Sodiophilic Interface and Electrolyte Regulation Boost the Lifespan of Anode-Free Sodium Battery

Huimin Ji , Chunlin Xie , Rui Zhang , Hao Wu , Jiawen Dai , Sihan Li , Qi Zhang , Dan Sun , Yougen Tang , Peiyu Wang , Tian Qiu , Haiyan Wang

SusMat ›› 2025, Vol. 5 ›› Issue (1) : e258

PDF
SusMat ›› 2025, Vol. 5 ›› Issue (1) : e258 DOI: 10.1002/sus2.258
RESEARCH ARTICLE

Sodiophilic Interface and Electrolyte Regulation Boost the Lifespan of Anode-Free Sodium Battery

Author information +
History +
PDF

Abstract

Anode-free sodium batteries (AFSBs) have attracted increasing attention for their high energy density. However, they suffer from rapid capacity decline resulting from sodium dendrite growth at the sodium/host interface and irreversible side reactions at the electrolyte/sodium interface. Herein, a GaInSn-coated Cu foil (G-Cu), prepared by a simple brush coating method, was applied as the sodiophilic current collector to regulate sodium nucleation behavior. In addition, a nonexpendable functional electrolyte additive, hexamethyldisiloxane (HMDSO), was introduced, which could be absorbed on the sodium surface and serve as a protective layer against corrosion side reactions at the electrolyte/sodium interface. It is interesting to note that this additive barely participated in forming the solid electrolyte interphase. The synergetic effects of sodiophilic interface design and electrolyte regulation enable reversible sodium plating and stripping. Ultimately, the AFSB assembled using G-Cu and HMDSO electrolyte with a highly loaded Na3V2(PO4)3 cathode (≈12.5 mg cm–2) delivers a discharge capacity of 84.5 mAh g–1 after 200 cycles with a high capacity retention of 87.6%, significantly extending its operation lifespan.

Keywords

anode-free sodium battery / dead sodium / electrolyte additives / electrolyte/sodium interface / sodiophilic current collector / sodium dendrite

Cite this article

Download citation ▾
Huimin Ji, Chunlin Xie, Rui Zhang, Hao Wu, Jiawen Dai, Sihan Li, Qi Zhang, Dan Sun, Yougen Tang, Peiyu Wang, Tian Qiu, Haiyan Wang. Sodiophilic Interface and Electrolyte Regulation Boost the Lifespan of Anode-Free Sodium Battery. SusMat, 2025, 5(1): e258 DOI:10.1002/sus2.258

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. Xie, H. Wu, J. Dai, et al., “Robust Anode-Free Sodium Batteries With Durably Sodophilic Interfaces by Suppressing Sodium-Alloy Transformation,” Advanced Energy Materials 14, no. 23 (2024): 2400367.

[2]

S. Wu, J. Hwang, K. Matsumoto, and R. Hagiwara, “The Rational Design of Low-Barrier Fluorinated Aluminum Substrates for Anode Free Sodium Metal Battery,” Advanced Energy Materials 13, no. 48 (2023): 2302468.

[3]

Y. Li, Q. Zhou, S. Weng, et al., “Interfacial Engineering to Achieve an Energy Density of Over 200 Wh kg–1 in Sodium Batteries,” Nature Energy 7, no. 6 (2022): 511–519.

[4]

C. Wang, Y. Zheng, Z. Chen, et al., “Robust Anode-Free Sodium Metal Batteries Enabled by Artificial Sodium Formate Interface,” Advanced Energy Materials 13, no. 22 (2023): 2204125.

[5]

T. Yang, D. Luo, Y. Liu, A. Yu, and Z. Chen, “Anode-Free Sodium Metal Batteries as Rising Stars for Lithium-Ion Alternatives,” iScience 26, no. 3 (2023): 105982.

[6]

Z. Liu, Z. Lu, S. Guo, Q. H. Yang, and H. Zhou, “Toward High Performance Anodes for Sodium-Ion Batteries: From Hard Carbons to Anode-Free Systems,” ACS Central Science 9, no. 6 (2023): 1076–1087.

[7]

S. Li, H. Zhu, Y. Liu, Q. Wu, S. Cheng, and J. Xie, “Space-Confined Guest Synthesis to Fabricate Sn-Monodispersed N-Doped Mesoporous Host Toward Anode-Free Na Batteries,” Advanced Materials 35, no. 32 (2023): 2301967.

[8]

S. Li, H. Zhu, C. Gu, et al., “Customized Electrolyte and Host Structures Enabling High-Energy-Density Anode-Free Potassium–Metal Batteries,” ACS Energy Letters 8, no. 8 (2023): 3467–3475.

[9]

J. Wu, C. Lin, Q. Liang, et al., “Sodium-Rich NASICON -Structured Cathodes for Boosting the Energy Density and Lifespan of Sodium-Free-Anode Sodium Metal Batteries,” InfoMat 4, no. 4 (2022): e12288.

[10]

Y. Zhao, B. Liu, Y. Yi, et al., “An Anode-Free Potassium-Metal Battery Enabled by a Directly Grown Graphene-Modulated Aluminum Current Collector,” Advanced Materials 34, no. 29 (2022): 2202902.

[11]

L. Lin, L. Suo, Y. Hu, H. Li, X. Huang, and L. Chen, “Epitaxial Induced Plating Current-Collector Lasting Lifespan of Anode-Free Lithium Metal Battery,” Advanced Energy Materials 11, no. 9 (2021): 2003709.

[12]

C. Xie, H. Wu, K. Liang, et al., “Microalloying Induced Stable Welded Interfaces for Highly Reversible Zero-Excess Sodium Metal Batteries,” Energy & Environmental Science 17, no. 12 (2024): 4228–4237.

[13]

H. Wang, Y. Wu, S. Liu, et al., “3D Ag@C Cloth for Stable Anode Free Sodium Metal Batteries,” Small Methods 5, no. 4 (2021): 2001050.

[14]

B. Ma, Y. Lee, and P. Bai, “Dynamic Interfacial Stability Confirmed by Microscopic Optical Operando Experiments Enables High-Retention-Rate Anode-Free Na Metal Full Cells,” Advanced Science 8, no. 12 (2021): 2005006.

[15]

J. Zhang, Q. Li, Y. Zeng, et al., “Non-Flammable Ultralow Concentration Mixed Ether Electrolyte for Advanced Lithium Metal Batteries,” Energy Storage Materials 51 (2022): 660–670.

[16]

X. Lan, S. Yang, T. Meng, C. Zhang, and X. Hu, “A Multifunctional Electrolyte Additive With Solvation Structure Regulation and Electrode/Electrolyte Interface Manipulation Enabling High-Performance Li-Ion Batteries in Wide Temperature Range,” Advanced Energy Materials 13, no. 16 (2023): 2203449.

[17]

W. Zhang, J. Zheng, Z. Ren, et al., “Anode-Free Sodium Metal Pouch Cell Using Cu3P Nanowires In Situ Grown on Current Collector,” Advanced Materials 36, no. 15: 2310347.

[18]

Z. Wang, Y. Wang, H. Gao, et al., “‘Painting’ Nanostructured Metals—Playing With Liquid Metal,” Nanoscale Horizons 3, no. 4 (2018): 408–416.

[19]

C. Wei, L. Tan, Y. Zhang, et al., “Review of Room-Temperature Liquid Metals for Advanced Metal Anodes in Rechargeable Batteries,” Energy Storage Materials 50 (2022): 473–494.

[20]

J. Meng and C. Li, “Planting CuGa2 Seeds Assisted With Liquid Metal for Selective Wrapping Deposition of Lithium,” Energy Storage Materials 37 (2021): 466–475.

[21]

H. Jia, Z. Wang, M. Dirican, et al., “A Liquid Metal Assisted Dendrite-Free Anode for High-Performance Zn-Ion Batteries,” Journal of Materials Chemistry A 9, no. 9 (2021): 5597–5605.

[22]

C. Liu, Z. Luo, W. Deng, et al., “Liquid Alloy Interlayer for Aqueous Zinc-Ion Battery,” ACS Energy Letters 6, no. 2 (2021): 675–683.

[23]

C. Wei, H. Fei, Y. Tian, et al., “Isotropic Li Nucleation and Growth Achieved by an Amorphous Liquid Metal Nucleation Seed on MXene Framework for Dendrite-Free Li Metal Anode,” Energy Storage Materials 26 (2020): 223–233.

[24]

C. Wei, L. Tan, Y. Tao, et al., “Interfacial Passivation by Room-Temperature Liquid Metal Enabling Stable 5 V-Class Lithium-Metal Batteries in Commercial Carbonate-Based Electrolyte,” Energy Storage Materials 34 (2021): 12–21.

[25]

M. Fu, X. Zhang, W. Dong, et al., “Optimizing Na Plating/Stripping by a Liquid Sodiophilic Ga-Sn-In Alloy Towards Dendrite-Poor Sodium Metal Anodes,” Energy Storage Materials 63 (2023): 103020.

[26]

X. Lv, F. Tang, Y. Yao, et al., “Sodium–Gallium Alloy Layer for Fast and Reversible Sodium Deposition,” SusMat 2, no. 6 (2022): 699–707.

[27]

C. Wei, L. Tan, Y. Zhang, et al., “Room-Temperature Liquid Metal Engineered Iron Current Collector Enables Stable and Dendrite-Free Sodium Metal Batteries in Carbonate Electrolytes,” Journal of Materials Science and Technology 115 (2022): 156–165.

[28]

S. Wan, K. Song, J. Chen, et al., “Reductive Competition Effect-Derived Solid Electrolyte Interphase With Evenly Scattered Inorganics Enabling Ultrahigh Rate and Long-Life Span Sodium Metal Batteries,” Journal of the American Chemical Society 145, no. 39 (2023): 21661–21671.

[29]

J. Luo, Y. Zhang, E. Matios, et al., “Stabilizing Sodium Metal Anodes With Surfactant-Based Electrolytes and Unraveling the Atomic Structure of Interfaces by Cryo-TEM,” Nano Letters 22, no. 3 (2022): 1382–1390.

[30]

L. Gao, J. Chen, Q. Chen, and X. Kong, “The Chemical Evolution of Solid Electrolyte Interface in Sodium Metal Batteries,” Science Advances 8, no. 6 (2022): eabm4606.

[31]

C. Zhu, D. Wu, Z. Wang, et al., “Optimizing NaF-Rich Solid Electrolyte Interphase for Stabilizing Sodium Metal Batteries by Electrolyte Additive,” Advanced Functional Materials 34, no. 5 (2024): 2214195.

[32]

H. Dai, K. Xi, X. Liu, C. Lai, and S. Zhang, “Cationic Surfactant-Based Electrolyte Additives for Uniform Lithium Deposition via Lithiophobic Repulsion Mechanisms,” Journal of the American Chemical Society 140, no. 50 (2018): 17515–17521.

[33]

F. Chu, J. Liu, Z. Guan, R. Deng, L. Mei, and F. Wu, “A Non-Expendable Leveler as Electrolyte Additive Enabling Homogenous Lithium Deposition,” Advanced Materials 35, no. 49 (2023): 2305470.

[34]

S. Yu and M. Kaviany, “Electrical, Thermal, and Species Transport Properties of Liquid Eutectic Ga-In and Ga-In-Sn from First Principles,” Journal of Chemical Physics 140, no. 6 (2014): 064303.

[35]

Q. Li, J. Zhang, Y. Zeng, et al., “Lithiophilic Sn–Co Nano-Seeds Sealed in a Hollow Carbon Shell to Stabilize Lithium Metal Anodes,” Chemical Communications 58, no. 66 (2022): 9194–9197.

[36]

Y. Liu, S. Lu, Z. Wang, et al., “Weakly Polar Ether-Aided Ionic Liquid Electrolyte Enables High-Performance Sodium Metal Batteries Over Wide Temperature Range,” Advanced Functional Materials 34, no. 28 (2024): 2312295.

[37]

Z. Li, H. Rao, R. Atwi, et al., “Non-Polar Ether-Based Electrolyte Solutions for Stable High-Voltage Non-Aqueous Lithium Metal Batteries,” Nature Communications 14, no. 1 (2023): 868.

[38]

Z. Cui, Z. Jia, D. Ruan, et al., “Molecular Anchoring of Free Solvents for High-Voltage and High-Safety Lithium Metal Batteries,” Nature Communications 15, no. 1 (2024): 2033.

[39]

H. J. Liang, Z. Y. Gu, X. X. Zhao, et al., “Ether-Based Electrolyte Chemistry Towards High-Voltage and Long-Life Na-Ion Full Batteries,” Angewandte Chemie International Edition 60, no. 51 (2021): 26837–26846.

[40]

G. Liu, Z. Wang, H. Yuan, et al., “Deciphering Electrolyte Dominated Na+ Storage Mechanisms in Hard Carbon Anodes for Sodium-Ion Batteries,” Advanced Science 10, no. 36 (2023): 2305414.

[41]

J. Yang, J. Ruan, Q. Li, et al., “Improved Low-Temperature Performance of Rocking-Chair Sodium-Ion Hybrid Capacitor by Mitigating the De-Solvation Energy and Interphase Resistance,” Advanced Functional Materials 32, no. 28 (2022): 2200566.

[42]

K. Qin, K. Holguin, J. Huang, et al., “A Fast-Charging and High-Temperature All-Organic Rechargeable Potassium Battery,” Advanced Science 9, no. 34 (2022): 2106116.

[43]

C. Yan, H. R. Li, X. Chen, et al., “Regulating the Inner Helmholtz Plane for Stable Solid Electrolyte Interphase on Lithium Metal Anodes,” Journal of the American Chemical Society 141, no. 23 (2019): 9422–9429.

[44]

S. Wang, S. Weng, X. Li, et al., “Unraveling the Solvent Effect on Solid-Electrolyte Interphase Formation for Sodium Metal Batteries,” Angewandte Chemie International Edition 135, no. 50 (2023): e202313447.

[45]

C. Xie, Q. Zhang, Z. Yang, et al., “Intrinsically Zincophobic Protective Layer for Dendrite-Free Zinc Metal Anode,” Chinese Chemical Letters 33, no. 5 (2022): 2653–2657.

[46]

Y. Jin, K. S. Han, Y. Shao, et al., “Stabilizing Zinc Anode Reactions by Polyethylene Oxide Polymer in Mild Aqueous Electrolytes,” Advanced Functional Materials 30, no. 43 (2020): 2003932.

[47]

H. Dai, J. Dong, M. Wu, et al., “Cobalt-Phthalocyanine-Derived Molecular Isolation Layer for Highly Stable Lithium Anode,” Angewandte Chemie International Edition 60, no. 36 (2021): 19852–19859.

[48]

S. Liu, S. Tang, X. Zhang, A. Wang, Q. H. Yang, and J. Luo, “Porous Al Current Collector for Dendrite-Free Na Metal Anodes,” Nano Letters 17, no. 9 (2017): 5862–5868.

[49]

M. Wu, B. Zhang, Y. Ye, et al., “Anion-Induced Uniform and Robust Cathode–Electrolyte Interphase for Layered Metal Oxide Cathodes of Sodium Ion Batteries,” ACS Applied Materials and Interfaces 16, no. 12 (2024): 15586–15595.

[50]

C. Xie, S. Liu, W. Zhang, et al., “Robust and Wide Temperature-Range Zinc Metal Batteries With Unique Electrolyte and Substrate Design,” Angewandte Chemie International Edition 62, no. 28 (2023): e202304259.

RIGHTS & PERMISSIONS

2024 The Author(s). SusMat published by Sichuan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

732

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/