Dual Interfacial Design Enables Efficient and Stable Semitransparent Wide-Bandgap Perovskite Solar Cells With Scalable-Coated Silver Nanowire Contact for Tandem Applications

Chaoran Chen , Lianglan Liu , Ting Huang , Biao Tu , Hongbing Li , Qingchen He , Qiaoyan Ma , Zhenhua Xu , Shi Chen , Jianmin Li , Guangxing Liang , Yaohua Mai , Fei Guo

SusMat ›› 2025, Vol. 5 ›› Issue (1) : e256

PDF
SusMat ›› 2025, Vol. 5 ›› Issue (1) : e256 DOI: 10.1002/sus2.256
RESEARCH ARTICLE

Dual Interfacial Design Enables Efficient and Stable Semitransparent Wide-Bandgap Perovskite Solar Cells With Scalable-Coated Silver Nanowire Contact for Tandem Applications

Author information +
History +
PDF

Abstract

Semitransparent perovskite solar cells (PSCs) hold great potential for applications in aesthetic building facades and top-illuminated tandem devices. Indium tin oxide is currently the frequently used top transparent contact, which would degrade the underlying perovskites during sputter process. Here, we report low-temperature, scalable solution-processed silver nanowires (AgNWs) as top window electrodes for fabricating efficient and stable semitransparent PSCs. As a decisive step, an impermeable SnO2 thin film deposited by atomic layer deposition (ALD) is applied to prevent chemical reactions between AgNWs and halides of perovskites. In parallel, the molecular absorption of propylenediamine iodine (PDADI) on perovskite surface, instead of forming two-dimensional (2D) perovskite capping layer, is found to effectively passivate the perovskite surface, which simultaneously leads to remarkably enhanced thermal stability, thus affording the processing window for ALD-SnO2 deposition. Eventually, the prepared semitransparent PSCs with a bandgap of 1.71 eV achieve a champion efficiency of 17.5%, being the highest efficiency for semitransparent PSCs with AgNWs top contacts. On these bases, we constructed a four-terminal perovskite/copper indium gallium diselenide (CIGS) tandem cell, giving a state-of-the-art efficiency of 26.85%.

Keywords

perovskite/GIGS / semitransparent / silver nanowires / tandem photovoltaics

Cite this article

Download citation ▾
Chaoran Chen, Lianglan Liu, Ting Huang, Biao Tu, Hongbing Li, Qingchen He, Qiaoyan Ma, Zhenhua Xu, Shi Chen, Jianmin Li, Guangxing Liang, Yaohua Mai, Fei Guo. Dual Interfacial Design Enables Efficient and Stable Semitransparent Wide-Bandgap Perovskite Solar Cells With Scalable-Coated Silver Nanowire Contact for Tandem Applications. SusMat, 2025, 5(1): e256 DOI:10.1002/sus2.256

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. H. Noh, S. H. Im, J. H. Heo, et al., “Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells,” Nano Letters 13, no. 4 (2013): 1764–1769.

[2]

M. Kim, J. Jeong, H. Lu, et al., “Conformal Quantum Dot–SnO2 Layers as Electron Transporters for Efficient Perovskite Solar Cells,” Science 375, no. 6578 (2022): 302–306.

[3]

S. Kim, T. T. Trinh, J. Park, et al., “Over 30% Efficiency Bifacial 4-Terminal Perovskite-Heterojunction Silicon Tandem Solar Cells With Spectral Albedo,” Scientific Reports 11, no. 1 (2021): 15524.

[4]

S. R. Kurtz, P. Faine, and J. Olson, “Modeling of Two-Junction, Series-Connected Tande. Solar Cells Using Top-Cell Thickness as an Adjustable Parameter,” Journal of Applied Physics 68, no. 4 (1990): 1890–1895.

[5]

R. Lin, K. Xiao, Z. Qin, et al., “Monolithic All-Perovskite Tandem Solar Cells With 24.8% Efficiency Exploiting Comproportionation to Suppress Sn(ii) Oxidation in Precursor Ink,” Nature Energy 4, no. 10 (2019): 864–873.

[6]

N. N. Lal, Y. Dkhissi, W. Li, et al., “Perovskite Tandem Solar Cells,” Advanced Energy Materials 7, no. 18 (2017): 1602761.

[7]

K. Xiao, Y.-H. Lin, M. Zhang, et al., “Scalable Processing for Realizing 21.7%-Efficient All-Perovskite Tandem Solar Modules,” Science 376, no. 6594 (2022): 762–767.

[8]

R. Chen, W. Zhang, X. Guan, et al., “Rear Electrode Materials for Perovskite Solar Cells,” Advanced Functional Materials 32, no. 26 (2022): 2200651.

[9]

W.-F. Wu and B.-S. Chiou, “Effect of Annealing on Electrical and Optical Properties of RF Magnetron Sputtered Indium Tin Oxide Films,” Applied Surface Science 68, no. 4 (1993): 497–504.

[10]

K. W. Seo, J. Lee, J. Jo, et al., “Highly Efficient (>10%) Flexible Organic Solar Cells on PEDOT-Free and ITO-Free Transparent Electrodes,” Advanced Materials 31, no. 36 (2019): 1902447.

[11]

G. Y. Margulis, M. G. Christoforo, D. Lam, et al., “Spray Deposition of Silver Nanowire Electrodes for Semitransparent Solid-State Dye-Sensitized Solar Cells,” Advanced Energy Materials 3, no. 12 (2013): 1657–1663.

[12]

T.-G. Chen, B.-Y. Huang, H.-W. Liu, et al., “Flexible Silver Nanowire Meshes for High-Efficiency Microtextured Organic-Silicon Hybrid Photovoltaics,” ACS Applied Materials & Interfaces 4, no. 12 (2012): 6857–6864.

[13]

L. Yang, T. Zhang, H. Zhou, et al., “Solution-Processed Flexible Polymer Solar Cells With Silver Nanowire Electrodes,” ACS Applied Materials & Interfaces 3, no. 10 (2011): 4075–4084.

[14]

G. X. Liang, C. H. Li, J. Zhao, et al., “Self-Powered Broadband Kesterite Photodetector With Ultrahigh Specific Detectivity for Weak Light Applications,” SusMat 3, no. 5 (2023): 682–696.

[15]

Z. Su, G. Liang, P. Fan, et al., “Device Postannealing Enabling Over 12% Efficient Solution-Processed Cu2ZnSnS4 Solar Cells With Cd2+ Substitution,” Advanced Materials 32, no. 32 (2020): 2000121.

[16]

G. Chen, Y. Luo, M. Abbas, et al., “Suppressing Buried Interface Nonradiative Recombination Losses Toward High-Efficiency Antimony Triselenide Solar Cells,” Advanced Materials 36, no. 5 (2024): 2308522.

[17]

F. Guo, H. Azimi, Y. Hou, et al., “High-Performance Semitransparent Perovskite Solar Cells With Solution-Processed Silver Nanowires as Top Electrodes,” Nanoscale 7, no. 5 (2015): 1642–1649.

[18]

Y. Fang, Z. Wu, J. Li, et al., “High-Performance Hazy Silver Nanowire Transparent Electrodes Through Diameter Tailoring for Semitransparent Photovoltaics,” Advanced Functional Materials 28, no. 9 (2018): 1705409.

[19]

Y. Gao, K. Huang, C. Long, et al., “Flexible Perovskite Solar Cells: From Materials and Device Architectures to Applications,” ACS Energy Letters 7, no. 4 (2022): 1412–1445.

[20]

T. Gahlmann, K. O. Brinkmann, T. Becker, et al., “Impermeable Charge Transport Layers Enable Aqueous Processing on Top of Perovskite Solar Cells,” Advanced Energy Materials 10, no. 10 (2020): 1903897.

[21]

M. Xie, H. Lu, L. Zhang, et al., “Fully Solution-Processed Semi-Transparent Perovskite Solar Cells With Ink-Jet Printed Silver Nanowires Top Electrode,” Solar RRL 2, no. 2 (2018): 1700184.

[22]

K. Brinkmann, J. Zhao, N. Pourdavoud, et al., “Suppressed Decomposition of Organometal Halide Perovskites by Impermeable Electron-Extraction Layers in Inverted Solar Cells,” Nature Communications 8, no. 1 (2017): 13938.

[23]

J. Zhao, K. Brinkmann, T. Hu, et al., “Self-Encapsulating Thermostable and Air-Resilient Semitransparent Perovskite Solar Cells,” Advanced Energy Materials 7, no. 14 (2017): 1602599.

[24]

T. Leijtens, K. A. Bush, R. Prasanna, et al., “Opportunities and Challenges for Tandem Solar Cells Using Metal Halide Perovskite Semiconductors,” Nature Energy 3, no. 10 (2018): 828–838.

[25]

M. Nakamura, K. Tada, T. Kinoshita, et al., “Perovskite/CIGS Spectral Splitting Double Junction Solar Cell With 28% Power Conversion Efficiency,” iScience 23, no. 12 (2020): 101817.

[26]

X. Zhou, H. Lai, T. Huang, et al., “Suppressing Nonradiative Losses in Wide-Band-Gap Perovskites Affords Efficient and Printable All-Perovskite Tandem Solar Cells With a Metal-Free Charge Recombination Layer,” ACS Energy Letters 8, no. 1 (2022): 502–512.

[27]

Z. Wang, Y. Lu, Z. Xu, et al., “An Embedding 2D/3D Heterostructure Enables High-Performance FA-Alloyed Flexible Perovskite Solar Cells With Efficiency Over 20%,” Advanced Science 8, no. 22 (2021): 2101856.

[28]

C. Chen, L. Zeng, Z. Jiang, et al., “Vacuum-Assisted Preparation of High-Quality Quasi-2D Perovskite Thin Films for Large-Area Light-Emitting Diodes,” Advanced Functional Materials 32, no. 4 (2022): 2107644.

[29]

Q. Shang, Y. Wang, Y. Zhong, et al., “Unveiling Structurally Engineered Carrier Dynamics in Hybrid Quasi-Two-Dimensional Perovskite Thin Films Toward Controllable Emission,” Journal of Physical Chemistry Letters 8, no. 18 (2017): 4431–4438.

[30]

P. Chen, Y. Bai, S. Wang, et al., “In Situ Growth of 2D Perovskite Capping Layer for Stable and Efficient Perovskite Solar Cells,” Advanced Functional Materials 28, no. 17 (2018): 1706923.

[31]

Q. Jiang, Y. Zhao, X. Zhang, et al., “Surface Passivation of Perovskite Film for Efficient Solar Cells,” Nature Photonics 13, no. 7 (2019): 460–466.

[32]

Z. R. Lan, Y. D. Wang, J. Y. Shao, et al., “Surface Passivation With Diaminopropane Dihydroiodide for p–i–n Perovskite Solar Cells With Over 25% Efficiency,” Advanced Functional Materials 34, no. 12 (2024): 2312426.

[33]

Z. Huang, X. Duan, Y. Zhang, et al., “Pure-or Mixed-Solvent Assisted Treatment for Crystallization Dynamics of Planar Lead Halide Perovskite Solar Cells,” Solar Energy Materials and Solar Cells 155 (2016): 166–175.

[34]

F. Wang, Y. Zhang, M. Yang, et al., “Toward Ultra-Thin and Omnidirectional Perovskite Solar Cells: Concurrent Improvement in Conversion Efficiency by Employing Light-Trapping and Recrystallizing Treatment,” Nano Energy 60 (2019): 198–204.

[35]

J. Yang, S. Xiong, J. Song, et al., “Energetics and Energy Loss in 2D Ruddlesden–Popper Perovskite Solar Cells,” Advanced Energy Materials 10, no. 23 (2020): 2000687.

[36]

J. Xia, C. Liang, S. Mei, et al., “Deep Surface Passivation for Efficient and Hydrophobic Perovskite Solar Cells,” Journal of Materials Chemistry A 9, no. 5 (2021): 2919–2927.

[37]

J. Liang, X. Hu, C. Wang, et al., “Origins and Influences of Metallic Lead in Perovskite Solar Cells,” Joule 6, no. 4 (2022): 816–833.

[38]

J. Zhou, M. Li, S. Wang, et al., “2-CF3-PEAI to Eliminate Pb0 Traps and Form a 2D Perovskite Layer to Enhance the Performance and Stability of Perovskite Solar Cells,” Nano Energy 95 (2022): 107036.

[39]

S. Ramakrishnan, D. Song, Y. Xu, et al., “Solvent-Mediated Formation of Quasi-2D Dion-Jacobson Phases on 3D Perovskites for Inverted Solar Cells Over 23% Efficiency,” Advanced Energy Materials 13, no. 45 (2023): 2302240.

[40]

Y. Hua, D. Hong, S. Wan, et al., “Ethanol Induced Structure Reorganization of 2D Layered Perovskites (OA)2(MA)n–1PbnI3n+1,” Journal of Luminescence 220 (2020): 116981.

[41]

C. O. R Quiroz, Y. Shen, M. Salvador, et al., “Balancing Electrical and Optical Losses for Efficient 4-Terminal Si-Perovskite Solar Cells With Solution Processed Percolation Electrodes,” Journal of Materials Chemistry A 6, no. 8 (2018): 3583–3592.

[42]

M. Xie, H. Lu, L. Zhang, et al., “Fully Solution-Processed Semi-Transparent Perovskite Solar Cells With Ink-Jet Printed Silver Nanowires Top Electrode,” Solar RRL 2, no. 2 (2018): 1770152.

[43]

C.-Y. Chang, K.-T. Lee, W.-K. Huang, et al., “High-Performance, Air-Stable, Low-Temperature Processe. Semitransparent Perovskite Solar Cells Enabled by Atomic Layer Deposition,” Chemistry of Materials 27, no. 14 (2015): 5122–5130.

RIGHTS & PERMISSIONS

2024 The Author(s). SusMat published by Sichuan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

351

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/