Advances in colored carbon-based fiber materials and their emerging applications

Yu Zhang , Yuxin Luo , Mengqi Wang , Tonghe Xing , Annan He , Zhiyu Huang , Zhicheng Shi , Sijie Qiao , Aixin Tong , Jie Bai , Shichao Zhao , Fengxiang Chen , Weilin Xu

SusMat ›› 2024, Vol. 4 ›› Issue (6) : e243

PDF
SusMat ›› 2024, Vol. 4 ›› Issue (6) : e243 DOI: 10.1002/sus2.243
REVIEW

Advances in colored carbon-based fiber materials and their emerging applications

Author information +
History +
PDF

Abstract

Carbon-based fiber materials are widely used in aerospace, military, and electronics owing to their outstanding comprehensive properties. However, the high degree of crystallization and chemical inertness of their surfaces impede the coloring of such materials by traditional dyeing methods, thereby limiting their application in a broader field. Exploring advanced micro/nano-processing technology for colored carbon-based fiber materials has become a growing interdisciplinary research area in recent years. Therefore, this review comprehensively discusses the structure–color–function relationships of carbon-based fiber materials. The structure of carbon-based fiber materials and their properties responsible for challenges in coloring by traditional dyeing methods are discussed. Moreover, the color-generating mechanisms underlying the display of structural colors by living organisms due to fundamental optical phenomena, including thin/multilayer-film interference, diffraction grating, scattering, and photonic crystals, are described. Furthermore, recent progress in bio-inspirated colored carbon-based fiber materials prepared via advanced micro/nanoscale manufacturing strategies is reviewed. In addition, emerging applications of colored carbon-based fiber materials in various fields are presented. Finally, the possible challenges and future directions for the design, large-scale production, and application of colored carbon-based fiber materials and their composites are discussed, aiming to promote the material design of innovative next-generation systems and research in the advanced material and related engineering fields.

Keywords

bio-inspire structural color / colored carbon-based fiber materials / emerging applications / micro/nanoscale manufacturing strategies

Cite this article

Download citation ▾
Yu Zhang, Yuxin Luo, Mengqi Wang, Tonghe Xing, Annan He, Zhiyu Huang, Zhicheng Shi, Sijie Qiao, Aixin Tong, Jie Bai, Shichao Zhao, Fengxiang Chen, Weilin Xu. Advances in colored carbon-based fiber materials and their emerging applications. SusMat, 2024, 4(6): e243 DOI:10.1002/sus2.243

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Picheau E, Hof F, Derré A, Daffos B, Pénicaud A. Thermal oxidation of carbonaceous nanomaterials revisited: evidence of mechanism change. Null. 2019; 131(45): 16159-16163.

[2]

Fang Y, Liu YX, Qi L, Xue YR, Li YL. 2D graphdiyne: an emerging carbon material. Chem Soc Rev. 2022; 51(7): 2681-2709.

[3]

Li KM, Ni XP, Wu QQ, et al. Carbon-based fibers: fabrication, characterization and application. Adv Fiber Mater. 2022; 4(4): 631-682.

[4]

Barile C, Casavola C. Mechanical Characterization of Carbon Fiber-Reinforced Plastic Specimens for Aerospace Applications//Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composite. and Hybrid Composites. Woodhead Publishing; 2019: 387-407.

[5]

Cai X, Zhang CQ, Zhang SS, Fang YP, Zou DC. Application of carbon fibers to flexible, miniaturized wire/fiber-shaped energy conversion and storage devices. J Mater Chem A. 2017; 5(6): 2444-2459.

[6]

Tian S, Zhou L, Liang ZT, et al. 2.5 D carbon/carbon composites modified by in situ grown hafnium carbide nanowires for enhanced electromagnetic shielding properties and oxidation resistance. Carbon. 2020; 161: 331-340.

[7]

Sun QL, Ji Y, He LF, Long XY. In situ formation of Fe3O4/N-doped carbon coating on the surface of carbon fiber with improved electromagnetic wave-absorption property. RSC Adv. 2020; 10(51): 30443-30450.

[8]

Huang X. Fabrication and properties of carbon fibers. Mater. 2009; 2(4): 2369-2403.

[9]

Jang Y, Kim SM, Spinks GM, Kim SJ. Carbon nanotube yarn for fiber-shaped electrical sensors, actuators, and energy storage for smart systems. Adv Mater. 2020; 32(5): 1902670.

[10]

Donnet JB, Guilpain G. Surface treatments and properties of carbon fibers. Carbon. 1989; 27(5): 749-757.

[11]

Frank E, Steudle LM, Ingildeev D, Spörl JM, Buchmeiser MR. Carbon fibers: precursor systems, processing, structure, and properties. Angew Chem Int Ed. 2014; 53(21): 5262-5298.

[12]

Kim BJ, Eom Y, Kato O, et al. Preparation of carbon fibers with excellent mechanical properties from isotropic pitches. Carbon. 2014; 77: 747-755.

[13]

Zhang W, Deng X, Sui G, Yang X. Improving interfacial and mechanical properties of carbon nanotube-sized carbon fiber/epoxy composites. Carbon. 2019; 145: 629-639.

[14]

Ho K, Qian H, Bismarck A. Carbon Fiber: Surface Properties. Wiley Encyclopedia of Composites; 2011; 1-11.

[15]

Zhu F, Ge JB, Gao Y, et al. Molten salt electro-preparation of graphitic carbons. Exploration. 2023; 3(1):20210186

[16]

Soutis C. Carbon fiber reinforced plastics in aircraft construction. Mater Sci Eng A. 2005; 412(1-2): 171-176.

[17]

Thomas AC, Baskar K. Strengthening of thin-webbed castellated beam using CFRP. Int J Comput Method Eng Sci Mech. 2018; 19(6): 396-404.

[18]

Prakash R, Krishnaraj V, Sheikh-Ahmad J. High-speed edge trimming of carbon fiber-reinforced polymer composites using coated router tools. J Compos Mater. 2019; 53(28-30): 4189-4202.

[19]

Kamae T, Drzal LT. Carbon fiber/epoxy composite property enhancement through incorporation of carbon nanotubes at the fiber-matrix interphase—Part I: the development of carbon nanotube coated carbon fibers and the evaluation of their adhesion. Compos Part A Appl Sci Manuf. 2012; 43(9): 1569-1577.

[20]

Peng QY, Li YB, He XD, et al. Interfacial enhancement of carbon fiber composites by poly (amido amine) functionalization. Compos Sci Technol. 2013; 74: 37-42.

[21]

Ogasawara T, Ishida Y, Kasai T. Mechanical properties of carbon fiber/fullerene-dispersed epoxy composites. Compos Sci Technol. 2009; 69(11-12): 2002-2007.

[22]

Kim M, Sung DH, Kong K, et al. Characterization of resistive heating and thermoelectric behavior of discontinuous carbon fiber-epoxy composites. Compos Part B Eng. 2016; 90: 37-44.

[23]

Jiang H, Sun LQ, Dong DY, Li GY, Cui JJ. Microstructure and mechanical property evolution of CFRP/Al electromagnetic riveted lap joint in a severe condition. Eng Struct. 2019; 180: 181-191.

[24]

Tang SF, Hu CL. Design, preparation and properties of carbon fiber reinforced ultra-high temperature ceramic composites for aerospace applications: a review. J Mater Sci Technol. 2017; 33(2): 117-130.

[25]

Li YY, Meng S, Gong QM, et al. Experimental and theoretical investigation of laser pretreatment on strengthening the heterojunction between carbon fiber-reinforced plastic and aluminum alloy. ACS Appl Mater Inter. 2019; 11(24): 22005-22014.

[26]

Mongkholrattanasit R, Kryštůfek J, Wiener J. Dyeing and fastness properties of natural dyes extracted from eucalyptus leaves using padding techniques. Fiber Polym. 2010; 11(3): 346-350.

[27]

Son HK, Sivakumar S, Rood MJ, Kim BJ. Electrothermal adsorption and desorption of volatile organic compounds on activated carbon fiber cloth. J Hazard Mater. 2016; 301: 27-34.

[28]

Feldhoff A, Pippel E, Wolterdorf J. Interface engineering of carbon-fiber reinforced Mg–Al alloys. Adv Eng Mater. 2000; 2(8): 471-480.

[29]

Pimenta S, Pinho ST. Recycling carbon fibre reinforced polymers for structural applications: technology review and market outlook. Waste Manage. 2011; 31(2): 378-392.

[30]

Saito N, Aoki K, Usui Y, et al. Application of carbon fibers to biomaterials: a new era of nano-level control of carbon fibers after 30-years of development. Chem Soc Rev. 2011; 40(7): 3824-3834.

[31]

Thomas H, Herwig P, Karl K. Coating of carbon fibers—the strength of the fibers. J Am Ceram Soc. 1995; 78(1): 133-136.

[32]

Meng F, McKechnie J, Turner T, Wong KH, Pickering SJ. Environmental aspects of use of recycled carbon fiber composites in automotive applications. Environ Sci Technol. 2017; 51(21): 12727-12736.

[33]

Kim JW, Lee JS. Preparation of carbon fibers from linear low-density polyethylene. Carbon. 2015; 94: 524-530.

[34]

Konwar LJ, Mäki-Arvela P, Mikkola JP. SO3H-containing functional carbon materials: synthesis, structure, and acid catalysis. Chem Rev. 2019; 119(22): 11576-11630.

[35]

Duan XG, Sun HQ, Wang SB. Metal-free carbocatalysis in advanced oxidation reactions. Accounts Chem Res. 2018; 51(3): 678-687.

[36]

Wang T, Okejiri F, Qiao ZA, Dai S. Tailoring polymer colloids derived porous carbon spheres based on specific chemical reactions. Adv Mater. 2020; 32(44): e2002475.

[37]

Chen YP, Wei JT, Duyar MS, Ordomsky VV, Khodakov AY, Liu J. Carbon-based catalysts for Fischer–Tropsch synthesis. Chem Soc Rev. 2021; 50(4): 2337-2366.

[38]

Mann FA, Galonska P, Herrmann N, Kruss S. Quantum defects as versatile anchors for carbon nanotube functionalization. Nat Protoc. 2022; 17:3, 727-747.

[39]

Frank E, Hermanutz F, Buchmeiser MR. Carbon fibers: precursors, manufacturing, and properties. Macromol Mater Eng. 2012; 297(6): 493-501.

[40]

Liu YD, Kumar S. Recent progress in fabrication, structure, and properties of carbon fibers. Polym Rev. 2012; 52(3): 234-258.

[41]

Andideh M, Esfandeh M. Effect of surface modification of electrochemically oxidized carbon fibers by grafting hydroxyl and amine functionalized hyperbranched polyurethanes on interlaminar shear strength of epoxy composites. Carbon. 2017; 123: 233-242.

[42]

Bandaru PR. Electrical properties and applications of carbon nanotube structures. J Nanosci Nanotechnol. 2007; 7(4): 1239-1267.

[43]

Chen YF, Gao ZQ, Zhang FJ, et al. Recent progress in self-powered multifunctional e-skin for advanced applications. Exploration. 2022; 2(1): 20210112.

[44]

Iijima S. Helical microtubules of graphitic carbon. Nature. 1991; 354(6348): 56-58.

[45]

Hiremath N, Mays J, Bhat G. Recent developments in carbon fibers and carbon nanotube-based fibers: a review. Polym Rev. 2017; 57(2): 339-368.

[46]

Jeon I, Chiba T, Delacou C, et al. Single-walled carbon nanotube film as electrode in indium-free planar heterojunction perovskite solar cells: investigation of electron-blocking layers and dopants. Nano Lett. 2015; 15(10): 6665-6671.

[47]

Jeon I, Seo S, Sato Y, et al. Perovskite solar cells using carbon nanotubes both as cathode and as anode. J Phys Chem C. 2017; 121(46): 25743-25749.

[48]

Wan XY, Zhao YC, Li Z, et al. Emerging polymeric electrospun fibers: from structural diversity to application in flexible bioelectronics and tissue engineering. Exploration. 2022; 2(1): 20210029.

[49]

Janas D, Koziol KK. Carbon nanotube fibers and films: synthesis, applications and perspectives of the direct-spinning method. Nanoscale. 2016; 8(47): 19475-19490.

[50]

Lekawa-Raus A, Patmore J, Kurzepa L, Bulmer J, Koziol K. Electrical properties of carbon nanotube-based fibers and their future use in electrical wiring. Adv Funct Mater. 2014; 24(24): 3661-3682.

[51]

Lekawa-Raus A, Gizewski T, Patmore J, Kurzepa L, Koziol KK. Electrical transport in carbon nanotube fibres. Scripta Mater. 2017; 131: 112-118.

[52]

Baughman RH, Zakhidov AA, De Heer WA. Carbon nanotubes—the route toward applications. Science. 2002; 297(5582): 787-792.

[53]

Zhang XH, Lu WB, Zhou GH, Li QW. Understanding the mechanical and conductive properties of carbon nanotube fibers for smart electronics. Adv Mater. 2020; 32(5): 1902028.

[54]

Endo M, Hayashi T, Ahm Kim Y, Terrones M, Dresselhau MS. Applications of carbon nanotubes in the twenty-first century. Philos Trans A Math Phys Eng Sci. 2004; 362(1823): 2223-2238.

[55]

Zhang R, Zhang Y, Wei F. Horizontally aligned carbon nanotube arrays: growth mechanism, controlled synthesis, characterization, properties and applications. Chem Soc Rev. 2017; 46(12): 3661-3715.

[56]

Bai YX, Yue HJ, Wang J, Shen BY, Wei F. Super-durable ultralong carbon nanotubes. Science. 2020; 369(6507): 1104-1106.

[57]

Bai YX, Zhang RF, Ye X, et al. Carbon nanotube bundles with tensile strength over 80 GPa. Nat Nanotechnol. 2018; 13(7): 589-595.

[58]

Behabtu N, Young CC, Tsentalovich DE, Kleinerman O, Pasquali M. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science. 2013; 339(6116): 182-186.

[59]

De Volder MFL, Tawfick SH, Baughman RH, Hart AJ. Carbon nanotubes: present and future commercial applications. Science. 2013; 339(6119): 535-539.

[60]

Li R, Jiang QY, Zhang RF. Progress and perspective on high-strength and multifunctional carbon nanotube fibers. Sci Bull. 2022; 67(8): 784-787.

[61]

Shi X, Zuo Y, Zhai P, et al. Large-area display textiles integrated with functional systems. Nature. 2021; 591(7849): 240-245.

[62]

Janas D, Cabrero-Vilatela A. Bulmer J, Kurzepa L, Koziol KK. Carbon nanotube wires for high-temperature performance. Carbon. 2013; 64: 305-314.

[63]

Janas D, Koziol KK. Rapid electrothermal response of high-temperature carbon nanotube film heaters. Carbon. 2013; 59: 457-463.

[64]

See SJ, Han SH, Jeong KU, et al. Effect of crystal morphology transition of polypropylene on interfacial properties of carbon fiber-reinforced composites through AlOOH surface treatment. Compos Part A Appl Sci Manuf. 2015; 78: 362-370.

[65]

Zabihi O, Ahmadi M, Li Q, et al. Carbon fibre surface modification using functionalized nanoclay: a hierarchical interphase for fibre-reinforced polymer composites. Compos Sci Technol. 2017; 148: 49-58.

[66]

Song W, Gu AJ, Liang GZ, Yuan L. Effect of the surface roughness on interfacial properties of carbon fibers reinforced epoxy resin composites. Appl Surf Sci. 2011; 257(9): 4069-4074.

[67]

Jones AR, Cintora A, White SR, Sottos NR. Autonomic healing of carbon fiber/epoxy interfaces. ACS Appl Mater Inter. 2014; 6(9): 6033-6039.

[68]

Sharma M, Gao S, Mäder E, Sharma H, Wei LY, Bijwe J. Carbon fiber surfaces and composite interphases. Compos Sci Technol. 2014; 102: 35-50.

[69]

Wang CY, Li X, Gao E, et al. Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors. Adv Mater. 2016; 28(31): 6640-6648.

[70]

Zhang MC, Wang CY, Wang HM, et al. Carbonized cotton fabric for high-performance wearable strain sensors. Adv Funct Mater. 2017; 27(2): 1604795.

[71]

Yang ZP, Ci LJ, Bur JA, Lin SY, Ajayan PM. Experimental observation of an extremely dark material made by a low-density nanotube array. Nano Lett. 2008; 8(2): 446-451.

[72]

Prum RO, Dufresne ER, Quinn T, Waters K. Development of colour-producing β-keratin nanostructures in avian feather barbs. J R Soc Interface. 2009; 6(suppl_2): S253-S265.

[73]

Parker AR. Natural photonic engineers. Mater Today. 2002; 5(9): 26-31.

[74]

Vukusic P, Sambles JR. Photonic structures in biology. Nature. 2003; 424(6950): 852-855.

[75]

Lee LP, Szema R. Inspirations from biological optics for advanced photonic systems. Science. 2005; 310(5751): 1148-1150.

[76]

Wang B, Ma SQ, Yan SF, Zhu J. Readily recyclable carbon fiber reinforced composites based on degradable thermosets: a review. Green Chem. 2019; 21(21): 5781-5796.

[77]

Zhou LW, Yang LL, Liu Y, et al. Dynamic structural color from wrinkled thin films. Adv Opt Mater. 2020; 8(12): 2000234.

[78]

Murniati R, Wibowo E, Rokhmat M, et al. Natural rubber nanocomposite as human-tissue-mimicking materials for replacement cadaver in medical surgical practice. Proc Eng. 2017; 170: 101-107.

[79]

Meng FT, Umair MM, Zhang SF, Jin X, Tang BT. Thermal-guided interfacial confinement to fabricate flexible structural color composites for durable applications. J Mater Chem C. 2019; 7(36): 11258-11264.

[80]

Kawamura A, Kohri M, Morimoto G, et al. Full-color biomimetic photonic materials with iridescent and non-iridescent structural colors. Sci Rep. 2016; 6(1): 33984.

[81]

Xue Y, Wang F, Luo HJ, Zhu JF. Preparation of noniridescent structurally colored PS@TiO2 and air@C@TiO2 core-shell nanoparticles with enhanced color stability. ACS Appl Mater Inter. 2019; 11(37): 34355-34363.

[82]

Won R. Colour-tunable textiles. Nat Photon. 2008; 2(11): 650-650.

[83]

Gauvreau B, Guo N, Schicker K, et al. Color-changing and color-tunable photonic bandgap fiber textiles. Opt Express. 2008; 16(20): 15677-15693.

[84]

Diao YY, Liu XY. Controlled colloidal assembly: experimental modeling of general crystallization and biomimicking of structural color. Adv Funct Mater. 2012; 22(7): 1354-1375.

[85]

Finlayson CE, Goddard C, Papachristodoulou E, et al. Ordering in stretch-tunable polymeric opal fiber. Opt Express. 2011; 19(4): 3144-3154.

[86]

Chen FX, Huang Y, Li R, et al. Bio-inspired structural colors and their applications. Chem Commun. 2021; 57(99): 13448-13464.

[87]

Barrera-Patiño CP, Vollet-Filho JD. Teixeira-Rosa RG, et al. Photonic effects in natural nanostructures on Morpho cypris and Greta oto butterfly wings. Sci Rep. 2020; 10(1): 1-11.

[88]

Vukusic P, Sambles JR, Lawrence CR, Wootton RJ. Quantified interference and diffraction in single Morpho butterfly scales. Proc R Soc Lond Ser B. 1999; 266(1427): 1403-1411.

[89]

Mason CW. Structural colors in insects. II. J Phys Chem. 2002; 31(3): 321-354.

[90]

Land MF. The physics and biology of animal reflectors. Prog Biophys Mol Biol. 1972; 24: 75-106.

[91]

Kinoshita S, Yoshioka S. Structural colors in nature: the role of regularity and irregularity in the structure. ChemPhysChem. 2005; 6(8): 1442-1459.

[92]

Diao YY, Liu XY, Toh GW, Toh GW, Shi L, Zi J. Multiple structural coloring of silk-fibroin photonic crystals and humidity-responsive color sensing. Adv Funct Mater. 2013; 23(43): 5373-5380.

[93]

Caro TIM. The adaptive significance of coloration in mammals. Bioscience. 2005; 55(2): 125-136.

[94]

Yuan W, Wu C, Zhou N, Zhang KQ. Fibers with the tunable structure colors based on the ordered and amorphous structures. Handbook of Smart Textiles. Springer; 2015: 127-154.

[95]

Vukusic P, Sambles JR, Lawrence CR. Colour mixing in wing scales of a butterfly. Nature. 2000; 404(6777): 457.

[96]

Fu F, Shang LR, Chen ZY, Yu YR, Zhao YJ. Bioinspired living structural color hydrogels. Sci Robot. 2018; 3(16): eaar8580.

[97]

Shang LR, Zhang WX, Xu K, Zhao YJ. Bio-inspired intelligent structural color materials. Mater Horiz. 2019; 6(5): 945-958.

[98]

Xu M, Seago AE, Sutherland TD, Weisman S. Dual structural color mechanisms in a scarab beetle. J Morphol. 2010; 271(11): 1300-1305.

[99]

Parker AR, Welch VL, Driver D, Martini N. Opal analogue discovered in a weevil. Nature. 2003; 426(6968): 786.

[100]

Wang XH, Li YC, Zhou L, Chai LQ, Fan QG, Shao JZ. Structural colouration of textiles with high colour contrast based on melanin-like nanospheres. Dyes Pigments. 2019; 169: 36-44.

[101]

Resende PM, Sanz R, Caballero-Calero O. Martín-González M. Cost-effective, flexible, hydrophobic, and tunable structural color polymeric Bragg reflector meta structures. Adv Opt Mater. 2018; 6(21): 1800408.

[102]

Han ZW, Niu SC, Yang M, Zhang JQ, Yin W, Ren LQ. An ingenious replica templated from the light trapping structure in butterfly wing scales. Nanoscale. 2013; 5(18): 8500-8506.

[103]

Qin M, Sun M, Bai RB, et al. Bioinspired hydrogel interferometer for adaptive coloration and chemical sensing. Adv Mater. 2018; 30(21): 1800468.

[104]

McConney ME, Rumi M, Godman NP, Tohgha UN, Bunning TJ. Photoresponsive structural color in liquid crystalline materials. Adv Opt Mater. 2019; 7(16): 1900429.

[105]

England GT, Russell C, Shirman E, Kay T, Vogel N, Aizenberg J. The optical Janus effect: asymmetric structural color reflection materials. Adv Mater. 2017; 29(29): 1606876.

[106]

Xu T, Shi HF, Wu YK, et al. Structural colors: from plasmonic to carbon nanostructures. Small. 2011; 7(22): 3128-3136.

[107]

Parker AR, Martini N. Structural colour in animals—simple to complex optics. Opt Laser Technol. 2006; 38(4-6): 315-322.

[108]

Choi J, Hua M, Lee SY, et al. Hydrocipher: bioinspired dynamic structural color-based cryptographic surface. Adv Opt Mater. 2020; 8(1): 1901259.

[109]

Zhou CT, Qi Y, Zhang SF, et al. Rapid fabrication of vivid noniridescent structural colors on fabrics with robust structural stability by screen printing. Dyes Pigments. 2020; 176: 108226.

[110]

Zhao YJ, Xie ZY, Gu HC, Zhu C, Gu ZZ. Bio-inspired variable structural color materials. Chem Soc Rev. 2012; 41(8): 3297-3317.

[111]

Galinski H, Favraud G, Dong H, et al. Scalable, ultra-resistant structura. colors based on network metamaterials. Light-Sci Appl. 2017; 6(5): e16233-e16233.

[112]

Bi R, Li XH, Ou XC, et al. 3D-printed biomimetic structural colors. Small. 2024;20(5):2306646.

[113]

Chen HH, Hu L, Ju M, et al. Chiral smart bionic skin film with changeable structural colors and tunable luminescence by polymer-assisted supramolecular assembly of the photonic crystals. Appl Mater Today. 2022; 29: 101654.

[114]

Zhang ZM, Vogelbacher F, Song YL, Tian Y, Li MZ. Bio-inspired optical structures for enhancing luminescence. Exploration. 2023; 3(4): 20220052.

[115]

Li XY, Wang XH, Wang YN, et al. Bionic structural coloration of textiles using the synthetically prepared liquid photonic crystals. Small. 2024; 20(3): 2302550.

[116]

Zeng Q, Ding C, Li Q, et al. Rapid fabrication of robust, washable, self-healing superhydrophobi. fabrics with non-iridescent structural color by facile spray coating. RSC Adv. 2017; 7(14): 8443-8452.

[117]

Li S, Xiao Y, Shan G, et al. Rapid preparation of structural color coatings on flexible textiles by simple vacuum-assisted filtration self-assembly. Phys E. 2022; 144: 115424.

[118]

Lourtioz JM, Benisty H, Berger V, et al. Photonic Crystals. Towards Nanoscale Photonic Devices. Berlin Heidelberg: Springer; 2005.

[119]

Preble S, Lipson M, Lipson H. Two-dimensional photonic crystals designed by evolutionary algorithms. Appl Phys Lett. 2005; 86(6): 061111.

[120]

Lv J, Ding D, Yang X, et al. Biomimetic chiral photonic crystals. Angew Chem Int Ed. 2019; 58(23): 7783-7787.

[121]

Zhu KM, Fang CQ, Pu MY, et al. Recent advances in photonic crystal with unique structural colors: a review. J Mater Sci Technol. 2023; 141: 78-99.

[122]

Shen HZ, Wang ZH, Wu YX, Yang B. One-dimensional photonic crystals: fabrication, responsiveness and emerging applications in 3D construction. RSC Adv. 2016; 6(6): 4505-4520.

[123]

Ogawa S, Imada M, Yoshimoto S, Okano M, Noda S. Control of light emission by 3D photonic crystals. Science. 2004; 305(5681): 227-229.

[124]

Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett. 1987; 58(20): 2059-2062.

[125]

John S. Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett. 1987; 58(23): 2486-2489.

[126]

Liu G, Zhou L, Wang C, et al. Study on the high hydrophobicity and its possible mechanism of textile fabric with structural colors of three-dimensional poly (styrene-methacrylic acid) photonic crystals. RSC Adv. 2015; 5(77): 62855-62863.

[127]

Katagiri K, Tanaka Y, Uemura K, Inumaru K, Seki T, Takeoka Y. Structural color coating films composed of an amorphous array of colloidal particles via electrophoretic deposition. Npg Asia Mater. 2017; 9(3): e355-e355.

[128]

von Freymann G, Kitaev V, Lotsch BV, Ozin GA. Bottom-up assembly of photonic crystals. Chem Soc Rev. 2013; 42(7): 2528-2554.

[129]

Fenzl C, Hirsch T, Wolfbeis OS. Photonic crystals for chemical sensing and biosensing. Angew Chem Int Ed. 2014; 53(13): 3318-3335.

[130]

Zhang J, Zhu ZJ, Yu ZY, Ling LT, Wang CF, Chen S. Large-scale colloidal films with robust structural colors. Mater Horiz. 2019; 6(1): 90-96.

[131]

Zhong K, Li JQ, Liu LW, et al. Instantaneous, simple, and reversible revealing of invisible patterns encrypted in robust hollow sphere colloidal photonic crystals. Adv Mater. 2018; 30(25): 1707246.

[132]

Yang Y, Kim H, Xu JP, et al. Responsive block copolymer photonic microspheres. Adv Mater. 2018; 30(21): 1707344.

[133]

Morgan P. Carbon Fibers and Their Composites. CRC Press; 2005.

[134]

Newcomb BA. Processing, structure, and properties of carbon fibers. Compos Part A Appl Sci Manuf. 2016; 91: 262-282.

[135]

Behr MJ, Landes BG, Barton BE, et al. Structure–property model for polyethylene-derived carbon fiber. Carbon. 2016; 107: 525-535.

[136]

Ding Y, Qiao ZA. Carbon surface chemistry: new insight into the old story. Adv Mater. 2022; 34(42): 2206025.

[137]

Zhong XH, Li YL, Liu YK, et al. Continuous multilayered carbon nanotube yarns. Adv Mater. 2010; 22(6): 692-696.

[138]

Qiu L, Ding F. Understanding single-walled carbon nanotube growth for chirality controllable synthesis. Accounts Mater Res. 2021; 2(9): 828-841.

[139]

Kim YA, Muramatsu H, Hayashi T, et al. Fabrication of high-purity, double-walled carbo. nanotube buckypaper. Chem Vapor Depos. 2006; 12(6): 327-330.

[140]

Zhang J, Zhang YY. Structure-Controlled Growth of Carbon Nanotubes. Science Press; 2019: 15-16.

[141]

Ghosh S, Bachilo SM, Weisman RB. Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation. Nat Nanotechnol. 2010; 5(6): 443-450.

[142]

Kinoshita S. Structural Colors in the Realm of Nature. Singapore: World Scientific; 2008: 10-15.

[143]

Feng L, Wang F, Luo H, Qiu B. Review of recent advancements in the biomimicry of structural colors. Dyes Pigments. 2023;210:111019.

[144]

Lee J, Terlier T, Jang YJ, Lee KB, Lee Y. Structural colors and physical properties of elytra in the jewel beetle, Chrysochroa fulgidissima, using surface analytical techniques. Surf Interface Anal. 2020; 52(10): 656-664.

[145]

Dumanli AG, Savin T. Recent advances in the biomimicry of structural colours. Chem Soc Rev. 2016; 45(24): 6698-6724.

[146]

Hooke R. Micrographia: Or Some Physiological Descriptions of Minute Bodies Made by Magnifying Glasses, With Observations and Inquiries Thereupon. Courier Corporation; 2003.

[147]

Newton I. Opticks, Or, a Treatise of the Reflections, Refractions, Inflections & Colours of Light. Courier Corporation; 1952.

[148]

Parker AR. 515 million years of structural colour. J Opt A-Pure Appl Opt. 2000; 2(6): R15-R28.

[149]

Sutherland RL, Mäthger LM, Hanlon RT, Urbas AM, Stone MO. Cephalopod coloration model. I. Squid chromatophores and iridophores. J Opt Soc Am A Opt Image Sci Vis. 2008; 25(3): 588-599.

[150]

Neville AC, Caveney S. Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystals. Biol Rev. 1969; 44(4): 531-562.

[151]

Fu Y, Tippets CA, Donev EU, Lopez R. Structural colors: from natural to artificial systems. Wires Nanomed Nanobi. 2016; 8(5): 758-775.

[152]

Durrer H, Villiger W. Schillerfarben von Euchroma gigantea (L.): (Coleoptera: Buprestidae): Elektronenmikroskopische untersuchung der elytra. Int J Insect Morphol. 1972; 1(3): 233-240.

[153]

Kettler JE. The compact disk as a diffraction grating. Am J Phys. 1991; 59(4): 367-368.

[154]

Whitney HM, Kolle M, Andrew P, Chittka L, Steiner U, Glover BJ. Floral iridescence, produced by diffractive optics, acts as a cue for animal pollinators. Science. 2009; 323(5910): 130-133.

[155]

Parker AR. Colour in Burgess Shale animals and the effect of light on evolution in the Cambrian. Proc R Soc Lond Ser B. 1998; 265(1400): 967-972.

[156]

Parker AR. A vision for natural photonics. Philos Trans R Soc A. 2004; 362(1825): 2709-2720.

[157]

Parker AR, Mckenzie DR, Ahyong ST. A unique form of light reflector and the evolution of signalling in Ovalipes (Crustacea: Decapoda: Portunidae). Proc R Soc Lond Ser B. 1998; 265(1399): 861-867.

[158]

Sievenpiper DF, Sickmiller ME, Yablonovitch E. 3D wire mesh photonic crystals. Phys Rev Lett. 1996; 76(14): 2480-2483.

[159]

Chen HH, Gao WH, Chen KK, Zhang ZY, Zhao XY. Research progress on preparation and application of photonic crystal structure colored textile materials. Chem Ind Eng Prog. 2022; 41(8): 4327-4340.

[160]

Topçu G, Güner T, Demir MM. Non-iridescent structural colors from uniform-sized SiO2 colloids. Photonic Nanostruct. 2018; 29: 22-29.

[161]

Kou DH, Ma W, Zhang SF, Wang L, Tang BT, Li S. Research progress on applications of one-dimensional photonic crystal materials with structural colors. Chem Ind Eng Prog. 2018; 37(4): 1468-1479.

[162]

Vignolini S, Rudall PJ, Rowland AV, et al. Pointillist structural color in Pollia fruit. Proc Natl Acad Sci U S A. 2012; 109(39): 15712-15715.

[163]

Jahani S, Jacob Z. All-dielectric metamaterials. Nat Nanotechnol. 2016; 11(1): 23-36.

[164]

Chen C, Dong ZQ, Chen HW, Chen Y, Zhu ZG, Shi HH. Two-dimensional photonic crystals. Prog Chem. 2018; 30(6): 775-784.

[165]

Welch V, Vigneron JP, Lousse V, Parker A. Optical properties of the iridescent organ of the comb-jellyfish Beroë cucumis (Ctenophora). Phys Rev E. 2006; 73(4): 041916.

[166]

Welch VL, Vigneron JP, Parker AR. The cause of colouration in the ctenophore Beroe cucumis. Curr Biol. 2005; 15(24): R985-R986.

[167]

Zi J, Yu X, Li Y, et al. Coloration strategies in peacock feathers. Proc Natl Acad Sci U S A. 2003; 100(22): 12576-12578.

[168]

Stavenga DG, Foletti S, Palasantzas G, Arikawa K. Light on the moth-eye corneal nipple array of butterflies. Proc Biol Sci. 2006; 273(1587): 661-667.

[169]

Parker AR, McPhedran RC, McKenzie DR, Botten LC, Nicorovici NA. Aphrodite’s iridescence. Nature. 2001; 409(6816): 36-37.

[170]

Li MM, Lu QQ, Zhang LB, Zhu JT. Recent progress on angle-independent responsive photonic crystals. J Funct Polym. 2018; 31(6): 513-529.

[171]

Rajagukguk J, Kaewkhao J, Djamal M, Hidayat R, Ruangtaweep Y. Structural and optical characteristics of Eu3+ ions in sodium–lead–zinc–lithium–borate glass system. J Mol Struct. 2016; 1121: 180-187.

[172]

Welch V, Lousse V, Deparis O, Parker A, Vigneron JP. Orange reflection from a three-dimensional photonic crystal in the scales of the weevil Pachyrrhynchus congestus pavonius (Curculionidae). Phys Rev E. 2007; 75(4): 041919.

[173]

Vigneron JP, Simonis P. Natural photonic crystals. Phys B. 2012; 407(20): 4032-4036.

[174]

Lin Z, Jia X, Yang J, Li Y, Wang S, Song H. High structural stability of colored carbon fiber cloths modified by FeOOH. Appl Surf Sci. 2021; 545: 148994.

[175]

Liu H, Zhang Y, Jin M, et al. Preparation of carbon fiber substrates with structural colors based on photonic crystals. Dyes Pigments. 2022; 203: 110338.

[176]

Xu P, Hou J, Cheng J, et al. Color carbon fiber and its discoloration response. Carbon. 2022; 199: 42-50.

[177]

Yu J, Lee CH, Kan CW, Jin S. Fabrication of structural-coloured carbon fabrics by thermal assisted gravity sedimentation method. Nanomaterials. 2020; 10(6): 1133.

[178]

Zhou N, Zhang A, Shi L, Zhang KQ. Fabrication of structurally-colored fibers with axial core–shell structure via electrophoretic deposition and their optical properties. ACS Macro Lett. 2013; 2(2): 116-120.

[179]

Liu Z, Zhang Q, Wang H, Li Y. Structurally colored carbon fibers with controlled optical properties prepared by a fast and continuous electrophoretic deposition method. Nanoscale. 2013; 5(15): 6917-6922.

[180]

Yuan X, Liu Z, Shang S, et al. Visibly vapor-responsive structurally colored carbon fibers prepared by an electrophoretic deposition method. RSC Adv. 2016; 6(20): 16319-16322.

[181]

Zhao B, Gao H, Li S, Nie J, Sun F, Zhu X. Surface modification of carbon fiber by electro-polymerization: continuous production, thickness control, colorization, and preparation of CFRP. ACS Appl Polym Mater. 2020; 2(7): 2594-2601.

[182]

Eyckens DJ, Arnold CL, Randall JD, et al. Fiber with butterfly wings: creating colored carbon fibers with increased strength, adhesion, and reversible malleability. ACS Appl Mater Inter. 2019; 11(44): 41617-41625.

[183]

Xu H, Zhu Y, Guo Y, et al. Bio-inspired structural coloration of carbon fiber based on thin film interference: synergistically enhancing thermal durability, tensile strength and interface properties of colored fiber. React Funct Polym. 2024; 194: 105789.

[184]

Zhou S, Zhang C, Fu Z, et al. Color construction of multi-colored carbon fibers using glucose. Nat Commun. 2024; 15(1): 1979.

[185]

Bräuer G, Szyszka B, Vergöhl M, Bandorf R. Magnetron sputtering-milestones of 30 years. Vacuum. 2010; 84(12): 1354-1359.

[186]

Zhao K, Cheng J, Sun N, et al. Photonic Janus carbon fibers with structural color gradient for multicolored, wirelessly wearable thermal management devices. Adv Mater Technol. 2022; 7(5): 2101057.

[187]

Johnson RW, Hultqvist A, Bent SF. A brief review of atomic layer deposition: from fundamentals to applications. Mater Today. 2014; 17(5): 236-246.

[188]

Chen F, Yang H, Li K, et al. Facile and effective coloration of dye-inert carbon fiber fabrics with tunable colors and excellent laundering durability. ACS Nano. 2017: 11(10): 10330-10336.

[189]

Luo Y, Zhang Y, Xing T, et al. Full-color tunable and highly fire-retardant colored carbon fibers. Adv Fiber Mater. 2023;5: 1618-1631.

[190]

Zhao K, Wang Y, Zhang S, Niu W. Highly flexible, multicolored, and multifunctional single-fiber-based microsensors for UV, temperature, and infrared detection. Ind Eng Chem Res. 2021; 60(30): 11151-11160.

[191]

Niu W, Zhang L, Wang Y, et al. Multicolored photonic crystal carbon fiber yarns and fabrics with mechanical robustness for thermal management. ACS Appl Mater Inter. 2019; 11(35): 32261-32268.

[192]

Gaviria Rojas WA, Hersam MC. Chirality-enriched carbon nanotubes for next-generation computing. Adv Mater. 2020; 32(41): 1905654.

[193]

Krupke R, Hennrich F, Lohneysen HV, Kappes MM. Separation of metallic from semiconducting single-walled carbon nanotubes. Science. 2003; 01(5631): 344-347.

[194]

Zhang G, Qi P, Wang X, et al. Selective etching of metallic carbon nanotubes by gas-phase reaction. Science. 2006; 314(5801): 974-977.

[195]

Ju SY, Doll J, Sharma I, Papadimitrakopoulos F. Selection of carbon nanotubes with specific chiralities using helical assemblies of flavin mononucleotide. Nat Nanotechnol. 2008; 3(6): 356-362.

[196]

Liu H, Nishide D, Tanaka T, Kataura H. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat Commun. 2011; 2(1): 309.

[197]

Ao G, Streit JK, Fagan JA, Zheng M. Differentiating left-and right-handed carbon nanotubes by DNA. J Am Chem Soc. 2016; 138(51): 16677-16685.

[198]

Liu H, Tanaka T, Urabe Y, Kataura H. High-efficiency single-chirality separation of carbon nanotubes using temperature-controlled gel chromatography. Nano Lett. 2013; 13(5): 1996-2003.

[199]

Wei N, Tian Y, Liao Y, et al. Colors of single-wall carbon nanotubes. Adv Mater. 2021; 33(8): 2006395.

[200]

Hároz EH, Duque JG, Lu BY, et al. Unique origin of colors of armchair carbon nanotubes. J Am Chem Soc. 2012; 134(10): 4461-4464.

[201]

Liao Y, Jiang H, Wei N, et al. Direct synthesis of colorful single-walled carbon nanotube thin films. J Am Chem Soc. 2018; 140(31): 9797-9800.

[202]

Peng H, Sun X, Cai F, et al. Electrochromatic carbon nanotube/polydiacetylene nanocomposite fibres. Nat Nanotechnol. 2009; 4(11): 738-741.

[203]

Lepak-Kuc S, Taborowska P, Tran TQ, et al. Washable, colored and textured, carbon nanotube textile yarns. Carbon. 2021; 172: 334-344.

[204]

Chen F, Huang Y, Li R, et al. Superdurable and fire-retardant structural coloration of carbon nanotubes. Sci Adv. 2022; 8(26): eabn5882.

[205]

Li R, Zhang S, Chen H, et al. Multicolored structural coloration of carbon nanotube fibers. SusMat. 2023; 3(1): 102-110.

[206]

Zhao X, Meng G, Xu Q, Han FM, Huang Q. Color fine-tuning of CNTs@ AAO composite thin films via isotropically etching porous AAO before CNT growth and color modification by water infusion. Adv Mater. 2010; 22(24): 2637-2641.

[207]

Zhao Y, Li R, Wang B, et al. Scalable structural coloration of carbon nanotube fibers via a facile silica photonic crystal self-assembly strategy. ACS Nano. 2023; 17(3): 2893-2900.

[208]

Sun X, Zhang J, Lu X, Fang X, Peng PH. Mechanochromic photonic-crystal fibers based on continuous sheets of aligned carbon nanotubes. Angew Chem Int Ed. 2015; 54(12): 3630-3634.

[209]

Guo X, Zhang C, Mi S, et al. Realizing flexible multicolored electrochromism on carbon nanotubes through thin-film interference. ACS Photon. 2024; 11(6): 2335-2341.

RIGHTS & PERMISSIONS

2024 The Author(s). SusMat published by Sichuan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

145

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/