In Situ Formed Three-Dimensionally Conducting Polymer Electrolyte for Solid-State Lithium Metal Batteries With High-Cathode Loading

Zhi-Wei Dong , Yun-Fei Du , Mei Geng , Jia-Xin Guo , Xin Shen , Wen-Bo Tang , Kai Chen , Li-Feng Chen , Xiao-Song Liu , Xin-Bing Cheng

SusMat ›› 2025, Vol. 5 ›› Issue (2) : e70004

PDF
SusMat ›› 2025, Vol. 5 ›› Issue (2) : e70004 DOI: 10.1002/sus2.70004
RESEARCH ARTICLE

In Situ Formed Three-Dimensionally Conducting Polymer Electrolyte for Solid-State Lithium Metal Batteries With High-Cathode Loading

Author information +
History +
PDF

Abstract

Low-ionic conductivity within high-loading cathode has greatly limited the application of solid polymer electrolytes in rechargeable batteries. Herein, solid polymer electrolyte with a three-dimensionally conducting network is obtained by in situ polymerization of vinyl ethylene carbonate (VEC) with the aid of dipentaerythritol hexaacrylate (DPHA) crosslinker in the solid-state lithium (Li) metal batteries (LMBs). The weak coordination of Li+ with C═O and C─O groups promotes the dissociation and transport of Li+. The obtained P(VEC–DPHA) electrolyte enables a fast and orderly Li+ transport path and hinders the transport of TFSI, rendering a remarkable ionic conductivity (2.53 × 10−4 S cm−1), high Li+ transference number (0.47), and wide electrochemical window (5.1 V). A total of 87.38% capacity retention rate of LiNi0.8Co0.1Mn0.1O2||Li is achieved after 200 cycles at 0.2 C. P(VEC–DPHA) can also provide stable cycles under harsh conditions of high rate (1 C), high-cathode loading (10.83 mg cm−2), and high-energy-density pouch cell (421.8 Wh kg−1, cathode loading of 25 mg cm−2). This work provides novel insights for the design of highly conductive polymer electrolytes and high-energy-density LMBs.

Keywords

dendrite / high loading / lithium metal battery / pouch cell / solid polymer electrolyte

Cite this article

Download citation ▾
Zhi-Wei Dong, Yun-Fei Du, Mei Geng, Jia-Xin Guo, Xin Shen, Wen-Bo Tang, Kai Chen, Li-Feng Chen, Xiao-Song Liu, Xin-Bing Cheng. In Situ Formed Three-Dimensionally Conducting Polymer Electrolyte for Solid-State Lithium Metal Batteries With High-Cathode Loading. SusMat, 2025, 5(2): e70004 DOI:10.1002/sus2.70004

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y. Shen, Y. Zhang, S. Han, J. Wang, Z. Peng, and L. Chen, “Unlocking the Energy Capabilities of Lithium Metal Electrode With Solid-State Electrolytes,” Joule 2 (2018): 1674-1689.

[2]

C. Cui, C. Yang, N. Eidson, et al., “A Highly Reversible, Dendrite-Free Lithium Metal Anode Enabled by a Lithium-Fluoride-Enriched Interphase,” Advanced Materials 32 (2020): 1906427.

[3]

J. X. Guo, C. Gao, H. Liu, et al., “Inherent Thermal-Responsive Strategies for Safe Lithium Batteries,” Journal of Energy Chemistry 89 (2024): 519-534.

[4]

S.-J. Yang, J.-K. Hu, F.-N. Jiang, et al., “Oxygen-Induced Thermal Runaway Mechanisms of Ah-Level Solid-State Lithium Metal Pouch Cells,” Etransportation 18 (2023): 100279.

[5]

X.-Q. Xu, X.-B. Cheng, F.-N. Jiang, et al., “Dendrite-Accelerated Thermal Runaway Mechanisms of Lithium Metal Pouch Batteries,” SusMat 2 (2022): 435-444.

[6]

Q. Guo, F. Xu, L. Shen, et al., “20  μ M-Thick Li6.4La3Zr1.4Ta0.6O12-Based Flexible Solid Electrolytes for All-Solid-State Lithium Batteries,” Energy Material Advances 2022 (2022): 9753506.

[7]

R. Chen, Q. Li, X. Yu, L. Chen, and H. Li, “Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces,” Chemical Reviews 120 (2020): 6820-6877.

[8]

J. Wu, S. Liu, F. Han, X. Yao, and C. Wang, “Lithium/Sulfide All-Solid-State Batteries Using Sulfide Electrolytes,” Advanced Materials 33 (2021): 2000751.

[9]

H.-H. Jia, C.-J. Hu, Y.-X. Zhang, and L.-W. Chen, “A Review on Solid-State Li-S Battery: From the Conversion Mechanism of Sulfur to Engineering Design,” Journal of Electrochemistry 29, no. 3 (2023): 2217008.

[10]

H. Zhang, L. Huang, H. Xu, et al., “A Polymer Electrolyte With a Thermally Induced Interfacial Ion-Blocking Function Enables Safety-Enhanced Lithium Metal Batteries,” EScience 2 (2022): 201-208.

[11]

Z. Sun, J. Wu, H. Yuan, et al., “Self-Healing Polymer Electrolyte for Long-Life and Recyclable Lithium-Metal Batteries,” Materials Today Energy 24 (2022): 100939.

[12]

Q. Zhang, K. Liu, F. Ding, and X. Liu, “Recent Advances in Solid Polymer Electrolytes for Lithium Batteries,” Nano Research 10 (2017): 4139-4174.

[13]

G. Xi, M. Xiao, S. Wang, D. Han, Y. Li, and Y. Meng, “Polymer-Based Solid Electrolytes: Material Selection, Design, and Application,” Advanced Functional Materials 31 (2021): 2007598.

[14]

X.-B. Cheng, S.-J. Yang, Z.-C. Liu, et al., “Electrochemically and Thermally Stable Inorganics-Rich Solid Electrolyte Interphase for Robust Lithium Metal Batteries,” Advanced Materials 36 (2024): 2307370.

[15]

X. Chen, C. Sun, K. Wang, et al., “An Ultra-Thin Crosslinked Carbonate Ester Electrolyte for 24 V Bipolar Lithium-Metal Batteries,” Journal of the Electrochemical Society 169 (2022): 090509.

[16]

Y. Yuan, L. Chen, Y. Li, et al., “Functional LiTaO3 Filler With Tandem Conductivity and Ferroelectricity for PVDF-Based Composite Solid-State Electrolyte,” Energy Materials and Devices 1 (2023): 9370004.

[17]

Z. Fang, M. Zhao, Y. Peng, and S. Guan, “Poly (Vinylidene Fluoride) Binder Reinforced Poly (Propylene Carbonate)/3D Garnet Nanofiber Composite Polymer Electrolyte Toward Dendrite-Free Lithium Metal Batteries,” Materials Today Energy 24 (2022): 100952.

[18]

Z. Luo, W. Li, C. Guo, et al., “Two-Dimensional Silica Enhanced Solid Polymer Electrolyte for Lithium Metal Batteries,” Particuology 85 (2024): 146-154.

[19]

M. H. Braga, C. M. Subramaniyam, A. J. Murchison, and J. B. Goodenough, “Nontraditional, Safe, High Voltage Rechargeable Cells of Long Cycle Life,” Journal of the American Chemical Society 140 (2018): 6343-6352.

[20]

S. Xu, Z. Sun, C. Sun, et al., “Homogeneous and Fast Ion Conduction of PEO-Based Solid-State Electrolyte at Low Temperature,” Advanced Functional Materials 30 (2020): 2007172.

[21]

J. Atik, D. Diddens, J. H. Thienenkamp, G. Brunklaus, M. Winter, and E. Paillard, “Cation-Assisted Lithium-Ion Transport for High-Performance PEO-Based Ternary Solid Polymer Electrolytes,” Angewandte Chemie International Edition 60 (2021): 11919-11927.

[22]

S.-J. Tan, J. Yue, Y.-F. Tian, et al., “In-Situ Encapsulating Flame-Retardant Phosphate Into Robust Polymer Matrix for Safe and Stable Quasi-Solid-State Lithium Metal Batteries,” Energy Storage Materials 39 (2021): 186-193.

[23]

Z. Liu, S. Zhang, Q. Zhou, et al., “Insights Into Quasi Solid-State Polymer Electrolyte: The Influence of Succinonitrile on Polyvinylene Carbonate Electrolyte in View of Electrochemical Applications,” Battery Energy 2 (2023): 20220049.

[24]

M. J. Lee, J. Han, K. Lee, et al., “Elastomeric Electrolytes for High-Energy Solid-State Lithium Batteries,” Nature 601 (2022): 217-222.

[25]

J. Han, M. J. Lee, K. Lee, et al., “Role of Bicontinuous Structure in Elastomeric Electrolytes for High-Energy Solid-State Lithium-Metal Batteries,” Advanced Materials 35 (2023): 2205194.

[26]

J. Park, H. Seong, C. Yuk, et al., “Design of Fluorinated Elastomeric Electrolyte for Solid-State Lithium Metal Batteries Operating at Low Temperature and High Voltage,” Advanced Materials 36 (2024): 2403191.

[27]

D. E. Fenton, J. M. Parker, and P. V. Wright, “Complexes of Alkali Metal Ions With Poly (Ethylene Oxide),” Polymer 14 (1973): 589.

[28]

A. M. Christie, S. J. Lilley, E. Staunton, Y. G. Andreev, and P. G. Bruce, “Increasing the Conductivity of Crystalline Polymer Electrolytes,” Nature 433 (2005): 50-53.

[29]

C. Sun, J. Liu, Y. Gong, D. P. Wilkinson, and J. Zhang, “Recent Advances in All-Solid-State Rechargeable Lithium Batteries,” Nano Energy 33 (2017): 363-386.

[30]

L. Wang, S. Xu, Z. Wang, et al., “A Nano Fiber-Gel Composite Electrolyte With High Li+ Transference Number for Application in Quasi-Solid Batteries,” EScience 3 (2023): 100090.

[31]

J. Lee, S. Byun, H. Lee, et al., “Digital-Twin-Driven Structural and Electrochemical Analysis of Li+ Single-Ion Conducting Polymer Electrolyte for All-Solid-State Batteries,” Battery Energy 2 (2023): 20220061.

[32]

Y. Wang, F. Fan, A. L. Agapov, et al., “Examination of the Fundamental Relation Between Ionic Transport and Segmental Relaxation in Polymer Electrolytes,” Polymer 55 (2014): 4067-4076.

[33]

J. Zhang, J. Zhao, L. Yue, et al., “Safety-Reinforced Poly (Propylene Carbonate)-Based All-Solid-State Polymer Electrolyte for Ambient-Temperature Solid Polymer Lithium Batteries,” Advanced Energy Materials 5 (2015): 1501082.

[34]

Q. Zhang, S. Liu, Z. Lin, et al., “Highly Safe and Cyclable Li-Metal Batteries With Vinylethylene Carbonate Electrolyte,” Nano Energy 74 (2020): 104860.

[35]

Z. Lin, X. Guo, Z. Wang, et al., “A Wide-Temperature Superior Ionic Conductive Polymer Electrolyte for Lithium Metal Battery,” Nano Energy 73 (2020): 104786.

[36]

V. Sabatini, S. Gazzotti, H. Farina, S. Camazzola, and M. A. Ortenzi, “The Case of 4-Vinyl-1,3-Dioxolane-2-One: Determination of Its Pseudo-Living Behavior and Preparation of Allyl Carbonate-Styrene Co-Polymers,” ChemistrySelect 2 (2017): 10748-10753.

[37]

J. Zheng, M. Tang, and Y. Hu, “Lithium Ion Pathway Within Li7La3Zr2O12-Polyethylene Oxide Composite Electrolytes,” Angewandte Chemie International Edition 55 (2016): 12538-12542.

[38]

G. Xu, C. Pang, B. Chen, et al., “Prescribing Functional Additives for Treating the Poor Performances of High-Voltage (5 V-Class)LiNi0.5Mn1.5O4/MCMB Li-Ion Batteries,” Advanced Energy Materials 8 (2018): 1701398.

[39]

A. Nguyen, R. Verma, G. Song, J. Kim, and C. Park, “In Situ Polymerization on a 3D Ceramic Framework of Composite Solid Electrolytes for Room-Temperature Solid-State Batteries,” Advancement of Science 10 (2023): 2207744.

[40]

Q. Zhou, C. Fu, R. Li, et al., “Poly (Vinyl Ethylene Carbonate)-Based Dual-Salt Gel Polymer Electrolyte Enabling High Voltage Lithium Metal Batteries,” Chemical Engineering Journal 437 (2022): 135419.

[41]

A. M. Haregewoin, A. S. Wotango, and B.-J. Hwang, “Electrolyte Additives for Lithium Ion Battery Electrodes: Progress and Perspectives,” Energy & Environmental Science 9 (2016): 1955-1988.

[42]

Y. Yamada, K. Furukawa, K. Sodeyama, et al., “Unusual Stability of Acetonitrile-Based Superconcentrated Electrolytes for Fast-Charging Lithium-Ion Batteries,” Journal of the American Chemical Society 136 (2014): 5039-5046.

[43]

W. Gorecki, M. Jeannin, E. Belorizky, C. Roux, and M. Armand, “Physical Properties of Solid Polymer Electrolyte PEO(LiTFSI) Complexes,” Journal of Physics: Condensed Matter 7 (1995): 6823.

[44]

Y. Wang, M. Li, F. Yang, J. Mao, and Z. Guo, “Developing Artificial Solid-State Interphase for Li Metal Electrodes: Recent Advances and Perspective,” Energy Materials and Devices 1 (2023): 9370005.

[45]

A.-L. Chen, N. Shang, Y. Ouyang, et al., “Electroactive Polymeric Nanofibrous Composite to Drive In Situ Construction of Lithiophilic SEI for Stable Lithium Metal Anodes,” EScience 2 (2022): 192-200.

[46]

Y. Yang, J. Xiong, S. Lai, et al., “Vinyl Ethylene Carbonate as an Effective SEI-Forming Additive in Carbonate-Based Electrolyte for Lithium-Metal Anodes,” ACS Applied Materials and Interfaces 11 (2019): 6118-6125.

[47]

S. Li, Y.-M. Chen, W. Liang, et al., “A Superionic Conductive, Electrochemically Stable Dual-Salt Polymer Electrolyte,” Joule 2 (2018): 1838-1856.

[48]

H. Peng, T. Long, J. Peng, et al., “Molecular Design for In-Situ Polymerized Solid Polymer Electrolytes Enabling Stable Cycling of Lithium Metal Batteries,” Advanced Energy Materials 14 (2024): 2400428.

[49]

K. Chen, R. Pathak, A. Gurung, et al., “Flower-Shaped Lithium Nitride as a Protective Layer via Facile Plasma Activation for Stable Lithium Metal Anodes,” Energy Storage Materials 18 (2019): 389-396.

[50]

J. Yi, D. Zhou, Y. Liang, H. Liu, H. Ni, and L.-Z. Fan, “Enabling High-Performance All-Solid-State Lithium Batteries With High Ionic Conductive Sulfide-Based Composite Solid Electrolyte and Ex-Situ Artificial SEI Film,” Journal of Energy Chemistry 58 (2021): 17-24.

[51]

S. S. Zhang, “Understanding of Performance Degradation of LiNi0.80Co0.10Mn0.10O2 Cathode Material Operating at High Potentials,” Journal of Energy Chemistry 41 (2020): 135-141.

[52]

H.-J. Noh, S. Youn, C. S. Yoon, and Y.-K. Sun, “Comparison of the Structural and Electrochemical Properties of Layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) Cathode Material for Lithium-Ion Batteries,” Journal of Power Sources 233 (2013): 121-130.

[53]

Y. Wang, S. Chen, Z. Li, C. Peng, Y. Li, and W. Feng, “In-Situ Generation of Fluorinated Polycarbonate Copolymer Solid Electrolytes for High-Voltage Li-Metal Batteries,” Energy Storage Materials 45 (2022): 474-483.

[54]

W. Fan, N. Li, X. Zhang, et al., “A Dual-Salt Gel Polymer Electrolyte With 3D Cross-Linked Polymer Network for Dendrite-Free Lithium Metal Batteries,” Advancement of Science 5 (2018): 1800559.

[55]

F.-N. Jiang, S.-J. Yang, X.-B. Cheng, et al., “Thermal Safety of Dendritic Lithium Against Non-Aqueous Electrolyte in Pouch-Type Lithium Metal Batteries,” Journal of Energy Chemistry 72 (2022): 158-165.

[56]

F.-N. Jiang, S.-J. Yang, Z.-X. Chen, et al., “Higher-Order Polysulfides Induced Thermal Runaway for 1.0 Ah Lithium Sulfur Pouch Cells,” Particuology 79 (2023): 10-17.

RIGHTS & PERMISSIONS

2025 The Author(s). SusMat published by Sichuan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

26

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/