MXene–Metal Phosphate/Phosphide Composites for Energy Storage and Conversion

Iftikhar Hussain , Anum Iqbal , Faiza Bibi , Sabarison Pandiyarajan , Seyedeh Nooshin Banitaba , Sanaz Khademolqorani , Muhammad Sufyan Javed , Ho-Chiao Chuang , Kaili Zhang

SusMat ›› 2025, Vol. 5 ›› Issue (2) : e259

PDF
SusMat ›› 2025, Vol. 5 ›› Issue (2) : e259 DOI: 10.1002/sus2.259
REVIEW

MXene–Metal Phosphate/Phosphide Composites for Energy Storage and Conversion

Author information +
History +
PDF

Abstract

MXenes, a family of emerging two-dimensional materials offer enriched surface chemistry, high electrical conductivities, large specific surface area, intrinsic physicochemical properties, and excellent mechanical stability. However, restacking of MXene sheets limit their electrochemical performance. To overcome this limitation, recent advancements have focused on developing MXene composites with metal phosphates/phosphides (MXene/MPs). This review discusses the applications of MXene/MPs composites in energy storage and conversion applications. The incorporation of MPs into MXenes not only addresses the restacking issue and aggregation problems, but also enhances the overall electrochemical performance of energy storage and conversion systems. The review concludes with a summary of the current research status and future prospects for MXene/MPs-based composites in energy applications.

Keywords

2D materials / energy conversions / energy storage / MXene/MPs composites / MXenes

Cite this article

Download citation ▾
Iftikhar Hussain, Anum Iqbal, Faiza Bibi, Sabarison Pandiyarajan, Seyedeh Nooshin Banitaba, Sanaz Khademolqorani, Muhammad Sufyan Javed, Ho-Chiao Chuang, Kaili Zhang. MXene–Metal Phosphate/Phosphide Composites for Energy Storage and Conversion. SusMat, 2025, 5(2): e259 DOI:10.1002/sus2.259

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

B. He, Q. Zhang, Z. Pan, et al., “Freestanding Metal-organic Frameworks and Their Derivatives: An Emerging Platform for Electrochemical Energy Storage and Conversion,” Chemical Reviews 122, no. 11 (2022): 10087-10125.

[2]

I. Hussain, A. Ali, C. Lamiel, S. G. Mohamed, S. Sahoo, and J.-J. Shim, “A 3D Walking Palm-Like Core-shell CoMoO4@NiCo2S4@Nickel Foam Composite for High-Performance Supercapacitors,” Dalton Transactions 48, no. 12 (2019): 3853-3861.

[3]

I. Hussain, T. Hussain, S. B. Ahmed, et al., “Binder-Free Trimetallic Phosphate Nanosheets as an Electrode: Theoretical and Experimental Investigation,” Journal of Power Sources 513 (2021): 230556.

[4]

S. V. Venkatesan, A. Nandy, K. Karan, S. R. Larter, and V. Thangadurai, “Recent Advances in the Unconventional Design of Electrochemical Energy Storage and Conversion Devices,” Electrochemical Energy Reviews 5, no. 4 (2022): 16.

[5]

J. Chen, L. Wei, A. Mahmood, et al., “Prussian blue, Its Analogues and Their Derived Materials for Electrochemical Energy Storage and Conversion,” Energy Storage Materials 25 (2020): 585-612.

[6]

I. Hussain, U. Amara, F. Bibi, et al., “Mo-Based MXenes: Synthesis, Properties, and Applications,” Advances in Colloid and Interface Science 324 (2024): 103077.

[7]

L. Zu, W. Zhang, L. Qu, et al., “Mesoporous Materials for Electrochemical Energy Storage and Conversion,” Advanced Energy Materials 10, no. 38 (2020): 2002152.

[8]

X. Chu, G. Chen, X. Xiao, et al., “Air-Stable Conductive Polymer Ink for Printed Wearable Micro-Supercapacitors,” Small, no. 25 (2021): 2100956.

[9]

M. Naguib, M. Kurtoglu, V. Presser, et al., Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2, MXenes (Jenny Stanford Publishing, 2011), 15-29.

[10]

U. Amara, I. Hussain, M. Ahmad, K. Mahmood, and K. Zhang, “2D MXene-Based Biosensing: A Review,” Small 19, no. 2 (2022): 2205249.

[11]

X. Zhang, J. Miao, P. Zhang, Q. Zhu, M. Jiang, and B. Xu, “3D crumbled MXene for High-Performance Supercapacitors,” Chinese Chemical Letters 31, no. 9 (2020): 2305-2308.

[12]

M. Naguib, M. W. Barsoum, and Y. Gogotsi, “Ten Years of Progress in the Synthesis and Development of MXenes,” Advanced Materials 33, no. 39 (2021): 2103393.

[13]

M. Naguib, V. N. Mochalin, M. W. Barsoum, and Y. Gogotsi, “25th anniversary Article: MXenes: A New family of Two-Dimensional Materials,” Advanced Materials 26, no. 7 (2014): 992-1005.

[14]

J. Zhang, S. Uzun, S. Seyedin, et al., “Additive-Free MXene Liquid Crystals and Fibers,” ACS Central Science 6, no. 2 (2020): 254-265.

[15]

Y. Wei, P. Zhang, R. A. Soomro, Q. Zhu, and B. Xu, “Advances in the Synthesis of 2D MXenes,” Advanced Materials 33, no. 39 (2021): 2103148.

[16]

J. Pang, R. G. Mendes, A. Bachmatiuk, et al., “Applications of 2D MXenes in Energy Conversion and Storage Systems,” Chemical Society Reviews 48, no. 1 (2019): 72-133.

[17]

J. Theerthagiri, A. P. Murthy, S. J. Lee, et al., “Recent Progress on Synthetic Strategies and Applications of Transition Metal Phosphides in Energy Storage and Conversion,” Ceramics International 47, no. 4 (2021): 4404-4425.

[18]

L. Feng and H. Xue, “Advances in Transition-Metal Phosphide Applications in Electrochemical Energy Storage and Catalysis,” ChemElectroChem 4, no. 1 (2017): 20-34.

[19]

M. Liu and J. Li, “Cobalt Phosphide Hollow Polyhedron as Efficient Bifunctional Electrocatalysts for the Evolution Reaction of Hydrogen and Oxygen,” ACS Applied Materials & Interfaces 8, no. 3 (2016): 2158-2165.

[20]

W. Song, X. Teng, Y. Niu, S. Gong, X. He, and Z. Chen, “Self-Templating Construction of Hollow Fe-CoxP Nanospheres for Oxygen Evolution Reaction,” Chemical Engineering Journal 409, no. 12 (2021): 128227.

[21]

H. Zhou and J. He, “Synthesis of the New High Entropy Alloy and Its Application in Energy Conversion and Storage,” Frontiers in Energy Research 8 (2020).

[22]

H. Zhao and Z. Y. Yuan, “Insights Into Transition Metal Phosphate Materials for Efficient Electrocatalysis,” Chemcatchem 12, no. 15 (2020): 3797-3810.

[23]

Z. Pan, L. Kang, T. Li, et al., “Black Phosphorus@Ti3C2Tx MXene Composites With Engineered Chemical Bonds for Commercial-Level Capacitive Energy Storage,” ACS Nano 15, no. 8 (2021): 12975-12987.

[24]

A. S. Levitt, M. Alhabeb, C. B. Hatter, A. Sarycheva, G. Dion, and Y. Gogotsi, “Electrospun MXene/Carbon Nanofibers as Supercapacitor Electrodes,” Journal of Materials Chemistry A 7, no. 1 (2019): 269-277.

[25]

G. Zhou, X. Wang, T. Wan, et al., “Electrostatic Self-Assembly of Ti3C2Tx MXene/Cellulose Nanofiber Composite Films for Wearable Supercapacitor and Joule Heater,” Energy & Environmental Materials 6, no. 6. (2022): e12454.

[26]

M. Q. Zhao, C. E. Ren, Z. Ling, et al., “Flexible MXene/Carbon Nanotube Composite Paper With High Volumetric Capacitance,” Advanced Materials 27, no. 2 (2015): 339-345.

[27]

C. Ma, M. G. Ma, C. Si, X. X. Ji, and P. Wan, “Flexible MXene-Based Composites for Wearable Devices,” Advanced Functional Materials 31, no. 22 (2021): 2009524.

[28]

X. Hui, X. Ge, R. Zhao, Z. Li, and L. Yin, “Interface Chemistry on MXene-Based Materials for Enhanced Energy Storage and Conversion Performance,” Advanced Functional Materials 30, no. 50 (2020): 2005190.

[29]

N. Gupta, R. K. Sahu, T. Mishra, and P. Bhattacharya, “Microwave-Assisted Rapid Synthesis of Titanium Phosphate Free Phosphorus Doped Ti3C2 MXene With Boosted Pseudocapacitance,” Journal of Materials Chemistry A 10, no. 29 (2022): 15794-15810.

[30]

N. J. Prakash and B. Kandasubramanian, “Nanocomposites of MXene for Industrial Applications,” Journal of Alloys and Compounds 862 (2021): 158547.

[31]

L. Liu, N. Li, J. Han, K. Yao, and H. Liang, “Multicomponent Transition Metal Phosphide for Oxygen Evolution,” International Journal of Minerals, Metallurgy and Materials 29, no. 3 (2022): 503-512.

[32]

L. Zhong, M. Yue, Y. Liang, et al., “In Situ Universal Construction of Thiophosphite/MXene Hybrids via Lewis Acidic Etching for Superior Sodium Storage,” Advanced Functional Materials, no. 46 (2024): 2407740.

[33]

M. Du, P. Geng, J. Shi, H. Xu, W. Feng, and H. Pang, “Triple Effect of “Conductivity-Adsorption-Catalysis” Enables MXene@FeCoNiP to be Sulfur Hosts for Lithium-Sulfur Batteries,” Inorganic Chemistry, no. 23 (2024).

[34]

K. Gong, H. Huang, C. Shi, X. Qian, L. Yin, and K. Zhou, “In-Situ Encapsulated MXene Nanosheets With Bimetallic Phosphate: Towards for Reducing the Fire Risk of Epoxy Composites,” Composites Part A: Applied Science and Manufacturing 174 (2023): 107731.

[35]

Z. Li, J. Dai, Y. Li, et al., “Intercalation-Deintercalation Design in MXenes for High-Performance Supercapacitors,” Nano Research 15 (2022): 1-9.

[36]

Y. Shao, M. F. El-Kady, J. Sun, et al., “Design and Mechanisms of Asymmetric Supercapacitors,” Chemical Reviews 118, no. 18 (2018): 9233-9280.

[37]

Q. Zhu, D. Zhao, M. Cheng, et al., “A New View of Supercapacitors: Integrated Supercapacitors,” Advanced Energy Materials 9, no. 36 (2019): 1901081.

[38]

C. Choi, D. S. Ashby, D. M. Butts, et al., “Achieving High Energy Density and High Power Density With Pseudocapacitive Materials,” Nature Reviews Materials 5, no. 1 (2020): 5-19.

[39]

S. Pandiyarajan, R. Srinivasan, S. S. M. Manickaraj, H.-C. Chuang, and P. M. Johnson, “Robust Fabrication of Silver Pyro-Vanadates via Sonochemical Approach for Advanced Energy Storage Application,” Journal of Alloys and Compounds 893 (2022): 162268.

[40]

M. Cai, R. A. Outlaw, S. M. Butler, and J. R. Miller, “A High Density of Vertically-Oriented Graphenes for Use in Electric Double Layer Capacitors,” Carbon 50, no. 15 (2012): 5481-5488.

[41]

X. Du, P. Guo, H. Song, and X. Chen, “Graphene Nanosheets as Electrode Material for Electric Double-Layer Capacitors,” Electrochimica Acta 55, no. 16 (2010): 4812-4819.

[42]

C. Koventhan, S. Pandiyarajan, S. M. Chen, and C. S. Selvan, “Novel Design of Perovskite-Structured Neodymium Cobalt Oxide Nanoparticle-Embedded Graphene Oxide Nanocomposites as Efficient Active Materials of Energy Storage Devices,” ACS Applied Materials & Interfaces 15 (2023): 44876-44886.

[43]

S. Pandiyarajan, S. S. M. Manickaraj, A.-H. Liao, A. R. P. Selvam, K.-Y. Lee, and H.-C. Chuang, “Coherent Construction of Recovered γ-Al2O3 Embedded N-Doped Activated Carbon by Supercritical-CO2 Pathway: Robust Hybrid Electrode Material for Energy Storage Device,” Journal of Alloys and Compounds 936 (2023): 168213.

[44]

B. Anasori, M. R. Lukatskaya, and Y. Gogotsi, “2D metal Carbides and Nitrides (MXenes) for Energy Storage,” Nature Reviews Materials 2, no. 2 (2017): 1-17.

[45]

X. Zhan, C. Si, J. Zhou, and Z. Sun, “MXene and MXene-Based Composites: Synthesis, Properties and Environment-Related Applications,” Nanoscale Horizons 5, no. 2 (2020): 235-258.

[46]

J. Nan, X. Guo, J. Xiao, et al., “Nanoengineering of 2D MXene-Based Materials for Energy Storage Applications,” Small 17, no. 9 (2021): 1902085.

[47]

X. Wang, G. Sun, P. Routh, D.-H. Kim, W. Huang, and P. Chen, “Heteroatom-Doped Graphene Materials: Syntheses, Properties and Applications,” Chemical Society Reviews 43, no. 20 (2014): 7067-7098.

[48]

K. Liu, Q. Xia, L. Si, et al., “Defect Engineered Ti3C2Tx MXene Electrodes by Phosphorus Doping With Enhanced Kinetics for Supercapacitors,” Electrochimica Acta 435 (2022): 141372.

[49]

Y. Wen, R. Li, J. Liu, et al., “A Temperature-Dependent Phosphorus Doping on Ti3C2Tx MXene for Enhanced Supercapacitance,” Journal of Colloid and Interface Science 604 (2021): 239-247.

[50]

M. Naguib, O. Mashtalir, M. R. Lukatskaya, et al., “One-Step Synthesis of Nanocrystalline Transition Metal Oxides on Thin Sheets of Disordered Graphitic Carbon by Oxidation of MXenes,” Chemical Communications 50, no. 56 (2014): 7420-7423.

[51]

Z. Fu, Q. Zhang, D. Legut, et al., “Stabilization and Strengthening Effects of Functional Groups in Two-Dimensional Titanium Carbide,” Physical Review B 94, no. 10 (2016): 104103.

[52]

I. Shein and A. Ivanovskii, “Graphene-Like Titanium Carbides and Nitrides Tin+ 1Cn, Tin+ 1Nn (n = 1, 2, and 3) From De-Intercalated MAX Phases: First-Principles Probing of Their Structural, Electronic Properties and Relative Stability,” Computational Materials Science 65 (2012): 104-114.

[53]

H. Zhang, Z. Li, Z. Hou, et al., “Self-Assembly of MOF on MXene Nanosheets and In-Situ Conversion Into Superior Nickel Phosphates/MXene Battery-Type Electrode,” Chemical Engineering Journal 425 (2021): 130602.

[54]

X. Wei, M. Cai, F. Yuan, et al., “The Surface Functional Modification of Ti3C2Tx MXene by Phosphorus Doping and Its Application in Quasi-Solid State Flexible Supercapacitor,” Applied Surface Science 606 (2022): 154817.

[55]

Z. Pan, L. Kang, T. Li, et al., “Black Phosphorus@Ti3C2Tx MXene Composites With Engineered Chemical Bonds for Commercial-Level Capacitive Energy Storage,” ACS Nano 15, no. 8 (2021): 12975-12987.

[56]

N. Gupta, R. K. Sahu, T. Mishra, and P. Bhattacharya, “Microwave-Assisted Rapid Synthesis of Titanium Phosphate Free Phosphorus Doped Ti₃C₂ MXene With Boosted Pseudocapacitance,” Journal of Materials Chemistry A, no. 29 (2022).

[57]

B. Guan, Y. Li, B. Yin, et al., “Synthesis of Hierarchical NiS Microflowers for High Performance Asymmetric Supercapacitor,” Chemical Engineering Journal 308 (2017): 1165-1173.

[58]

X. Li, X. Xiao, Q. Li, J. Wei, H. Xue, and H. Pang, “Metal (M = Co, Ni) Phosphate Based Materials for High-Performance Supercapacitors,” Inorganic Chemistry Frontiers 5, no. 1 (2018): 11-28.

[59]

Y. Tang, Z. Liu, W. Guo, et al., “Honeycomb-Like Mesoporous Cobalt Nickel Phosphate Nanospheres as Novel Materials for High Performance Supercapacitor,” Electrochimica Acta 190 (2016): 118-125.

[60]

B. Mahmoud, A. Mirghni, K. Oyedotun, D. Momodu, O. Fasakin, and N. Manyala, “Synthesis of Cobalt Phosphate-Graphene Foam Material via Co-Precipitation Approach for a Positive Electrode of an Asymmetric Supercapacitors Device,” Journal of Alloys and Compounds 818 (2020): 153332.

[61]

N. L. W. Septiani, Y. V. Kaneti, K. B. Fathoni, et al., “Self-Assembly of Nickel Phosphate-Based Nanotubes Into Two-Dimensional Crumpled Sheet-Like Architectures for High-Performance Asymmetric Supercapacitors,” Nano Energy 67 (2020): 104270.

[62]

L. Tao, J. Li, Q. Zhou, H. Zhu, G. Hu, and J. Huang, “Composition, Microstructure and Performance of Cobalt Nickel Phosphate as Advanced Battery-Type Capacitive Material,” Journal of Alloys and Compounds 767 (2018): 789-796.

[63]

C. Chen, W. Chen, J. Lu, et al., “Transition-Metal Phosphate Colloidal Spheres,” Angewandte Chemie 121, no. 26 (2009): 4910-4913.

[64]

J. Zhang, Y. Yang, Z. Zhang, X. Xu, and X. Wang, “Rapid Synthesis of Mesoporous NixCo3−x(PO4)2 Hollow Shells Showing Enhanced Electrocatalytic and Supercapacitor Performance,” Journal of Materials Chemistry A 2, no. 47 (2014): 20182-20188.

[65]

R. Bendi, V. Kumar, V. Bhavanasi, K. Parida, and P. S. Lee, “Metal Organic Framework-Derived Metal Phosphates as Electrode Materials for Supercapacitors,” Advanced Energy Materials 6, no. 3 (2016): 1501833.

[66]

H. C. Chen, S. Jiang, B. Xu, et al., “Sea-Urchin-Like Nickel-cobalt Phosphide/Phosphate Composites as Advanced Battery Materials for Hybrid Supercapacitors,” Journal of Materials Chemistry A 7, no. 11 (2019): 6241-6249.

[67]

C. C. Lee, F. S. Omar, A. Numan, N. Duraisamy, K. Ramesh, and S. Ramesh, “An Enhanced Performance of Hybrid Supercapacitor Based on Polyaniline-Manganese Phosphate Binary Composite,” Journal of Solid State Electrochemistry 21, no. 11 (2017): 3205-3213.

[68]

N. K. Gaikwad, S. S. Patil, A. A. Kulkarni, et al., “Understanding the Role of Precursor Concentration in the Hydrothermal Synthesis of Nickel Phosphate Hydrate for Supercapacitors,” Journal of Materials Science: Materials in Electronics 35 (2024): 288.

[69]

P. K. Katkar, S. J. Marje, S. S. Pujari, S. A. Khalate, A. C. Lokhande, and U. M. Patil, “Enhanced Energy Density of All-Solid-State Asymmetric Supercapacitors Based on Morphologically Tuned Hydrous Cobalt Phosphate Electrode as Cathode Material,” ACS Sustainable Chemistry & Engineering 7 (2019): 11205-11218.

[70]

P. K. Katkar, S. A. Patil, J. H. Jeon, et al., “Urea-Assisted Nickel-manganese Phosphate Composite Microarchitectures With Ultralong Lifecycle for Flexible Asymmetric Solid-State Supercapacitors: A Binder-Free Approach,” Energy & Fuels 36 (2022): 13356-13369.

[71]

Z. Zhao, X. Wu, C. Luo, and Y. Yang, “High Capacitance and Cycling Stability of Flexible-Asymmetric-Supercapacitor Based on Hierarchical NiAlP/NiAl-LDHs@MXene Electrodes,” Journal of Power Sources 545 (2022): 231910.

[72]

S. Liu, Y. Li, W. Zhang, J. Wang, W. Xu, and C. Wang, “NiCoP/MXene Nanocomposites via Electrostatic Self-Assembly for High-Performance Supercapacitor Electrodes,” Dalton Transactions 52, no. 29 (2023): 10115-10125.

[73]

S. Hussain, P. K. Katkar, D. Vikraman, et al., “Direct and Binder-Free MXene-Assisted Cobalt Manganese Phosphate Electrode Fabrication on Carbon Cloth by Electrosynthesis for Efficient Supercapacitors,” International Journal of Energy Research 2023 (2023).

[74]

A. M. Patil, N. R. Chodankar, E. Jung, et al., “2D-on-2D Core-shell Co3(PO4)2 Stacked Micropetals@Co2Mo3O8 Nanosheets and Binder-Free 2D CNT-Ti3C2Tx-MXene Electrodes for High-Energy Solid-state Flexible Supercapacitors,” Journal of Materials Chemistry A, no. 46 (2021): 26135-26148.

[75]

L. Yu, W. Li, C. Wei, Q. Yang, Y. Shao, and J. Sun, “3D printing of NiCoP/Ti3C2 MXene Architectures for Energy Storage Devices With High Areal and Volumetric Energy Density,” Nano-Micro Letters 12, no. 1 (2020): 1-13.

[76]

M. N. Mustafa, M. A. A. M. Abdah, A. Numan, Y. Sulaiman, R. Walvekar, and M. Khalid, “Development of High-Performance MXene/Nickel Cobalt Phosphate Nanocomposite for Electrochromic Energy Storage System Using Response Surface Methodology,” Journal of Energy Storage 68 (2023): 107880.

[77]

F. S. Omar, A. Numan, S. Bashir, et al., “Enhancing Rate Capability of Amorphous Nickel Phosphate Supercapattery Electrode via Composition With Crystalline Silver Phosphate,” Electrochimica Acta 273 (2018): 216-228.

[78]

Y. Wen, B. Wang, C. Huang, L. Wang, and D. Hulicova-Jurcakova, “Synthesis of Phosphorus-Doped Graphene and Its Wide Potential Window in Aqueous Supercapacitors,” Chemistry-A European Journal 21, no. 1 (2015): 80-85.

[79]

X. Fan, H. Xu, S. Zuo, Z. Liang, S. Yang, and Y. Chen, “Preparation and Supercapacitive Properties of Phosphorus-Doped Reduced Graphene Oxide Hydrogel,” Electrochimica Acta 330 (2020): 135207.

[80]

S. N. Banitaba, S. V. Ebadi, P. Salimi, et al., “Biopolymer-Based Electrospun Fibers in Electrochemical Devices: Versatile Platform for Energy, Environment, and Health Monitoring,” Materials Horizons 9, no. 12 (2022): 2914-2948.

[81]

M. Z. Ansari, S. N. Banitaba, S. Khademolqorani, I. Kamika, and V. V. Jadhav, “Overlooked Promising Green Features of Electrospun Cellulose-Based Fibers in Lithium-Ion Batteries,” ACS Omega 8, no. 46 (2023): 43388-43407.

[82]

V. V. Jadhav, Z. Zhuang, S. N. Banitaba, et al., “Tailoring the Performance of the LiNi0.8Mn0.1Co0.1O2 Cathode Using Al2O3 and MoO3 Artificial Cathode Electrolyte Interphase (CEI) Layers Through Plasma-Enhanced Atomic Layer Deposition (PEALD) Coating,” Dalton Transactions 52, no. 40 (2023): 14564-14572.

[83]

Y. Dong, H. Shi, and Z. S. Wu, “Recent Advances and Promise of MXene-Based Nanostructures for High-Performance Metal Ion Batteries,” Advanced Functional Materials 30, no. 47 (2020): 2000706.

[84]

W. Fan, J. Xue, D. Wang, Y. Chen, H. Liu, and X. Xia, “Sandwich-Structured Sn4P3@MXene Hybrid Anodes With High Initial Coulombic Efficiency for High-Rate Lithium-Ion Batteries,” ACS Applied Materials & Interfaces 13 (2021): 61055-61066.

[85]

S. N. Banitaba, A. A. Q. Ahmed, M.-R. Norouzi, and S. Khademolqorani, “Biomedical Applications of Non-Layered 2DMs,” Semiconductors and Semimetals 113 (2023): 297-322.

[86]

Y. Kim, Y. Kim, A. Choi, et al., “Tin Phosphide as a Promising Anode Material for Na-ion Batteries,” Advanced Materials 26, no. 24 (2014): 4139-4144.

[87]

W.-J. Li, Q.-R. Yang, S.-L. Chou, J.-Z. Wang, and H.-K. Liu, “Cobalt Phosphide as a New Anode Material for Sodium Storage,” Journal of Power Sources 294 (2015): 627-632.

[88]

W. Fan, Y. Gao, H. Liu, and X. Xia, “Rational Design of Conductive MXenes-Based Networks by Sn and Sn4P3 Nanoparticles for Durable Sodium-ion Battery,” Journal of Power Sources 562 (2023): 232750.

[89]

Y. Ma, H. Zhang, H. Cong, et al., “Metal-Organic-Framework-Derived Porous Core/Shell CoP Polyhedrons Intertwined With 2D MXene as Anode for Na-ion Storage,” Journal of Alloys and Compounds 968 (2023): 171985.

[90]

M. Yoshio, R. J. Brodd, and A. Kozawa, Lithium-ion Batteries (Springer, 2009).

[91]

S. N. Banitaba, D. Semnani, M. Karimi, E. Heydari-Soureshjani, B. Rezaei, and A. A. Ensafi, “A Comparative Analysis on the Morphology and Electrochemical Performances of Solution-Casted and Electrospun PEO-Based Electrolytes: The Effect of fiber Diameter and Surface Density,” Electrochimica Acta 368 (2021): 137339.

[92]

Y.-P. Wu, E. Rahm, and R. Holze, “Carbon Anode Materials for Lithium Ion Batteries,” Journal of Power Sources 114, no. 2 (2003): 228-236.

[93]

H. Yamauchi, G. Park, T. Nagakane, et al., “Performance of Lithium-ion Battery With Tin-Phosphate Glass Anode and Its Characteristics,” Journal of The Electrochemical Society 160, no. 10 (2013): A1725.

[94]

E. Kim, D. Son, T. G. Kim, et al., “A Mesoporous/Crystalline Composite Material Containing Tin Phosphate for Use as the Anode in Lithium-ion Batteries,” Angewandte Chemie International Edition 43, no. 44 (2004): 5987-5990.

[95]

H. Dong, M. Deng, D. Sun, et al., “Amorphous Lithium-Phosphate-Encapsulated Fe2O3 as a High-Rate and Long-Life Anode for Lithium-ion Batteries,” ACS Applied Energy Materials 5, no. 3 (2022): 3463-3470.

[96]

P. Hei, S. Luo, K. Wei, J. Zhou, Y. Zhao, and F. Gao, “P4Nb2O15@CNTs: A New Type of Niobium Phosphate Compositing Carbon Nanotube Used as Anode Material for High-Rate Lithium Storage,” ACS Sustainable Chemistry & Engineering 9 (2020): 216-223.

[97]

S. Qi, X. Li, Y. Yue, and Y. Zhang, “Iron-Phosphate Glass-Ceramic Anodes for Lithium-ion Batteries,” International Journal of Applied Glass Science 13, no. 3 (2022): 420-428.

[98]

X. Zhong, Y. Chen, W. Zhang, Z. Zhang, and M. Li, “Facile Synthesis of a Honeycomb-Like Nano-Bi/N-Doped C Composite as an Anode for Sodium-Ion Batteries With Superb Cycle Stability,” ACS Sustainable Chemistry & Engineering 10 (2022): 8856-8862.

[99]

A. K. Parameswaran, S. Pazhaniswamy, L. Dekanovsky, et al., “An Integrated Study on the Ionic Migration Across the Nano Lithium Lanthanum Titanate (LLTO) and Lithium Iron Phosphate-Carbon (LFP-C) Interface in All-Solid-State Li-ion Batteries,” Journal of Power Sources 565 (2023): 232907.

[100]

S. N. Banitaba, S. Khademolqorani, V. V. Jadhav, et al., “Recent Progress of Bio-Based Smart Wearable Sensors for Healthcare Applications,” Materials Today Electronics 5 (2023): 100055.

[101]

H. Ahmed, Investigation on Inkjet Printed LFP-C/Ti3C2 MXene Electrodes for Rechargeable Li-ion Battery, (2022).

[102]

L. Zeng, L. Huang, J. Zhu, et al., “Phosphorus-Based Materials for High-Performance Alkaline Metal Ion Batteries: Progress and Prospect,” Small 18, no. 39 (2022): 2201808.

[103]

Y. Mei, Y. Liu, W. Xu, M. Zhang, Y. Dong, and J. Qiu, “Suppressing Vanadium Dissolution in 2D V2O5/MXene Heterostructures via Organic/Aqueous Hybrid Electrolyte for Stable Zinc Ion Batteries,” Chemical Engineering Journal 452 (2023): 139574.

[104]

Y. Ding, Y. Chen, N. Xu, et al., “Facile Synthesis of FePS3 Nanosheets@MXene Composite as a High-Performance Anode Material for Sodium Storage,” Nano-Micro Letters 12, no. 1 (2020): 1-12.

[105]

X. Liu, F. Liu, X. Zhao, and L.-Z. Fan, “Constructing MOF-Derived CoP-NC@MXene Sandwich-Like Composite by In-Situ Intercalation for Enhanced Lithium and Sodium Storage,” Journal of Materiomics 8, no. 1 (2022): 30-37.

[106]

D. Zhao, R. Zhao, S. Dong, et al., “Alkali-Induced 3D Crinkled Porous Ti3C2 MXene Architectures Coupled With NiCoP Bimetallic Phosphide Nanoparticles as Anodes for High-Performance Sodium-ion Batteries,” Energy & Environmental Science 12 (2019): 2422-2432.

[107]

X. Liu, Z. Liu, W. Yang, et al., “In Situ Fragmented and Confined CoP Nanocrystals Into Sandwich-Structure MXene@CoP@NPC Heterostructure for Superior Sodium-ion Storage,” Materials Today Chemistry 26 (2022): 101002.

[108]

H. Zong, L. Hu, Z. Wang, R. Qi, K. Yu, and Z. Zhu, “Metal-Organic Frameworks-Derived CoP Anchored on MXene Toward an Efficient Bifunctional Electrode With Enhanced Lithium Storage,” Chemical Engineering Journal 416 (2021): 129102.

[109]

J. Tang, X. Peng, T. Lin, X. Huang, B. Luo, and L. Wang, “Confining Ultrafine Tin Monophosphide in Ti3C2Tx Interlayers for Rapid and Stable Sodium Ion Storage,” Escience 1, no. 2 (2021): 203-211.

[110]

R. Meng, J. Huang, Y. Feng, et al., “Black Phosphorus Quantum Dot/Ti3C2 MXene Nanosheet Composites for Efficient Electrochemical Lithium/Sodium-ion Storage,” Advanced Energy Materials 8, no. 26 (2018): 1801514.

[111]

Z. Wang, F. Wang, K. Liu, et al., “Cobalt Phosphide Nanoparticles Grown on Ti3C2 Nanosheet for Enhanced Lithium Ions Storage Performances,” Journal of Alloys and Compounds 853 (2021): 157136.

[112]

W. Fan, Y. Gao, Q. Hui, et al., “A Closed-Ended MXene Armor on Hollow Sn4P3 Nanospheres for Ultrahigh-Rate and Stable Sodium Storage,” Chemical Engineering Journal 465 (2023): 142963.

[113]

H. Ji, L. Tao, B. Hu, J. Xu, and J. Ding, “Enhanced Rate and Low-Temperature Performance of LiFePO4 Cathode With 2D Ti3C2 MXene as Conductive Network,” Journal of Electroanalytical Chemistry 928 (2023): 117047.

[114]

H. Zhang, J. Li, L. Luo, et al., “Hierarchically Porous MXene Decorated Carbon Coated LiFePO4 as Cathode Material for High-Performance Lithium-ion Batteries,” Journal of Alloys and Compounds 876 (2021): 160210.

[115]

M. Zhang, Q. Dai, H. Zheng, M. Chen, and L. Dai, “Novel MOF-Derived Co@N-C Bifunctional Catalysts for Highly Efficient Zn-air Batteries and Water Splitting,” Advanced Materials 30, no. 10 (2018): 1705431.

[116]

G.-H. Dong, Y.-Q. Mao, Y.-Q. Li, P. Huang, and S.-Y. Fu, “MXene-Carbon Nanotubes-Cellulose-LiFePO4 Based Self-Supporting Cathode With Ultrahigh-Area-Capacity for Lithium-ion Batteries,” Electrochimica Acta 420 (2022): 140464.

[117]

K. Zhang, H. Chen, H. Huang, Z. Wei, and Y. Zhao, “Water-Soluble Ammonium Polyphosphate Synchronously Enables Mechanically Robust and Flame-Retardant Cellulose Composite Separator for High Safety Lithium Batteries,” Journal of Power Sources 558 (2023): 232627.

[118]

H. Chen, Y. Feng, Z. Wang, et al., “Cellulose-Based Separators for Lithium Batteries: Source, Preparation and Performance,” Chemical Engineering Journal 421 (2023): 144593.

[119]

H. Zhu, S. Dong, J. Xiong, et al., “MOF Derived Cobalt-Nickel Bimetallic Phosphide (CoNiP) Modified Separator to Enhance the Polysulfide Adsorption-Catalysis for Superior Lithium-Sulfur Batteries,” Journal of Colloid and Interface Science 641 (2023): 942-949.

[120]

Y. Ren, B. Wang, H. Liu, et al., “CoP Nanocages Intercalated MXene Nanosheets as a Bifunctional Mediator for Suppressing Polysulfide Shuttling and Dendritic Growth in Lithium-Sulfur Batteries,” Chemical Engineering Journal 450 (2022): 138046.

[121]

M. Z. Salmasi, A. Omidkar, H. M. Nguyen, and H. Song, “MXenes as Electrocatalysts for Hydrogen Production Through the Electrocatalytic Water Splitting Process: A Mini Review,” Energy Reviews, no. 3 (2024): 100070.

[122]

L. M. Maghrabi, N. Singh, and K. Polychronopoulou, “A Mini-Review on the MXenes Capacity to Act as Electrocatalysts for the Hydrogen Evolution Reaction,” International Journal of Hydrogen Energy (2023).

[123]

H. Yang, X. Han, A. I. Douka, et al., “Advanced Oxygen Electrocatalysis in Energy Conversion and Storage,” Advanced Functional Materials 31, no. 12 (2021): 2007602.

[124]

A. Kundu, S. Mallick, S. Ghora, and C. R. Raj, “Advanced Oxygen Electrocatalyst for Air-Breathing Electrode in Zn-air Batteries,” ACS Applied Materials & Interfaces 13 (2021): 40172-40199.

[125]

C. Feng, M. B. Faheem, J. Fu, Y. Xiao, C. Li, and Y. Li, “Fe-Based Electrocatalysts for Oxygen Evolution Reaction: Progress and Perspectives,” ACS Catalysis 10, no. 7 (2020): 4019-4047.

[126]

M. Tahir, L. Pan, F. Idrees, et al., “Electrocatalytic Oxygen Evolution Reaction for Energy Conversion and Storage: A Comprehensive Review,” Nano Energy 37 (2017): 136-157.

[127]

M. K. Awasthi, A. Saini, C. Das, et al., “Bio-Inspired Design of Bidirectional Oxygen Reduction and Oxygen Evolution Reaction Molecular Electrocatalysts,” European Journal of Inorganic Chemistry 26, no. 27 (2023): e202300204.

[128]

D. Zhang, Q. Zhang, C. Peng, et al., “Recent Advances in Developing Multiscale Descriptor Approach for the Design of Oxygen Redox Electrocatalysts,” Iscience 26, no. 5 (2023): 106624.

[129]

X. Ge, A. Sumboja, D. Wuu, et al., “Oxygen Reduction in Alkaline media: From Mechanisms to Recent Advances of Catalysts,” Acs Catalysis 5, no. 8 (2015): 4643-4667.

[130]

A. Kulkarni, S. Siahrostami, A. Patel, and J. K. Nørskov, “Understanding Catalytic Activity Trends in the Oxygen Reduction Reaction,” Chemical Reviews 118, no. 5 (2018): 2302-2312.

[131]

C. E. Beall, E. Fabbri, and T. J. Schmidt, “Perovskite Oxide Based Electrodes for the Oxygen Reduction and Evolution Reactions: The Underlying Mechanism,” ACS Catalysis 11, no. 5 (2021): 3094-3114.

[132]

J. Liu, H. Liu, H. Chen, et al., “Progress and Challenges Toward the Rational Design of Oxygen Electrocatalysts Based on a Descriptor Approach,” Advanced Science 7, no. 1 (2020): 1901614.

[133]

C. Tsounis, P. V. Kumar, H. Masood, et al., “Advancing MXene Electrocatalysts for Energy Conversion Reactions: Surface, Stoichiometry, and Stability,” Angewandte Chemie International Edition 62, no. 4 (2023): e202210828.

[134]

T.-Y. Shuai, Q.-N. Zhan, H.-M. Xu, Z.-J. Zhang, and G.-R. Li, “Recent Developments of MXene-Based Catalysts for Hydrogen Production by Water Splitting,” Green Chemistry 25, no. 5 (2023): 1749-1789.

[135]

X. Bai and J. Guan, “MXenes for Electrocatalysis Applications: Modification and Hybridization,” Chinese Journal of Catalysis 43, no. 8 (2022): 2057-2090.

[136]

K. R. G. Lim, A. D. Handoko, S. K. Nemani, et al., “Rational Design of Two-Dimensional Transition Metal Carbide/Nitride (MXene) Hybrids and Nanocomposites for Catalytic Energy Storage and Conversion,” ACS Nano 14, no. 9 (2020): 10834-10864.

[137]

A. Mateen, M. Suneetha, S. S. Ahmad Shah, et al., “2D MXenes Nanosheets for Advanced Energy Conversion and Storage Devices: Recent Advances and Future Prospects,” The Chemical Record 24, no. 1 (2024): e202300235.

[138]

B. R. Anne, J. Kundu, M. K. Kabiraz, J. Kim, D. Cho, and S. I. Choi, “A Review on MXene as Promising Support Materials for Oxygen Evolution Reaction Catalysts,” Advanced Functional Materials 33, no. 51 (2023): 2306100.

[139]

N. H. Ahmad Junaidi, W. Y. Wong, K. S. Loh, S. Rahman, and W. R. W. Daud, “A Comprehensive Review of MXenes as Catalyst Supports for the Oxygen Reduction Reaction in Fuel Cells,” International Journal of Energy Research 45, no. 11 (2021): 15760-15782.

[140]

M. Sun, H. Liu, J. Qu, and J. Li, “Earth-Rich Transition Metal Phosphide for Energy Conversion and Storage,” Advanced Energy Materials 6, no. 13 (2016): 1600087.

[141]

Y. Wang, B. Kong, D. Zhao, H. Wang, and C. Selomulya, “Strategies for Developing Transition Metal Phosphides as Heterogeneous Electrocatalysts for Water Splitting,” Nano Today 15 (2017): 26-55.

[142]

N. Li, J. Han, K. Yao, et al., “Synergistic Phosphorized NiFeCo and MXene Interaction Inspired the Formation of High-Valence Metal Sites for Efficient Oxygen Evolution,” Journal of Materials Science & Technology 106 (2022): 90-97.

[143]

X. Hu, R. Wang, W. Feng, C. Xu, and Z. Wei, “Electrocatalytic Oxygen Evolution Activities of Metal Chalcogenides and Phosphides: Fundamentals, Origins, and Future Strategies,” Journal of Energy Chemistry 81 (2023): 167-191.

[144]

C.-J. Huang, H.-M. Xu, T.-Y. Shuai, Q.-N. Zhan, Z.-J. Zhang, and G.-R. Li, “A Review of Modulation Strategies for Improving Catalytic Performance of Transition Metal Phosphides for Oxygen Evolution Reaction,” Applied Catalysis B: Environmental (2022): 122313.

[145]

X. Tian, X. F. Lu, B. Y. Xia, and X. W. D. Lou, “Advanced Electrocatalysts for the Oxygen Reduction Reaction in Energy Conversion Technologies,” Joule 4, no. 1 (2020): 45-68.

[146]

H. Li, Q. Li, P. Wen, et al., “Colloidal Cobalt Phosphide Nanocrystals as Trifunctional Electrocatalysts for Overall Water Splitting Powered by a Zinc-air Battery,” Advanced Materials 30 (2018).

[147]

Z. Pu, T. Liu, I. S. Amiinu, et al., “Transition-Metal Phosphides: Activity Origin, Energy-Related Electrocatalysis Applications, and Synthetic Strategies,” Advanced Functional Materials 30, no. 45 (2020): 2004009.

[148]

J. Wei, M. Zhou, A. Long, et al., “Heterostructured Electrocatalysts for Hydrogen Evolution Reaction Under Alkaline Conditions,” Nano-Micro Letters 10, no. 4 (2018): 1-15.

[149]

A. Karmakar, H. S. Chavan, S. M. Jeong, and J. S. Cho, “Mixed Transition Metal Carbonate Hydroxide-Based Nanostructured Electrocatalysts for Alkaline Oxygen Evolution: Status and Perspectives,” Advanced Energy and Sustainability Research 3, no. 9 (2022): 2200071.

[150]

Y. Holade, N. E. Sahin, K. Servat, T. W. Napporn, and K. B. Kokoh, “Recent Advances in Carbon Supported Metal Nanoparticles Preparation for Oxygen Reduction Reaction in Low Temperature Fuel Cells,” Catalysts 5, no. 1 (2015): 310-348.

[151]

H.-J. Niu, Y. Yan, S. Jiang, et al., “Interfaces Decrease the Alkaline Hydrogen-Evolution Kinetics Energy Barrier on NiCoP/Ti3C2Tx MXene,” ACS Nano 16, no. 7 (2022): 11049-11058.

[152]

D. N. Nguyen, T. K. C. Phu, J. Kim, et al., “Interfacial Strain-Modulated Nanospherical Ni2P by Heteronuclei-Mediated Growth on Ti3C2Tx MXene for Efficient Hydrogen Evolution,” Small 18, no. 45 (2022): 2204797.

[153]

H. Zong, R. Qi, K. Yu, and Z. Zhu, “Ultrathin Ti2NTx MXene-Wrapped MOF-Derived CoP Frameworks towards Hydrogen Evolution and Water Oxidation,” Electrochimica Acta 393 (2021): 139068.

[154]

P. Li and H. C. Zeng, “Promoting Electrocatalytic Oxygen Evolution Over Transition-Metal Phosphide-Based Nanocomposites via Architectural and Electronic Engineering,” ACS Applied Materials & Interfaces 11 (2019): 46825-46838.

[155]

Y. Zhao, J. Zhang, X. Guo, et al., “Engineering Strategies and Active Site Identification of MXene-Based Catalysts for Electrochemical Conversion Reactions,” Chemical Society Reviews 52, no. 9 (2023): 3215-3264.

[156]

Z. Lv, W. Ma, J. Dang, et al., “Induction of Co2P Growth on a MXene (Ti3C2Tx)-Modified Self-Supporting Electrode for Efficient Overall Water Splitting,” The Journal of Physical Chemistry Letters 12, no. 20 (2021): 4841-4848.

[157]

S. Liu, Z. Lin, R. Wan, et al., “Cobalt Phosphide Supported by Two-Dimensional Molybdenum Carbide (MXene) for the Hydrogen Evolution Reaction, Oxygen Evolution Reaction, and Overall Water Splitting,” Journal of Materials Chemistry A 9, no. 37 (2021): 21259-21269.

[158]

N. C. S. Selvam, J. Lee, G. H. Choi, et al., “MXene Supported CoXAy (A = OH, P, Se) Electrocatalysts for Overall Water Splitting: Unveiling the Role of Anions in Intrinsic Activity and Stability,” Journal of Materials Chemistry A 7, no. 48 (2019): 27383-27393.

[159]

L. Xiu, Z. Wang, M. Yu, X. Wu, and J. Qiu, “Aggregation-Resistant 3D MXene-Based Architecture as Efficient Bifunctional Electrocatalyst for Overall Water Splitting,” Acs Nano 12, no. 8 (2018): 8017-8028.

[160]

C. Jin, H. Peng, X. Zeng, Z. Liu, and D. Ding, “Hierarchical Assembly of NiFe-PB-Derived Bimetallic Phosphides on 3D Ti3C2 MXene Ribbon Networks for Efficient Oxygen Evolution,” ChemPhysMater 3, no. 1 (2023): 118-124.

[161]

D. Xu, Z. Kang, H. Zhao, et al., “Coupling Heterostructured CoP-NiCoP Nanopin Arrays With MXene (Ti3C2Tx) as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting,” Journal of Colloid and Interface Science 639 (2023): 223-232.

[162]

Q. Yue, J. Sun, S. Chen, et al., “Hierarchical Mesoporous MXene-NiCoP Electrocatalyst for Water-Splitting,” ACS Applied Materials & Interfaces 12 (2020): 18570-18577.

[163]

J. Chen, Q. Long, K. Xiao, et al., “Vertically-Interlaced NiFeP/MXene Electrocatalyst With Tunable Electronic Structure for High-Efficiency Oxygen Evolution Reaction,” Science Bulletin 66, no. 11 (2021): 1063-1072.

[164]

X. Zhu, T. Zhu, Q. Chen, et al., “FeP-CoP Nanocubes in Situ Grown on Ti3C2Tx MXene as Efficient Electrocatalysts for the Oxygen Evolution Reaction,” Industrial & Engineering Chemistry Research 61 (2022): 10837-10845.

[165]

C. Y. Huang, H. M. Lin, C. H. Chiang, et al., “Manipulating Spin Exchange Interactions and Spin-Selected Electron Transfers of 2D Metal Phosphorus Trisulfide Crystals for Efficient Oxygen Evolution Reaction,” Advanced Functional Materials 33, no. 43 (2023): 2305792.

[166]

C. F. Du, K. N. Dinh, Q. Liang, et al., “Self-Assemble and in Situ Formation of Ni1−xFexPS3 Nanomosaic-Decorated MXene Hybrids for Overall Water Splitting,” Advanced Energy Materials 8, no. 26 (2018): 1801127.

[167]

D. Lai, Q. Kang, F. Gao, and Q. Lu, “High-Entropy Effect of a Metal Phosphide on Enhanced Overall Water Splitting Performance,” Journal of Materials Chemistry A 9, no. 33 (2021): 17913-17922.

[168]

M. Li, R. Sun, Y. Li, et al., “The 3D Porous “Celosia” Heterogeneous Interface Engineering of Layered Double Hydroxide and P-doped Molybdenum Oxide on MXene Promotes Overall Water-Splitting,” Chemical Engineering Journal 431 (2022): 133941.

[169]

J. Liu, H. Xu, H. Li, et al., “In-Situ Formation of Hierarchical 1D-3D Hybridized Carbon Nanostructure Supported Nonnoble Transition Metals for Efficient Electrocatalysis of Oxygen Reaction,” Applied Catalysis B: Environmental 243 (2019): 151-160.

[170]

T. Meng, Q. Li, M. Yan, et al., “Electrochemically Induced In-Situ Surface Self-Reconstruction on Ni, Fe, Zn Ternary-Metal Hydroxides towards the Oxygen-Evolution Performance,” Chemical Engineering Journal 410 (2021): 128331.

[171]

W. Ma, Z. Qiu, J. Li, et al., “Interfacial Electronic Coupling of V-doped Co2P With High-Entropy MXene Reduces Kinetic Energy Barrier for Efficient Overall Water Splitting,” Journal of Energy Chemistry 85 (2023): 301-309.

[172]

H. Xie, D. Jiang, H. Chen, et al., “Electron Transfer and Surface Activity of NiCoP-wrapped MXene: Cathodic Catalysts for the Oxygen Reduction Reaction,” Nanoscale 15, no. 16 (2023): 7430-7437.

[173]

J. Qiao, Z. Bao, L. Kong, et al., “MOF-Derived Heterostructure CoNi/CoNiP Anchored on MXene Framework as a Superior Bifunctional Electrocatalyst for Zinc-air Batteries,” Chinese Chemical Letters, no. 12 (2023): 108318.

[174]

M. Yu, Z. Wang, J. Liu, F. Sun, P. Yang, and J. Qiu, “A Hierarchically Porous and Hydrophilic 3D Nickel-iron/MXene Electrode for Accelerating Oxygen and Hydrogen Evolution at High Current Densities,” Nano Energy 63 (2019): 103880.

[175]

J. Chen, C. Fan, X. Hu, et al., “Hierarchically Porous Co/CoxMy (M = P, N) as an Efficient Mott-Schottky Electrocatalyst for Oxygen Evolution in Rechargeable Zn-air Batteries,” Small 15, no. 28 (2019): 1901518.

[176]

C. Jin, H. Peng, X. Zeng, Z. Liu, and D. Ding, “Hierarchical Assembly of NiFe-PB-derived Bimetallic Phosphides on 3D Ti3C2 MXene Ribbon Networks for Efficient Oxygen Evolution,” ChemPhysMater 3, no. 1 (2024): 118-124.

RIGHTS & PERMISSIONS

2024 The Author(s). SusMat published by Sichuan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

46

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/