Fabrication, applications, and prospects for poly(p-phenylene benzobisoxazole) nanofibers

Lin Tang , Mingshun Jia , Mukun He , Qiqi Liu , Yuhan Lin , Yiting Yi , Xiaolin Liu , Xi Liu , Yusheng Tang , Junwei Gu

SusMat ›› 2024, Vol. 4 ›› Issue (6) : e245

PDF
SusMat ›› 2024, Vol. 4 ›› Issue (6) : e245 DOI: 10.1002/sus2.245
REVIEW

Fabrication, applications, and prospects for poly(p-phenylene benzobisoxazole) nanofibers

Author information +
History +
PDF

Abstract

Polymer nanofibers exhibit unique nanoscale effects, high specific strength and modulus, exceptional design flexibility, large aspect ratios, and substantial specific surface areas. These characteristics have drawn significant attention in emerging fields such as flexible electronics, 5G communications, and new energy vehicles. Notably, poly(p-phenylene benzobisoxazole) nanofibers (PNFs) present the best thermal stability and flame retardancy among all known polymer nanofibers. Furthermore, due to the highly oriented molecular chains and orderly structure, PNFs demonstrate superior thermal conductivity compared to conventional polymer nanofibers, thus garnering significant attention and favor from researchers. This paper summarizes the latest research progress of PNFs, detailing three preparation methods (electrospinning, mechanical dissociation, and protonation) along with their respective advantages and disadvantages. It also elucidates the current development status of PNFs in applications such as flame retardancy, thermal conduction, electrical insulation, electromagnetic shielding, and battery separators, and discusses the challenges and prospects faced by PNFs. This paper aims to provide theoretical guidance for the preparation and application of PNFs, enhancing their potential in advanced applications, and further expanding their application scope.

Keywords

applications / polymer nanofibers / poly( p-phenylene benzobisoxazole) nanofibers / preparation methods / thermal conductivity

Cite this article

Download citation ▾
Lin Tang, Mingshun Jia, Mukun He, Qiqi Liu, Yuhan Lin, Yiting Yi, Xiaolin Liu, Xi Liu, Yusheng Tang, Junwei Gu. Fabrication, applications, and prospects for poly(p-phenylene benzobisoxazole) nanofibers. SusMat, 2024, 4(6): e245 DOI:10.1002/sus2.245

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jin X-H, Price MB, Finnegan JR, et al. Long-range exciton transport in conjugated polymer nanofibers prepared by seeded growth. Science. 2018; 360(6391): 897-900.

[2]

Zeng Z, Jiang F, Yue Y, et al. Flexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shielding. Adv Mater. 2020; 32(19): 1908496.

[3]

He H, Li H, Pu A, et al. Hybrid assembly of polymeric nanofiber network for robust and electronically conductive hydrogels. Nat Commun. 2023; 14(1): 759.

[4]

Amirabadi S, Kheradmandkeysomi M, Zandieh A, et al. Highly tough and flame retardant polystyrene composites by elastomeric nanofibers and hexagonal boron nitride. J Mater Sci Technol. 2024; 198: 208-220.

[5]

Wu R, Lenz TM, Alfayez FAS, et al. Ambient catalytic spinning of polyethylene nanofibers. Angew Chem Int Ed. 2024; 63(10): e202315326.

[6]

Wu T, Li H, Xue J, Mo X, Xia Y. Photothermal welding, melting, and patterned expansion of nonwoven mats of polymer nanofibers for biomedical and printing applications. Angew Chem Int Ed. 2019; 58(46): 16416-16421.

[7]

Han Y, Ruan K, He X, et al. Highly thermally conductive aramid nanofiber composite films with synchronous visible/infrared camouflages and information encryption. Angew Chem Int Ed. 2024; 63(17): e202401538.

[8]

Zhao B, Zhang L, Zhen D, et al. A tailored double perovskite nanofiber catalyst enables ultrafast oxygen evolution. Nat Commun. 2017; 8(1): 14586.

[9]

Chen Y, Sui L, Fang H, et al. Superior mechanical enhancement of epoxy composites reinforced by polyimide nanofibers via a vacuum-assisted hot-pressing. Compos Sci Technol. 2019; 174: 20-26.

[10]

Ma Y, Qin S, Yang G, et al. Solvent-induced deformation of aramid nanofibers for ultrahigh-flux nanofiltration membranes. Adv Funct Mater. 2024; 34(16): 2309722.

[11]

Tang L, Zhang J, Wu C, et al. UV etched random copolymer membrane coated PBO fibers/cyanate ester wave-transparent laminated composites. Compos Part B-Eng. 2021; 212: 108680.

[12]

Yang H-L, Zhou M, Li B, et al. Exploring mechanical properties and failure mechanisms of aramid and PBO crystals through molecular dynamics simulations. J Chem Phys. 2023; 159(22): 224901.

[13]

He X, Xiao C, Du H, et al. Significantly improved interfacial properties of silicon dioxide nanowire functionalized poly(p-phenylene-2, 6-benzobisoxazole) (PBO) fibers/polytetrafluoroethylene (PTFE) wave-transparent laminated composites. J Mater Sci Technol. 2024; 183: 232-240.

[14]

Hu Z, Lu F, Liu Y, et al. Construction of anti-ultraviolet “shielding clothes” on poly(p-phenylene benzobisoxazole) fibers: metal organic framework-mediated absorption strategy. ACS Appl Materi Interfaces. 2018; 10(49): 43262-43274.

[15]

Chen Y, Zhang H, Chen J, et al. Thermally conductive but electrically insulating polybenzazole nanofiber/boron nitride nanosheets nanocomposite paper for heat dissipation of 5G base stations and transformers. ACS Nano. 2022; 16(9): 14323-14333.

[16]

Su L, Zhai R, Ma X, et al. Bioinspired, layered gns/pnf nanocomposite film with electromagnetic interference shielding and fire-retardant properties. Prog Org Coat. 2024; 189: 108307.

[17]

Peng Y, Gong K, Liu A, et al. Ultralight and rigid PBO nanofiber aerogel with superior electromagnetic wave absorption properties. J Mater Sci Technol. 2024. doi:10.1016/j.jmst.2024.08.018

[18]

Tang L, Zhang J, Tang Y, et al. Polymer matrix wave-transparent composites: a review. J Mater Sci Technol. 2021; 75: 225-251.

[19]

Zhang T, Jin J, Yang S, Li G, Jiang J. A rigid-rod dihydroxy poly(p-phenylene benzobisoxazole) fiber with improved compressive strength. Carbohydr Polym. 2009; 78(2): 364-366.

[20]

Shao Q, Lu F, Yu L, et al. Facile immobilization of graphene nanosheets onto PBO fibers via mof-mediated coagulation strategy: multifunctional interface with self-healing and ultraviolet-resistance performance. J Colloid Interface Sci. 2021; 587: 661-671.

[21]

Tamargo-Martínez K, Villar-Rodil S. Paredes JI, Martínez-Alonso A, Tascón JMD. Studies on the thermal degradation of poly (p-phenylene benzobisoxazole). Chem Mater. 2003; 15(21): 4052-4059.

[22]

Chen L, Du Y, Huang Y, et al. Hierarchical poly(p-phenylene benzobisoxazole)/graphene oxide reinforcement with multifunctional and biomimic middle layer. Compos Part A-Appl Sci. 2016; 88: 123-130.

[23]

Tu R, Kim HC, Baabdullah OAH, Sodano HA. Alignment controlled aramid nanofiber-assembled films. Adv Funct Mater. 2024; 34(30): 2315422.

[24]

Fujishiro H, Ikebe M, Kashima T, Yamanaka A. Thermal conductivity and diffusivity of high-strength polymer fibers. Jpn J Appl Phys. 1997; 36(9R): 5633.

[25]

Wang X, Ho V, Segalman RA, Cahill DG. Thermal conductivity of high-modulus polymer fibers. Macromolecules. 2013; 46(12): 4937-4943.

[26]

Bai J, Wang H, Wang Y, Hu J. Preparation of poly-p-phenylenebenzobisoxazole (PBO) fibrillated pulp and dielectric properties of carbon fiber/PBO wet-laid nonwoven fabric. Text Res J. 2017; 88(13): 1559-1568.

[27]

Zuo P, Li J, Chen D, et al. Scalable co-cured polyimide/poly(p-phenylene benzobisoxazole) all-organic composites enabling improved energy storage density, low leakage current and long-term cycling stability. Mater Horiz. 2024; 11(1): 271-282.

[28]

Shan B, Xiong Y. Controllable Fe ion-anchored graphene heterostructures for robust and highly thermal conductive cellulose nanofiber composites. Cellulose. 2021; 28(16): 10305-10319.

[29]

Wang X, Sun M, Wang R, et al. Promoting h-bn dispersion in cellulose-based composite by lignosulfonate for regulatable effectual thermal management. Mater Design. 2022; 214: 110379.

[30]

Yang Y, Lyu J, Chen J, Liao J, Zhang X. Flame-retardant host–guest films for efficient thermal management of cryogenic devices. Adv Funct Mater. 2021; 31(41): 2102232.

[31]

Hao M, Hu Z, Zhang Y, et al. Facile preparation of ultraviolet resistant “hard armors” on poly(p-phenylene benzobisoxazole) fibers through heat-induced surface treatment. Polym Degrad Stab. 2022; 199: 109896.

[32]

Yu L, Lu F, Huang X, et al. Facile interface design strategy for improving the uvioresistant and self-healing properties of poly(p-phenylene benzobisoxazole) fibers. ACS Appl Mater Interfaces. 2019; 11(42): 39292-39303.

[33]

Ling H, Xin W, Qian Y, et al. Heterogeneous electrospinning nanofiber membranes with pH-regulated ion gating for tunable osmotic power harvesting. Angew Chem Int Ed. 2023; 62(1): e202212120.

[34]

Cheng KCK, Bedolla-Pantoja MA. Kim Y-K, et al. Templated nanofiber synthesis via chemical vapor polymerization into liquid crystalline films. Science. 2018; 362(6416): 804-808.

[35]

Wang Y, Xu Y, Zhai W, et al. In-situ growth of robust superlubricated nano-skin on electrospun nanofibers for post-operative adhesion prevention. Nat Commun. 2022; 13(1): 5056.

[36]

Bae J, Lee J, Hwang W-T, et al. Advancing breathability of respiratory nanofilter by optimizing pore structure and alignment in nanofiber networks. ACS Nano. 2024; 18(2): 1371-1380.

[37]

Xiong J, Liu Y, Li A, et al. Mass production of high-quality nanofibers via constructing pre-Taylor cones with high curvature on needleless electrospinning. Mater Design. 2021; 197: 109247.

[38]

Liu Y, Huang S, Liang S, et al. Phase change material-embedded multifunctional Janus nanofiber dressing with directional moisture transport, controlled release of anti-inflammatory drugs, and synergistic antibacterial properties. ACS Appl Mater Interfaces. 2023; 15(45): 52244-52261.

[39]

Liu X, Wan X, Shi L, et al. Omni-adhesive fibers via taylor-cone co-electrospinning towards cold-supply chain. Nano Today. 2023; 48: 101748.

[40]

Barstugan R, Barstugan M, Ozaytekin I. PBO/graphene added β-PVDF piezoelectric composite nanofiber production. Compos Part B-Eng. 2019; 158: 141-148.

[41]

Lim J, Kim M-C, Shin DG. Synthesis and characterization of polybenzoxazole/graphene oxide composites via in situ polymerization. Carbon Lett. 2013; 14(4): 251-254.

[42]

Lee JK, Kim H-J, Kim TH, et al. A new synthetic approach for polybenzoxazole and light-induced fluorescent patterning on its film. Macromolecules. 2005; 38(23): 9427-9433.

[43]

Tang L, Fan X, Tang Y, et al. Calcia-doped ceria hybrid coating functionalized PBO fibers with excellent uv resistance and improved interfacial compatibility with cyanate ester resins. Appl Surf Sci. 2021; 569: 151124.

[44]

Jang YW, Min BG, Yoon KH. Enhancement in compressive strength and uv ageing-resistance of poly(p-phenylene benzobisoxazole) nanocomposite fiber containing modified polyhedral oligomeric silsesquioxane. Fiber Polym. 2017; 18(3): 575-581.

[45]

Chen X, Liu X, Qian J, et al. Shear flow behaviors of poly(p-phenylene benzobisoxazole) spinning dope. J Appl Polym Sci. 2008; 110(3): 1899-1904.

[46]

Fukumaru T, Fujigaya T, Nakashima N. Mechanical reinforcement of polybenzoxazole by carbon nanotubes through noncovalent functionalization. Macromolecules. 2013; 46(10): 4034-4040.

[47]

Kim T-K, Choi K-Y, Lee K-S. Park D-W, Jin MY. Thermal conversion of t-butyloxycarbonyloxy attached polyamides to polybenzoxazoles. Polym Bull. 2000; 44(1): 55-62.

[48]

Oflaz K, Oflaz Z, Ozaytekin I, Dincer K, Barstugan R. Time and volume-ratio effect on reusable polybenzoxazole nanofiber oil sorption capacity investigated via machine learning. J Appl Polym Sci. 2021; 138(30): 50732.

[49]

Zhang H, Jiang S, Duan G, et al. Heat-resistant polybenzoxazole nanofibers made by electrospinning. Eur Polym J. 2014; 50: 61-68.

[50]

Jiang S, Duan G, Chen L, et al. Thermal, mechanical and thermomechanical properties of tough electrospun poly(imide-co-benzoxazole) nanofiber belts. New J Chem. 2015; 39(10): 7797-7804.

[51]

Jin J, Hao R, He X, Li G. Sulfonated poly(phenylsulfone)/fluorinated polybenzoxazole nanofiber composite membranes for proton exchange membrane fuel cells. Int J Hydrogen Energy. 2015; 40(41): 14421-14427.

[52]

Claus J, Santos RAM, Gorbatikh L, Swolfs Y. Effect of matrix and fibre type on the impact resistance of woven composites. Compos Part B-Eng. 2020; 183: 107736.

[53]

Hao M, Qian X, Zhang Y, et al. Thermal conductivity enhancement of carbon fiber/epoxy composites via constructing three-dimensionally aligned hybrid thermal conductive structures on fiber surfaces. Compos Sci Technol. 2023; 231: 109800.

[54]

Meng L, Song C, Lin Q, et al. Co2-activation nanofiber carbon paper as a high-performance interlayer for trapping polysulfides in Li–S batteries. ACS Appl Materi Interfaces. 2023; 15(17): 21585-21594.

[55]

Huang Z, Wang Y, Long J, Hu J. Mechanical and dynamic mechanical analysis of PBO paper-based composites. Text Res J. 2021; 92(9-10): 1454-1465.

[56]

Gao Y, Wu S, Li C, et al. Homogeneous reinforcement as a strategy for the efficient preparation of high-strength, insulating and high heat-resistant PBO composite paper. J Mater Sci. 2022; 57(19): 8701-8713.

[57]

Ifuku S, Maeta H, Izawa H, Morimoto M, Saimoto H. Preparation of polybenzoxazole nanofibers by a downsizing process. RSC Adv. 2015; 5(44): 35307-35310.

[58]

Jin J, Yang S, Li G, Yamada T, Jiang J. Multiordered phase structures of nematic PBO/PPA solution. J Macromol Sci B. 2003; 42(3-4): 599-610.

[59]

Hu Z, Li J, Tang P, et al. One-pot preparation and continuous spinning of carbon nanotube/poly(p-phenylene benzobisoxazole) copolymer fibers. J Mater Chem. 2012; 22(37): 19863-19871.

[60]

Lukasheva NV. Structure of polymer–acid complexes in solution and crystal-solvate phases of rigid-rod heterocyclic polyme–poly(p-phenylene benzobisoxasole). Polymer. 2011; 52(6): 1458-1468.

[61]

Yang G, Zhuang Q, Cai R, et al. Preparing and conductivity properties of polyaniline/polybenzobisoxazole composites. Mater Lett. 2014; 123: 27-30.

[62]

Uchida T, Furukawa M. Preparation and properties of rigid PBO polymer nanofibers prepared via crystallization from a dilute solution in sulfuric acid. J Photopolym Sci Technol. 2014; 27(2): 177-180.

[63]

Cao K, Zhong Y, Guan G, et al. Synthesis and characterization of poly(p-phenylene benzobisoxazole)/poly(pyridobisimidazole) block copolymers. J Macromol Sci A. 2012; 49(6): 508-517.

[64]

Chen M, Mo Y, Li Z, Lin X, He Q. Poly(p-phenylenebenzobisoxazole) nanofiber layered composite films with high thermomechanical performance. Eur Polym J. 2016; 84: 622-630.

[65]

Wang Y, Xia S, Li H, Wang J. Unprecedentedly tough, folding-endurance, and multifunctional graphene-based artificial nacre with predesigned 3d nanofiber network as matrix. Adv Funct Mater. 2019; 29(38): 1903876.

[66]

Li J, Wang W, Zhao L, et al. In situ synthesis of PBO-α-(amino phthalocyanine copper) composite fiber with excellent UV-resistance and tensile strength. J Appl Polym Sci. 2018; 135(48): 46870.

[67]

Wu CC, Tsay PY, Cheng HY, Bai SJ. Polarized luminescence and absorption of highly oriented, fully conjugated, heterocyclic aromatic rigid-rod polymer poly-p-phenylenebenzobisoxazole. J Appl Phys. 2004; 95(2): 417-423.

[68]

Guo Y, Wang S, Zhang H, et al. Consistent thermal conductivities of spring-like structured polydimethylsiloxane composites under large deformation. Adv Mater. 2024; 36: 2404648.

[69]

Ruan K, Shi X, Zhang Y, et al. Electric-field-induced alignment of functionalized carbon nanotubes inside thermally conductive liquid crystalline polyimide composite films. Angew Chem Int Ed. 2023; 62(38): e202309010.

[70]

Sun T, Cao W, Zhao K, et al. Bio-inspired robust and highly thermal conductive BNNS/PBO nanofiber composite films with excellent thermal stability, wear resistance, and adjustable photothermal properties. Chem Eng J. 2023; 474: 145916.

[71]

Yu Z, Wu S, Li C, et al. Mechanically robust fluorinated graphene/poly(p-phenylene benzobisoxazole) nanofiber films with low dielectric constant and enhanced thermal conductivity: implications for thermal management applications. ACS Appl Nano Mater. 2022; 5(12): 18247-18255.

[72]

Wang S, Feng D, Zhang Z, et al. Highly thermally conductive polydimethylsiloxane composites with controllable 3D GO@f-CNTs networks via self-sacrificing template method. Chin J Polym Sci. 2024; 42(7): 897-906.

[73]

Liu Y, Zou W, Yang M, et al. Polymer films with metal-like thermal conductivity, excellent stability, and flame retardancy. Adv Funct Mater. 2023; 33(38): 2303561.

[74]

Zhao X, Li W, Wang Y, Li H, Wang J. Bioinspired modified graphite film with superb mechanical and thermoconductive properties. Carbon. 2021; 181: 40-47.

[75]

Huang L, Xiao G, Wang Y, et al. Self-exfoliation of flake graphite for bioinspired compositing with aramid nanofiber toward integration of mechanical and thermoconductive properties. Nano-Micro Lett. 2022; 14(1): 168.

[76]

Chen F, Zhang H, Li S, et al. Design of high-performance resin by tuning cross-linked network topology to improve cf/bismaleimide composite compressive properties. Compos Sci Technol. 2023; 242: 110170.

[77]

Gu J, Wang D. Special issue: functional polymer materials. Chin J Polym Sci. 2024; 42(7): 895-896.

[78]

Ma T, Zhang Y, Ruan K, et al. Advances in 3D printing for polymer composites: a review. InfoMat. 2024; 6(6): e12568.

[79]

Chen Q, Ma Z, Wang Z, et al. Scalable, robust, low-cost, and highly thermally conductive anisotropic nanocomposite films for safe and efficient thermal management. Adv Funct Mater. 2022; 32(8): 2110782.

[80]

Xiong W-c, Chen L, Zhao B, Wang D-y, Wang Y-z. Polyamide 6 with a flame retardant encapsulated by polyamide 66: flame retardation, thermo-decomposition an. the potential mechanism. Chin J Polym Sci. 2012; 30(2): 297-307.

[81]

Zeng F, He L, Ma J, et al. Microcage flame retardants with complete recyclability and durability via reversible interfacial locking engineering. Mater Horiz. 2024; 11(8): 1867-1876.

[82]

Chen M, Lin X, Zeng C, He Q. Poly(p-phenylene benzobisoxazole) nanofiber/reduced graphene oxide composite aerogels toward high-efficiency solar steam generation. Colloid Surf A. 2021; 612: 125997.

[83]

Qian Z, Li R, Guo J, et al. Triboelectric nanogenerators made of polybenzazole aerogels as fire-resistant negative tribo-materials. Nano Energy. 2019; 64: 103900.

[84]

Hu W-Y, Yu K-X, Zheng Q-N. et al. Intelligent cyclic fire warning sensor based on hybrid PBO nanofiber and montmorillonite nanocomposite papers decorated with phenyltriethoxysilane. J Colloid Interface Sci. 2023; 647: 467-477.

[85]

Susainathan J, Eyma F, De Luycker E, Cantarel A, Castanie B. Experimental investigation of impact behavior of wood-based sandwich structures. Compos Part A-Appl Sci. 2018; 109: 10-19.

[86]

Lei M, Liu Z, Wang F. Review of lightweight cellular concrete: towards low-carbon, high-performance an. sustainable development. Constr Build Mater. 2024; 429: 136324.

[87]

Zhu Y, Zhu J, Yu Z, et al. Air drying scalable production of hydrophobic, mechanically stable, and thermally insulating lignocellulosic foam. Chem Eng J. 2022; 450: 138300.

[88]

Zou F, Budtova T. Polysaccharide-based aerogels for thermal insulation and superinsulation: an overview. Carbohydr Polym. 2021; 266: 118130.

[89]

Nguyen HSH, Huynh HKP, Nguyen ST, et al. Insights into sustainable aerogels from lignocellulosic materials. J Mater Chem A. 2022; 10(44): 23467-23482.

[90]

Qian Z, Yang M, Li R, et al. Fire-resistant, ultralight, superelastic and thermally insulated polybenzazole aerogels. J Mater Chem A. 2018; 6(42): 20769-20777.

[91]

Yang Y, Lyu J, Chen J, Liao J, Zhang X. Flame-retardant host–guest films for efficient thermal management of cryogenic devices. Adv Funct Mater. 2021; 31(41): 2102232.

[92]

Du Q, Yang X, Li Y, et al. Hierarchical PBO nanofiber/PPS melt-blown mats with a controllable porous microstructure for thermal protection under harsh conditions. ACS Appl Polym Mater. 2023; 5(5): 3499-3506.

[93]

Yu S, Zhang W, An J, et al. Flexible, multifunctional aerogel films based on PBO nanofibers and their application in wearable electronic devices. Electrochim Acta. 2023; 441: 141802.

[94]

Mäder E, Melcher S, Liu JW, et al. Adhesion of PBO fiber in epoxy composites. J Mater Sci. 2007; 42(19): 8047-8052.

[95]

Liu Y, Zou W, Zhao N, Xu J. Electrically insulating PBO/MXene film with superior thermal conductivity, mechanical properties, thermal stability, and flame retardancy. Nat Commun. 2023; 14(1): 5342.

[96]

Liu C, Duan X, Zhang W, et al. Stable self-crosslinking phase change composites with vertically aligned boron nitride for high thermal conductivity thermal interface materials. Ceram Int. 2024; 50(11): 19829-19837.

[97]

Zhang X, Zhang X, Yang M, et al. Ordered multilayer film of (graphene oxide/polymer and boron nitride/polymer) nanocomposites: an ideal EMI shielding material with excellent electrical insulation and high thermal conductivity. Compos Sci Technol. 2016; 136: 104-110.

[98]

Yang W, Wang Y, Li Y, et al. Three-dimensional skeleton assembled by carbon nanotubes/boron nitride as filler in epoxy for thermal management materials with high thermal conductivity and electrical insulation. Compos Part B-Eng. 2021; 224: 109168.

[99]

Awais M, Chen X, Hong Z, et al. Synergistic effects of micro-hBN and core-shell nano-TiO2@SiO2 on thermal and electrical properties of epoxy at high frequencies and temperatures. Compos Sci Technol. 2022; 227: 109576.

[100]

Wang Y, Xia S, Xiao G, Di J, Wang J. High-loading boron nitride-based bio-inspired paper with plastic-like ductility and metal-like thermal conductivity. ACS Appl Mater Interfaces. 2020; 12(11): 13156-13164.

[101]

Tang L, Ruan K, Liu X, et al. Flexible and robust functionalized boron nitride/poly(p-phenylene benzobisoxazole) nanocomposite paper with high thermal conductivity and outstanding electrical insulation. Nano-Micro Lett. 2024; 16(1): 38.

[102]

Liang C, Zhang W, Liu C, et al. Multifunctional phase change textiles with electromagnetic interference shielding and multiple thermal response characteristics. Chem Eng J. 2023; 471: 144500.

[103]

Han Y, Ruan K, Gu J. Multifunctional thermally conductive composite films based on fungal tree-like heterostructured silver nanowires@boron nitride nanosheets and aramid nanofibers. Angew Chem Int Ed. 2023; 62(5): e202216093.

[104]

Kwon D-J, Kwon I-J, Milam-Guerrero J. et al. Aramid nanofiber-reinforced multilayer electromagnetic-interference (EMI) shielding composites with high interfacial durability. Mater Design. 2022; 215: 110452.

[105]

Cui C, Xiang C, Geng L, et al. Flexible and ultrathin electrospun regenerate cellulose nanofibers and d-Ti3C2Tx (MXene) composite film for electromagnetic interference shielding. J Alloys Compd. 2019; 788: 1246-1255.

[106]

Lang L, Zou Y, Wang Y, et al. A review of recent advances in MXenes/polymer-based electromagnetic interference shielding materials. Polym Compos. 2024; 45(13): 11541-11559.

[107]

Zhang Y, Ruan K, Zhou K, Gu J. Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv Mater. 2023; 35(16): 2211642.

[108]

Liu Y, Zhao N, Xu J. Mechanically strong and flame-retardant PBO/BN/MXene nanocomposite paper with low thermal expansion coefficient, for efficient emi shielding and heat dissipation. Adv Fiber Mater. 2023; 5(5): 1657-1670.

[109]

Wang L, Ma Z, Zhang Y, et al. Mechanically strong and folding-endurance Ti3C2Tx MXene/PBO nanofiber films for efficient electromagnetic interference shielding and thermal management. Carbon Energy. 2022; 4(2): 200-210.

[110]

Gong K, Peng Y, Liu A, Qi S, Qiu H. Ultrathin carbon layer coated MXene/PBO nanofiber films for excellent electromagnetic interference shielding and thermal stability. Compos Part A-Appl Sci. 2024; 176: 107857.

[111]

Lin Y, Fan X, Tang L, Tang Y, Gu J. Polysilsesquioxane-PBO wave-transparent composite paper with excellent mechanical properties and ultraviolet aging resistance. Adv Fiber Mater. 2023; 5(6): 2114-2126.

[112]

Maier G, Banerjee S, Haußmann J, Sezi R. High-temperature polymers for advanced microelectronics. High Perform Polym. 2001; 13(2): S107-S115.

[113]

Zhang Z, He P, Ma W, et al. An ultralow-k dielectric derived from a fluorinated polybenzoxazole composite film with yolk–multishell mesoporous silica nanostructures. J Mater Chem C. 2023; 11(18): 6162-6172.

[114]

Zhang Z, He P, Ma W, et al. Freely tailorable yolk-shell encapsulation: versatile applications in ultralow-k dielectric, drug delivery systems, and catalysts. Adv Funct Mater. 2023; 33(33): 2302212.

[115]

Tang L, Tang Y, Zhang J, et al. High-strength super-hydrophobic double-layered PBO nanofiber-polytetrafluoroethylene nanocomposite paper for high-performance wave-transparent applications. Sci Bull. 2022; 67(21): 2196-2207.

[116]

Francis CFJ, Kyratzis IL, Best AS. Lithium-ion battery separators for ionic-liquid electrolytes: a review. Adv Mater. 2020; 32(18): 1904205.

[117]

Jia H, Zeng C, Lim H-S, et al. Important role of ion flux regulated by separators in lithium metal batteries. Adv Mater. 2024; 36(19): 2311312.

[118]

Guo D, Mu L, Lin F, Liu G. Mesoporous polyimide thin films as dendrite-suppressing separators for lithium–metal batteries. ACS Nano. 2024; 18(1): 155-163.

[119]

Li Y, Yu L, Hu W, Hu X. Thermotolerant separators for safe lithium-ion batteries under extreme conditions. J Mater Chem A. 2020; 8(39): 20294-20317.

[120]

Sun Y, Chen K, Zhang C, et al. A novel material for high-performance Li–O2 battery separator: polyetherketone nanofiber membrane. Small. 2022; 18(21): 2201470.

[121]

Song Y, Zhao G, Zhang S, et al. Chitosan nanofiber paper used as separator for high performance and sustainable lithium-ion batteries. Carbohydr Polym. 2024; 329: 121530.

[122]

Hao X, Zhu J, Jiang X, et al. Ultrastrong polyoxyzole nanofiber membranes for dendrite-proof and heat-resistant battery separators. Nano Lett. 2016; 16(5): 2981-2987.

[123]

Duan R, Zhou J, Zheng X, et al. High-strength, thin PBO nanofiber membrane with long-term stability for osmotic energy conversion. 2024; 34(12): 2311258.

RIGHTS & PERMISSIONS

2024 The Author(s). SusMat published by Sichuan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

186

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/