shi, F. Ye, F. Liu, and L. D. In, “Situ Electrochemical Restructuring B-Doped Metal-Organic Frameworks as Efficient OER Electrocatalysts for Stable Anion Exchange Membrane Water Electrolysis,” Small 20, no. 22 (2024): e2308517.

[14]

G. Agostini and A. Iglesias-Juez. “X-Ray Absorption Spectroscopy (XAS) Combined With Other Spectroscopic Techniques,” In Springer Handbook of Advanced Catalyst Characterization, ed. I. E. Wachs and M. A. Bañares (Springer International Publishing, 2023), 739-753.

[15]

L. Chen, X. Ding, Z. Wang, et al., “Advances in in Situ/Operando Techniques for Catalysis Research: Enhancing Insights and Discoveries,” Surface Science and Technology 2, no. 1 (2024): 9.

[16]

N. Diklić, A. H. Clark, J. Herranz, et al., “Potential Pitfalls in the Operando XAS Study of Oxygen Evolution Electrocatalysts,” ACS Energy Letters 7, no. 5 (2022): 1735-1740.

[17]

J. S. Diercks, J. Herranz, K. Ebner, et al., “Spectroscopy vs. Electrochemistry: Catalyst Layer Thickness Effects on Operando/in Situ Measurements,” Angewandte Chemie (International ed in English) 62, no. 16 (2023): e202216633.

[18]

M. Salmanion, S. Nandy, K. H. Chae, and M. M. Najafpour, “Further Insight Into the Conversion of a Ni-Fe Metal-Organic Framework During Water-Oxidation Reaction,” Inorganic Chemistry 61, no. 12 (2022): 5112-5123.

[19]

M. Kim, J. Jeong, D. H. Kim, et al., “Tailoring Electrochemical Water Oxidation Activity From the Isostructural Series of Alkaline-Stable Bimetallic Fe,Ni-Azolate Metal-Organic Frameworks,” Advanced Energy Materials 14, no. 31 (2024): 2401198.

[20]

S. Ghosh, H. Yun, P. Kumar, S. Conrad, M. Tsapatsis, and K. A. Mkhoyan, “Two Distinct Stages of Structural Modification of ZIF-L MOF Under Electron-Beam Irradiation,” Chemistry of Materials 33, no. 14 (2021): 5681-5689.

[21]

W. Zheng and L. Y. S. Lee, “Metal-Organic Frameworks for Electrocatalysis: Catalyst or Precatalyst?,” ACS Energy Letters 6, no. 8 (2021): 2838-2843.

[22]

S. Zuo, Z. P. Wu, H. Zhang, and X. W. Lou, “Operando Monitoring and Deciphering the Structural Evolution in Oxygen Evolution Electrocatalysis,” Advanced Energy Materials 12, no. 8 (2022): 2103383.

[23]

Q. Chen, C. Dwyer, G. Sheng, et al., “Imaging Beam-Sensitive Materials by Electron Microscopy,” Advanced Materials 32, no. 16 (2020): e1907619.

[24]

E. P. Tien, G. Cao, Y. Chen, et al., “Electron Beam and Thermal Stabilities of MFM-300(M) Metal-Organic Frameworks,” Journal of Materials Chemistry A 12, no. 36 (2024): 24165-24174.

[25]

J. Linke, T. Rohrbach, M. Ranocchiari, T. J. Schmidt, and E. Fabbri, “Enlightening the Journey of Metal-Organic Framework (Derived) Catalysts During the Oxygen Evolution Reaction in Alkaline media via Operando X-ray Absorption Spectroscopy,” Current Opinion in Electrochemistry 30 (2021): 100845.

[26]

Y.-C. Zhang, C. Han, J. Gao, et al., “NiCo-Based Electrocatalysts for the Alkaline Oxygen Evolution Reaction: A Review,” ACS Catalysis 11, no. 20 (2021): 12485-12509.

[27]

L. Huang, G. Gao, H. Zhang, J. Chen, Y. Fang, and S. Dong, “Self-Dissociation-Assembly of Ultrathin Metal-Organic Framework Nanosheet Arrays for Efficient Oxygen Evolution,” Nano Energy 68 (2020): 104296.

[28]

D. Wei, Z. F. Zhou, H. H. Ma, W. B. Xu, and F. M. Ren, “Facile Synthesis of MOF-Derived Co9S8/Ni3S2/N-Doped Carbon Composites for Supercapacitors,” Bulletin of Materials Science 48, no. 1 (2024): 8.

[29]

S. Guo, X. Xu, J. Liu, Q. Zhang, and H. Wang, “In Situ Growth of Ni-Doped Co-MOF-74 on Ni Foam for High-Performance Electrochemical Energy Storage,” Journal of the Electrochemical Society 167, no. 2 (2020): 020539.

[30]

D. F. Abbott, E. Fabbri, M. Borlaf, et al., “Operando X-Ray Absorption Investigations Into the Role of Fe in the Electrochemical Stability and Oxygen Evolution Activity of Ni1−xFexOy Nanoparticles,” Journal of Materials Chemistry A 6, no. 47 (2018): 24534-24549.

[31]

C. E. Beall, E. Fabbri, A. H. Clark, et al., “Time-Resolved Oxidation State Changes Are Key to Elucidating the Bifunctionality of Perovskite Catalysts for Oxygen Evolution and Reduction,” Energy & Environmental Materials 7, no. 5 (2024): e12737.

[32]

T. Chen, H. Xu, S. Li, et al., “Tailoring the Electrochemical Responses of MOF-74 Via Dual-Defect Engineering for Superior Energy Storage,” Advanced Materials 36 (2024): e2402234.

[33]

J. A. Pereira de Figueiredo, M. J. Moreno Zapata, L. S. Amorim, et al., “Morphological and Structural Characterization of (Pt, Au, and Ag) Nanoparticle/Zn-MOF-74 Composites,” ACS Omega 9, no. 20 (2024): 21939-21947.

[34]

X.-R. Shi, M. Qiao, Y. Wei, L.-X. Yun, J.-X. Wang, and J.-F. Chen, “Green, Efficient and Controllable Synthesis of High-Quality MOF-74 With High Gravity Technology,” Green Chemistry 26, no. 10 (2024): 6209-6218.

[35]

J. Linke, T. Rohrbach, A. H. Clark, et al. “From Operando Investigations to Implementation of Ni-MOF-74 Oxygen Evolution Electrocatalysts,” unpublished manuscript.

RIGHTS & PERMISSIONS

2025 The Author(s). SusMat published by Sichuan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

27

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/