Single-Atom Sites With Axial Ligand-Induced d Orbital Rearrangement as Efficient Electrocatalysts for Lithium–Oxygen Batteries

Pengfei Liu , Chuan Wang , Chenrui Zeng , Shuhan Wang , Xudong Yu , Haoruo Xiao , Yan Huang , Yang Zhang , Ying Zeng , Chaozhu Shu , Zhenxing Liang

SusMat ›› 2025, Vol. 5 ›› Issue (3) : e70007

PDF
SusMat ›› 2025, Vol. 5 ›› Issue (3) : e70007 DOI: 10.1002/sus2.70007
RESEARCH ARTICLE

Single-Atom Sites With Axial Ligand-Induced d Orbital Rearrangement as Efficient Electrocatalysts for Lithium–Oxygen Batteries

Author information +
History +
PDF

Abstract

Understanding and regulating the electronic states of single-atom sites near the Fermi energy level are essential for developing effective electrocatalysts for lithium–oxygen batteries (LOBs). In this study, we introduce an axial oxygen ligand at the metal center of cobalt porphyrin (CoPP) to adjust the electronic state of the Co center. Theoretical calculations and experimental findings show that this axial interaction disrupts the planar tetragonal crystal field of CoPP, resulting in enhanced spin polarization and electronic rearrangement. This rearrangement of d orbitals causes an upward shift in the frontier orbitals, which facilitates electron exchange during reactions. Additionally, the increased number of unpaired electrons in the d orbitals enhances the adsorption of CoPP-O-MXene to various oxygen species, promoting the formation of a thin film-like Li2O2. These thin film-like discharge products improve contact with the electrode surfaces, leading to easier decomposition during the charging process. Consequently, CoPP-O-MXene-based LOBs demonstrate a high discharge capacity of 11035 mAh g¹, a low overpotential of 0.76 V, and remarkable cycling stability (445 cycles).

Keywords

axial ligands / electrocatalyst / lithium–oxygen battery / oxygen electrode reaction / single-atom sites

Cite this article

Download citation ▾
Pengfei Liu, Chuan Wang, Chenrui Zeng, Shuhan Wang, Xudong Yu, Haoruo Xiao, Yan Huang, Yang Zhang, Ying Zeng, Chaozhu Shu, Zhenxing Liang. Single-Atom Sites With Axial Ligand-Induced d Orbital Rearrangement as Efficient Electrocatalysts for Lithium–Oxygen Batteries. SusMat, 2025, 5(3): e70007 DOI:10.1002/sus2.70007

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

D. Du, Z. Zhu, K. Y. Chan, F. Li, and J. Chen, “Photoelectrochemistry of Oxygen in Rechargeable Li-O2 Batteries,” Chemical Society Reviews 51, no. 6 (2022): 1846-1860.

[2]

H. Sun, X. Xu, H. Kim, Z. Shao, and W. Jung, “Advanced Electrocatalysts With Unusual Active Sites for Electrochemical Water Splitting,” InfoMat 6, no. 1 (2024): e12494.

[3]

X. Huang, Y. Liu, W. Park, et al., “Stretchable Magnesium-Air Battery Based on Dual Ions Conducting Hydrogel for Intelligent Biomedical Applications,” InfoMat 5, no. 3 (2023): e12388.

[4]

X. Wang, D. Du, H. Xu, et al., “NiMn-Based Metal-Organic Framework With Optimized Eg Orbital Occupancy as Efficient Bifunctional Electrocatalyst for Lithium-Oxygen Batteries,” Chemical Engineering Journal 452 (2023): 139524.

[5]

L. Ren, X. Wen, D. Du, et al., “Engineering High-Spin State Cobalt Cations in Spinel ZnCo2O4 for Spin Channel Propagation and Electrocatalytic Activity Enhancement in Li-O2 Battery,” Chemical Engineering Journal 462 (2023): 142288.

[6]

H. Xu, R. Zheng, D. Du, et al., “Cationic Vanadium Vacancy-Enriched V2−xO5 on V2C MXene as Superior Bifunctional Electrocatalysts for Li-O2 Batteries,” Science China Materials 65, no. 7 (2022): 1761-1770.

[7]

M. Huang, N. Wang, M. Xie, et al., “Phase-Transfer Catalyst for Lithium-Oxygen Batteries Based on Bidirectional Coordination Catalysis: 2-Aminopyridine,” Advanced Functional Materials, ahead of print, January 13, 2025, https://doi.org/10.1002/adfm.202420678.

[8]

Z. Peng, “Li-O2 Battery Redox Mediators Go Positive,” Nature Chemistry 15, no. 9 (2023): 1206-1208.

[9]

Y. Zhou, Q. Gu, K. Yin, et al., “Engineering Eg Orbital Occupancy of Pt With Au Alloying Enables Reversible Li−O2 Batteries,” Angewandte Chemie International Edition 61, no. 26 (2022): e202201416.

[10]

Y. Fu, N. Wang, M. Huang, Z. Li, Y. Lu, and Q. Liu, “Precisely Engineering of Ångström-Scale Dual Single Atom Drive [Co-O] Spin-Orbit Coupling to Boost Lithium-Oxygen Batteries Electrocatalysis,” Advanced Functional Materials 35, no. 13 (2025): 2418098.

[11]

Z. Z. Shen, Y. Z. Zhang, C. Zhou, R. Wen, and L. J. Wan, “Revealing the Correlations Between Morphological Evolution and Surface Reactivity of Catalytic Cathodes in Lithium-Oxygen Batteries,” Journal of the American Chemical Society 143, no. 51 (2021): 21604-21612.

[12]

G. Sun, Y. Fu, J. Li, S. Ma, Y. Lu, and Q. Liu, “N, F Co-Doped Carbon Material Self-Supporting Cathode for High-Performance Lithium-Oxygen Batteries,” Chemsuschem 18, no. 3 (2025): e202401644.

[13]

M. Huang, L. Song, N. Wang, et al., “Harnessing 4 f Electron Itinerancy for Integrated Dual-Band Redox Systems Boosts Lithium-Oxygen Batteries Electrocatalysis,” Angewandte Chemie International Edition 64, no. 2 (2025): e202414893.

[14]

Y. Liu, G. Zhou, Z. Zhang, et al., “Significantly Improved Electrocatalytic Oxygen Reduction by an Asymmetrical Pacman Dinuclear Cobalt(II) Porphyrin-Porphyrin Dyad,” Chemical Science 11, no. 1 (2020): 87-96.

[15]

R. Zhang and J. J. Warren, “Controlling the Oxygen Reduction Selectivity of Asymmetric Cobalt Porphyrins by Using Local Electrostatic Interactions,” Journal of the American Chemical Society 142, no. 31 (2020): 13426-13434.

[16]

F. Lv, N. Han, Y. Qiu, X. Liu, J. Luo, and Y. Li, “Transition Metal Macrocycles for Heterogeneous Electrochemical CO2 Reduction,” Coordination Chemistry Reviews 422 (2020): 213435.

[17]

K. Xue, Y. Mo, B. Long, et al., “Single-atom Catalysts Supported on Ordered Porous Materials: Synthetic Strategies and Applications,” InfoMat 4, no. 6 (2022): e12296.

[18]

X. Zhang, P. Chen, S. He, et al., “Single-Atom Metal-Nitrogen-Carbon Catalysts Energize Single Molecule Detection for Biosensing,” InfoMat 5, no. 6 (2023): e12421.

[19]

Y. Liu, X. Liu, Z. Lv, et al., “Tuning the Spin State of the Iron Center by Bridge-Bonded Fe-O-Ti Ligands for Enhanced Oxygen Reduction,” Angewandte Chemie 134, no. 21 (2022): e202117617.

[20]

S. Zhou, X. Miao, X. Zhao, et al., “Engineering Electrocatalytic Activity in Nanosized Perovskite Cobaltite Through Surface Spin-State Transition,” Nature Communications 7, no. 1 (2016): 11510.

[21]

Y. Fang, Z. Liu, J. Han, et al., “High-Performance Electrocatalytic Conversion of N2 to NH3 Using Oxygen-Vacancy-Rich TiO2 In Situ Grown on Ti3C2Tx MXene,” Advanced Energy Materials 9, no. 16 (2019): 1803406.

[22]

J. Ran, G. Gao, F. T. Li, T. Y. Ma, A. Du, and S. Z. Qiao, “Ti3C2 MXene Co-Catalyst on Metal Sulfide Photo-Absorbers for Enhanced Visible-Light Photocatalytic Hydrogen Production,” Nature Communications 8, no. 1 (2017): 13907.

[23]

Y. Liu, J. Sun, H. Huang, et al., “Improving CO2 Photoconversion With Ionic Liquid and Co Single Atoms,” Nature Communications 14, no. 1 (2023): 1457.

[24]

S. Shang, W. Xiong, C. Yang, et al., “Atomically Dispersed Iron Metal Site in a Porphyrin-Based Metal-Organic Framework for Photocatalytic Nitrogen Fixation,” ACS Nano 15, no. 6 (2021): 9670-9678.

[25]

K. Chen, K. Liu, P. An, et al., “Iron Phthalocyanine With Coordination Induced Electronic Localization to Boost Oxygen Reduction Reaction,” Nature Communications 11, no. 1 (2020): 4173.

[26]

H. Yang, N. Guo, S. Xi, et al., “Potential-Driven Structural Distortion in Cobalt Phthalocyanine for Electrocatalytic CO2/CO Reduction Towards Methanol,” Nature Communications 15, no. 1 (2024): 7703.

[27]

Y. Dai, B. Liu, Z. Zhang, et al., “Tailoring the D-Orbital Splitting Manner of Single Atomic Sites for Enhanced Oxygen Reduction,” Advanced Materials 35, no. 14 (2023): 2210757.

[28]

D. Phelan, D. Louca, S. Rosenkranz, et al., “Nanomagnetic Droplets and Implications to Orbital Ordering in La1−x SrxCoO3,” Physical Review Letter 96, no. 2 (2006): 027201.

[29]

M. J. R. Hoch, S. Nellutla, J. Van Tol, et al., “Diamagnetic to Paramagnetic Transition in LaCoO 3,” Physical Review B 79, no. 21 (2009): 214421.

[30]

V. Křápek, P. Novák, J. Kuneš, D. Novoselov, K. DmM, and V. I. Anisimov, “Spin State Transition and Covalent Bonding in LaCoO3,” Physical Review B 86, no. 19 (2012): 195104.

[31]

M. Karolak, M. Izquierdo, S. L. Molodtsov, and A. I. Lichtenstein, “Correlation-Driven Charge and Spin Fluctuations in LaCoO3,” Physical Review Letter 115, no. 4 (2015): 046401.

[32]

J. Ding, Z. Wei, F. Li, et al., “Atomic High-Spin Cobalt (II) Center for Highly Selective Electrochemical CO Reduction to CH3OH,” Nature Communications 14, no. 1 (2023): 6550.

[33]

I. M. L. Billas, A. Châtelain, and W. A. De Heer, “Magnetism From the Atom to the Bulk in Iron, Cobalt, and Nickel Clusters,” Science 265, no. 5179 (1994): 1682-1684.

[34]

E. K. Li, K. H. Johnson, D. E. Eastman, and J. L. Freeouf, “Localized and Bandlike Valence-Electron States in FeS2 and NiS2,” Physical Review Letter 32, no. 9 (1974): 470-472.

[35]

L. Ren, F. Kong, X. Wang, et al., “Triggering Ambient Polymer-Based Li-O2 Battery via Photo-Electro-Thermal Synergy,” Nano Energy 98 (2022): 107248.

[36]

X. Han, L. Zhao, J. Wang, Y. Liang, and J. Zhang, “Delocalized Electronic Engineering of Ni5 P4 Nanoroses for Durable Li-O2 Batteries,” Advanced Materials 35, no. 35 (2023): 2301897.

[37]

D. Li, L. Zhao, J. Wang, and C. Yang, “Tailoring the d-Band Center Over Isomorphism Pyrite Catalyst for Optimized Intrinsic Affinity to Intermediates in Lithium-Oxygen Batteries,” Advanced Energy Materials 13, no. 15 (2023): 2204057.

[38]

Z. Sun, X. Zhao, W. Qiu, et al., “Unlock Restricted Capacity via O-Ce Hybridization for Li-Oxygen Batteries,” Advanced Materials 35, no. 14 (2023): 2210867.

[39]

Y. Li, X. Wang, S. Dong, X. Chen, and G. Cui, “Recent Advances in Non-Aqueous Electrolyte for Rechargeable Li-O2 Batteries,” Advanced Energy Materials 6, no. 18 (2016): 1600751.

[40]

D. Nguyen, G. Kang, N. Chiang, et al., “Probing Molecular-Scale Catalytic Interactions Between Oxygen and Cobalt Phthalocyanine Using Tip-Enhanced Raman Spectroscopy,” Journal of the American Chemical Society 140, no. 18 (2018): 5948-5954.

[41]

Y. Zhou, Q. Gu, K. Yin, et al., “Cascaded Orbital-Oriented Hybridization of Intermetallic Pd3 Pb Boosts Electrocatalysis of Li-O2 Battery,” Proceedings National Academy of Science USA 120, no. 25 (2023): e2301439120.

[42]

J. Jiao, G. Lai, S. Qin, et al., “Tuning of Surface Morphology in Li Layered Oxide Cathode Materials,” Acta Materialia 238 (2022): 118229.

[43]

H. Wu, Z. Li, Z. Wang, et al., “Regulation of Electronic Structure in Medium-Entropy Metal Sulfides Nanoparticles as Highly Efficient Bifunctional Electrocatalysts for Zinc-Air Battery,” Applied Catalysis B: Environmental 325 (2023): 122356.

[44]

Y. Sun, S. Sun, H. Yang, S. Xi, J. Gracia, and Z. J. Xu, “Spin-Related Electron Transfer and Orbital Interactions in Oxygen Electrocatalysis,” Advanced Materials 32, no. 39 (2020): 2003297.

[45]

X. Liu, L. Zhao, H. Xu, et al., “Tunable Cationic Vacancies of Cobalt Oxides for Efficient Electrocatalysis in Li-O2 Batteries,” Advanced Energy Materials 10, no. 40 (2020): 2001415.

RIGHTS & PERMISSIONS

2025 The Author(s). SusMat published by Sichuan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

20

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/