Thermal interface materials: From fundamental research to applications

Baojie Wei , Wenmei Luo , Jianying Du , Yafei Ding , Yanjiang Guo , Guimei Zhu , Yuan Zhu , Baowen Li

SusMat ›› 2024, Vol. 4 ›› Issue (6) : e239

PDF
SusMat ›› 2024, Vol. 4 ›› Issue (6) : e239 DOI: 10.1002/sus2.239
REVIEW

Thermal interface materials: From fundamental research to applications

Author information +
History +
PDF

Abstract

The miniaturization, integration, and high data throughput of electronic chips present challenging demands on thermal management, especially concerning heat dissipation at interfaces, which is a fundamental scientific question as well as an engineering problem—a heat death problem called in semiconductor industry. A comprehensive examination of interfacial thermal resistance has been given from physics perspective in 2022 in Review of Modern Physics. Here, we provide a detailed overview from a materials perspective, focusing on the optimization of structure and compositions of thermal interface materials (TIMs) and the interact/contact with heat source and heat sink. First, we discuss the impact of thermal conductivity, bond line thickness, and contact resistance on the thermal resistance of TIMs. Second, it is pointed out that there are two major routes to improve heat transfer through the interface. One is to reduce the TIM’s thermal resistance (RTIM) of the TIMs through strategies like incorporating thermal conductive fillers, enhancing interfacial structure and treatment techniques. The other is to reduce the contact thermal resistance (Rc) by improving effective interface contact, strengthening bonding, and utilizing mass gradient TIMs to alleviate vibrational mismatch between TIM and heat source/sink. Finally, such challenges as the fundamental theories, potential developments in sustainable TIMs, and the application of AI in TIMs design are also explored.

Keywords

interface structure / interfacial thermal resistance / thermal conductivity / thermal interface materials

Cite this article

Download citation ▾
Baojie Wei, Wenmei Luo, Jianying Du, Yafei Ding, Yanjiang Guo, Guimei Zhu, Yuan Zhu, Baowen Li. Thermal interface materials: From fundamental research to applications. SusMat, 2024, 4(6): e239 DOI:10.1002/sus2.239

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen J, Xu X, Zhou J, Li B. Interfacial thermal resistance: past, present, and future. Rev Mod Phys. 2022; 94(2): 025002.

[2]

Xu X-Q, Cheng X-B, Jiang F-N. et al. Dendrite-accelerated thermal runaway mechanisms of lithium metal pouch batteries. SusMat. 2022; 2(4): 435-444.

[3]

Peng X, Jiang P, Ouyang Y, Lu S, Ren W, Chen J. Reducing Kapitza resistance between graphene/water interface via interfacial superlattice structure. Nanotechnology. 2022; 33(3): 035707.

[4]

Mehra N, Mu L, Ji T, et al. Thermal transport in polymeric materials and across composite interfaces. Appl Mater Today. 2018; 12: 92-130.

[5]

Ruan K, Shi X, Guo Y, Gu J. Interfacial thermal resistance in thermally conductive polymer composites: a review. Compos Comm. 2020; 22: 100518.

[6]

Dai W, Wang Y, Li M, et al. 2D materials-based thermal interface materials: structure, properties, and applications. Adv Mater. 2024:2311335.

[7]

Feng C-P, Yang L-Y, Yang J, et al. Recent advances in polymer-based thermal interface materials for thermal management: a mini-review. Compos Commun. 2020; 22: 100528.

[8]

Lu J, Ming X, Cao M, et al. Scalable compliant graphene fiber-based thermal interface material with metal-level thermal conductivity via dual-field synergistic alignment engineering. ACS Nano. 2024; 18(28): 18560-18571.

[9]

Xia R, Zhu S, Zhen F, et al. Vertical 3D printing of rGO/CNTs arrays for thermal interface materials with in-situ local temperature monitoring function. Chem Eng J. 2024; 496: 153643.

[10]

Zeng C, Zeng X, Cheng X, et al. Design of thermal interface materials with excellent interfacial heat/force transfer ability via hierarchical energy dissipation. Adv Funct Mater. 2024:2406075.

[11]

Liu W, Liu Y, Zhong S, et al. Soft and damping thermal interface materials with honeycomb-board-mimetic filler network for electronic heat dissipation. Small. 2024:2400115.

[12]

Zhang X-D, Yang G, Cao B-Y. Bonding-enhanced interfacial thermal transport: mechanisms, materials, and applications. Adv Mater Interfaces. 2022; 9(27): 2200078.

[13]

Zhang P, Yuan P, Jiang X, et al. A theoretical review on interfacial thermal transport at the nanoscale. Small. 2018; 14(2): 1702769.

[14]

Chung DDL. Performance of thermal interface materials. Small. 2022; 18(16): 2200693.

[15]

Ren W, Lu S, Yu C, et al. Impact of moiré superlattice on atomic stress and thermal transport in van der Waals heterostructures. Appl Phys Rev. 2023; 10(4).

[16]

Ren W, Ouyang Y, Jiang P, Yu C, He J, Chen J. The impact of interlayer rotation on thermal transport across graphene/hexagonal boron nitride van der Waals heterostructure. Nano Lett. 2021; 21(6): 2634-2641.

[17]

Solbrekken GL, Chia-Pin C. Byers B, Reichebbacher D, The development of a tool to predict package level thermal interface material performance. In ITHERM 2000. The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.00CH37069), 23–26 May 2000:2000, Vol. 1, pp: 48-54.

[18]

Chung DDL. Thermal interface materials. J Electron Mater. 2020; 49(1): 268-270.

[19]

Li J, Ye Z, Mo P, et al. Compliance-tunable thermal interface materials based on vertically oriented carbon fiber arrays for high-performance thermal management. Compos Sci Technol. 2023; 234: 109948.

[20]

Jing L, Cheng R, Tasoglu M, et al. High thermal conductivity of sandwich-structured flexible thermal interface materials. Small. 2023; 19: 2207015.

[21]

Jing L, Cheng R, Garg R, et al. 3D graphene-nanowire “sandwich” thermal interface with ultralow resistance and stiffness. ACS Nano. 2023; 17(3): 2602-2610.

[22]

Alayli M, Kim T, Cheon S, Baik S. Significantly enhanced conformal contact by the functional layers on a copper film for thermal interface materials. Adv Eng Mater. 2024; 26(7): 2301823.

[23]

Raza MA, Westwood AVK, Brown AP, Stirling C. Performance of graphite nanoplatelet/silicone composites as thermal interface adhesives. J Mater Sci Mater Electron. 2012; 23(10): 1855-1863.

[24]

Dai W, Ren X-J, Yan Q, et al. Ultralow interfacial thermal resistance of graphene thermal interface materials with surface metal liquefaction. Nano Micro Lett. 2022; 15(1): 9.

[25]

Dai W, Lv L, Lu J, et al. A paper-like inorganic thermal interface material composed of hierarchically structured graphene/silicon carbide nanorods. ACS Nano. 2019; 13(2): 1547-1554.

[26]

He Q, Qin M, Zhang H, et al. Patterned liquid metal embedded in brush-shaped polymers for dynamic thermal management. Mater Horiz. 2024; 11: 531-544.

[27]

Yan Q, Alam FE, Gao J, et al. Soft and self-adhesive thermal interface materials based on vertically aligned, covalently bonded graphene nanowalls for efficient microelectronic cooling. Adv Funct Mater. 2021; 31(36): 2104062.

[28]

Xie Z, Dou Z, Wu D, et al. Joint-inspired liquid and thermal conductive interface for designing thermal interface materials with high solid filling yet excellent thixotropy. Adv Funct Mater. 2023; 33: 2214071.

[29]

Dou Z, Zhang B, Xu P, Fu Q, Wu K. Dry-contact thermal interface material with the desired bond line thickness and ultralow applied thermal resistance. ACS Appl Mater Interfaces. 2023; 15(49): 57602-57612.

[30]

Guo C, Li Y, Xu J, Zhang Q, Wu K, Fu Q. A thermally conductive interface material with tremendous and reversible surface adhesion promises durable cross-interface heat conduction. Mater Horiz. 2022; 9(6): 1690-1699.

[31]

Cha I, Kim T, Kim K-s, Baik S, Song C. Ultralow contact resistance of thermal interface materials enabled by the vitrimer chemistry of a β-hydroxy phosphate ester. Chem Mater. 2023; 35(18): 7491-7499.

[32]

Zhang B, Dou Z-L, Zhang Y-Z. Fu Q, Wu K. Exploring trade-offs in thermal interface materials: the impact of polymer-filler interfaces on thermal conductivity and thixotropy. Chin J Polym Sci. 2024; 42: 916-925.

[33]

Taphouse JH, Smith ONL, Marder SR, Cola BA. A pyrenylpropyl phosphonic acid surface modifier for mitigating the thermal resistance of carbon nanotube contacts. Adv Funct Mater. 2014; 24(4): 465-471.

[34]

Cross R, Cola BA, Fisher T, Xu X, Gall K, Graham S. A metallization and bonding approach for high performance carbon nanotube thermal interface materials. Nanotechnology. 2010; 21(44): 445705.

[35]

Bai R, Wei Y, Xu J, et al. Encapsulated carbon nanotube array as a thermal interface material compatible with standard electronics packaging. Nano Res. 2023; 16(8): 11389-11400.

[36]

Zhang H, He Q, Yu H, Qin M, Feng Y, Feng W. A bioinspired polymer-based composite displaying both strong adhesion and anisotropic thermal conductivity. Adv Funct Mater. 2023; 33(18): 2211985.

[37]

Dai W, Ma T, Yan Q, et al. Metal-level thermally conductive yet soft graphene thermal interface materials. ACS Nano. 2019; 13(10): 11561-11571.

[38]

Taphouse JH, Bougher TL, Singh V, Abadi PPSS, Graham S, Cola BA. Carbon nanotube thermal interfaces enhanced with sprayed on nanoscale polymer coatings. Nanotechnology. 2013; 24(10): 105401.

[39]

Kuang H, Wu B, Wang J, et al. Enhanced interface heat transfer based on gallium-based liquid metal infiltrated into vertically aligned copper nanowire arrays. Appl Therm Eng. 2023; 233: 121119.

[40]

Zhang C, Cui H, Guo R, et al. Adhesion energy-assisted low contact thermal resistance epoxy resin-based composite. Langmuir. 2024.

[41]

Cheng X, He D, Zhou M, et al. Can adhesion energy optimize interface thermal resistance at a soft/hard material interface? Nano Lett. 2023; 23(14): 6673-6680.

[42]

Shi H, Zhou W, Wen Z, et al. Thermally conductive and compliant polyurethane elastomer composites by constructing a tri-branched polymer network. Mater Horiz. 2023; 10(3): 928-937.

[43]

Yang M, Pang Y, Li J, et al. Grafted alkene chains: triggers for defeating contact thermal resistance in composite elastomers. Small. 2024; 20(2): 2305090.

[44]

Fan J, Ding S, Zeng X, et al. Gecko-inspired adhesive structures enable efficiently thermal conductance and vibration dissipation in a highly mismatched system. Chem Eng J. 2022; 445: 136754.

[45]

Cai L, Fan J, Ding S, et al. Soft composite gels with high toughness and low thermal resistance through lengthening polymer strands and controlling filler. Adv Funct Mater. 2023; 33(2): 2207143.

[46]

Zeng X, Zhou Y, Xia X, et al. Elastomer composites with high damping and low thermal resistance via hierarchical interactions and regulating filler. Small. 2023;20:2306946.

[47]

Zhou W, Wang W, Shi H, et al. Multiway softness polyurethane elastomeric composite with enhanced thermal conductivity and application as thermal interface materials. Adv Mater Technol. 2023; 8(9): 2201701.

[48]

Zhan K, Chen Y, Xiong Z, et al. Low thermal contact resistance boron nitride nanosheets composites enabled by interfacial arc-like phonon bridge. Nat Commun. 2024; 15(1): 2905.

[49]

He X, Liu X, Huang J, et al. Simultaneous reduction of bulk and contact thermal resistance in high-loading thermal interface materials using self-assembled monolayers. Adv Funct Mater. 2024:2402276.

[50]

Jia X, Wang S, Li S, et al. Anti-leak, self-adaptive liqui. metal-epoxy in-situ cured composites with ultra-low thermal resistance via flexible droplet inclusions. Surface Interfac. 2023; 42: 103335.

[51]

Zhao L, Liu H, Chen X, et al. Liquid metal nano/micro-channels as thermal interface materials for efficient energy saving. J Mater Chem C. 2018; 6(39): 10611-10617.

[52]

Ma Q, Zhang C, Ren L, et al. Modulating surface chemistry of Al powders for elastomeric composites with applications in electronic cooling. Adv Mater Interfaces. 2023; 10(10): 2201315.

[53]

Chen C, He Y, Liu C, Xie H, Yu W. Comprehensive excellent performance for silicone-based thermal interface materials through the synergistic effect between graphene and spherical alumina. J Mater Sci Mater Electron. 2020; 31(6): 4642-4649.

[54]

Kim T, Kim S, Kim E, et al. High-temperature skin softening materials overcoming the trade-off between thermal conductivity and thermal contact resistance. Small. 2021; 17(38): 2102128.

[55]

Abdul Jaleel SA, Kim T, Baik S. Covalently functionalized leakage-free healable phase-change interface materials with extraordinary high-thermal conductivity and low-thermal resistance. Adv Mater. 2023; 35(30): 2300956.

[56]

Prasher R. Thermal interface materials: historical perspective, status, and future directions. Proceedings of the IEEE. 2006; 94(8): 1571-1586.

[57]

Dou Z, Zhang B, Xu P, Fu Q, Wu K. Dry-contact thermal interface material with the desired bond line thickness and ultralow applied thermal resistance. ACS Appl. Mater. Interfaces. 2023; 15(49): 57602-57612.

[58]

Prasher RS. Surface chemistry and characteristics based model for the thermal contact resistance of fluidic interstitial thermal interface materials. J Heat Transfer. 2001; 123(5): 969-975.

[59]

Yuan C, Fu X, Luo X. An interface resistance model of thermal interstitial materials. J Eng Thermophys. 2013; 34(4): 746-750.

[60]

Hamasaiid A, Dour G, Loulou T, Dargusch MS. A predictive model for the evolution of the thermal conductance at the casting–die interfaces in high pressure die casting. Int J Therm Sci. 2010; 49(2): 365-372.

[61]

Yuan C, Duan B, Li L, Shang B, Luo X. An improved model for predicting thermal contact resistance at liquid–solid interface. Int J Heat Mass Transfer. 2015; 80: 398-406.

[62]

Prasher RS, Matayabas JC. Thermal contact resistance of cured gel polymeric thermal interface material. IEEE Trans Compon Packag Technol. 2004; 27(4): 702-709.

[63]

Singh V, Bougher TL, Weathers A, et al. High thermal conductivity of chain-oriented amorphous polythiophene. Nat Nanotechnol. 2014; 9(5): 384-390.

[64]

Shen S, Henry A, Tong J, Zheng R, Chen G. Polyethylene nanofibres with very high thermal conductivities. Nat Nanotechnol. 2010; 5(4): 251-255.

[65]

Lu Y, Liu J, Xie X, Cahill DG. Thermal conductivity in the radial direction of deformed polymer fibers. ACS Macro Lett. 2016; 5(6): 646-650.

[66]

Xu Y, Kraemer D, Song B, et al. Nanostructured polymer films with metal-like thermal conductivity. Nat Commun. 2019; 10(1): 1771.

[67]

Chen J, Zhou Y, Huang X, et al. Ladderphane copolymers for high-temperature capacitive energy storage. Nature. 2023; 615(7950): 62-66.

[68]

Fan X, Liu Z, Wang S, Gu J. Low dielectric constant and highly intrinsic thermal conductivity fluorine-containing epoxy resins with ordered liquid crystal structures. SusMat. 2023; 3(6): 877-893.

[69]

Huang C, Qian X, Yang R. Thermal conductivity of polymers and polymer nanocomposites. Mater Sci Eng R Rep. 2018; 132: 1-22.

[70]

Chen X, Xu J, Li Y, Gao Y, Wang G. Integrating multiple energy storage in 1D–2D bridged array carbon-based phase change materials. SusMat. 2023; 3(4): 510-521.

[71]

Liu C, Wu W, Drummer D, et al. Significantly enhanced thermal conductivity of polymer composites via establishing double-percolated expanded graphite/multi-layer graphene hybrid filler network. Eur Polym J. 2021; 160: 110768.

[72]

Li P, Ren Z, Ma L, et al. Enhanced thermal conductivity of epoxy composites with ternary particle size through the use of hybrid polyhedral α-alumina oxide and aluminum nitride. Ceram Int. 2022; 48(23): 35251-35258. Part A.

[73]

Zhao Y-H, Zhang Y-F, Bai S-L. High thermal conductivity of flexible polymer composites due to synergistic effect of multilayer graphene flakes and graphene foam. Compos Part A Appl S. 2016; 85: 148-155.

[74]

Wang S, Feng D, Guan H, et al. Highly efficient thermal conductivity of polydimethylsiloxane composites via introducing “Line-Plane”-like hetero-structured fillers. Compos Part A Appl S. 2022; 157: 106911.

[75]

Mu Q, Feng S, Diao G. Thermal conductivity of silicone rubber filled with ZnO. Polym Compos. 2007; 28(2): 125-130.

[76]

Bujard P, Cojanu I, Filler for heat-conductive plastics materials. 1994.

[77]

Zhang H, Zhang X, Li D, et al. Synergistic enhanced thermal conductivity of polydimethylsiloxane composites via introducing SCF and hetero-structured GB@rGO hybrid fillers. Adv Compos Hybrid Mater. 2022; 5(3): 1756-1768.

[78]

Su Y, Ma Q, Liang T, et al. Optimization of effective thermal conductivity of thermal interface materials based on the genetic algorithm-driven random thermal network model. ACS Appl Mater Interfaces. 2021; 13(37): 45050-45058.

[79]

Meng X, Yu H, Wang L, Wu X, Wang N. Thermal conductive nylon 6 composites with hybrid fillers prepared through reaction during extrusion. Compos Sci Technol. 2023; 234: 109931.

[80]

Lin H, Ma M, Chu Q, et al. Multifunctional nanofibrillated cellulose/ZnO@rGO composite films for thermal conductivity, electrical insulation, and antibacterial applications. Compos Struct. 2023; 312: 116896.

[81]

Jiao J, Cui Y, Xia Y. Improved thermal conductivity of epoxy composites prepared with a mixed filler of multiwalled carbon nanotubes and aluminum nitride particles. High Performance Polym. 2017; 29(4): 484-492.

[82]

Li Y, Huang X, Hu Z, Jiang P, Li S, Tanaka T. Large dielectric constant and high thermal conductivity in poly(vinylidene fluoride)/barium titanate/silicon carbide three-phase nanocomposites. ACS Appl Mater Interfaces. 2011; 3(11): 4396-4403.

[83]

Yin C-G, Liu Z-J, Mo R, et al. Copper nanowires embedded in boron nitride nanosheet-polymer composites with enhanced thermal conductivities for thermal management. Polymer. 2020; 195: 122455.

[84]

Li Z, Ju D, Han L, Dong L. Formation of more efficient thermally conductive pathways due to the synergistic effect of boron nitride and alumina in poly(3-hydroxylbutyrate). Thermochim Acta. 2017; 652: 9-16.

[85]

Yuan F-Y, Zhang H-B, Li X, Li X-Z, Yu Z-Z. Synergistic effect of boron nitride flakes and tetrapod-shaped ZnO whiskers on the thermal conductivity of electrically insulating phenol formaldehyde composites. Compos Part A Appl S. 2013; 53: 137-144.

[86]

Yan R, Su F, Zhang L, Li C. Highly enhanced thermal conductivity of epoxy composites by constructing dense thermal conductive network with combination of alumina and carbon nanotubes. Compos Part A Appl S. 2019; 125: 105496.

[87]

Bo T, Zhengwei W, Huang W, et al. RGO and three-dimensional graphene networks co-modified TIMs with high performances. Nanoscale Res Lett. 2017; 12(1): 527.

[88]

Wang H, Li L, Wei X, et al. Combining alumina particles with three-dimensional alumina foam for high thermally conductive epoxy composites. ACS Appl Polym Mater. 2021; 3(1): 216-225.

[89]

Bartlett MD, Kazem N, Powell-Palm MJ. et al. High thermal conductivity in soft elastomers with elongated liquid metal inclusions. Proc Natl Acad Sci USA. 2017; 114(9): 2143-2148.

[90]

Yang S, He Y, Zhang J. Fluorine-terminated functionalized liquid metal/silicon carbide binary nanoparticles for polyvinyl alcohol composite films with high in-plane thermal conductivity and ultra-low dielectric constant. Surface Interfac. 2022; 35: 102408.

[91]

Mei S, Gao Y, Deng Z, Liu J. Thermally conductive and highly electrically resistive grease through homogeneously dispersing liquid metal droplets inside methyl silicone oil. J Electron Packag. 2014; 136(1): 011009.

[92]

Zhang X-D, Zhang Z-T, Wang H-Z. Cao B-Y. Thermal interface materials with high thermal conductivity and low Young’s Modulus using a solid–liquid metal codoping strategy. ACS Appl Mater Interfaces. 2023; 15(2): 3534-3542.

[93]

Xie J, Zhou G, Sun Y, et al. Multifunctional liquid metal-bridged graphite nanoplatelets/aramid nanofiber film for thermal management. Small. 2023:2305163.

[94]

Yu J, Cheng H, Wang Y, et al. Multiple shearing-induced high alignment in polyethylene/graphene films for enhancing thermal conductivity and solar-thermal conversion performance. Chem Eng J. 2024; 480: 148062.

[95]

Ji Y, Han S, Zhang Q, et al. Constructing a highly vertically aligned network of h-BN/CF in silicone rubber composites: achieving superior through-plane thermal conductivity and electrical insulation. Compos B Eng. 2023; 266: 111024.

[96]

Li M, Ali Z, Wei X, et al. Stress induced carbon fiber orientation for enhanced thermal conductivity of epoxy composites. Compos B Eng. 2021; 208: 108599.

[97]

Niu H, Guo H, Kang L, Ren L, Lv R, Bai S. Vertical alignment of anisotropic fillers assisted by expansion flow in polymer composites. Nano Micro Lett. 2022; 14(1): 153.

[98]

Xu W-h, , He Y, Xie H, et al. Ultrafast fabrication of graphene-reinforced nanocomposites via synergy of steam explosion and alternating convergent-divergent flow. Small. 2021; 17(28): 2100017.

[99]

Zhuang Y, Zheng K, Cao X, et al. Flexible graphene nanocomposites with simultaneous highly anisotropic thermal and electrical conductivities prepared by engineered graphene with flat morphology. ACS Nano. 2020; 14(9): 11733-11742.

[100]

Cao M, Li Z, Lu J, et al. Vertical array of graphite oxide liquid crystal by microwire shearing for highly thermally conductive composites. Adv Mater. 2023; 35(22): 2300077.

[101]

Tao P-D, Wang S-G, Chen L, et al. Enhancement of in-plane thermal conductivity of flexible boron nitride heat spreaders by micro/nanovoid filling using deformable liquid metal nanoparticles. Rare Metals. 2023; 42(11): 3662-3672.

[102]

Zhou J, Yu Z, Mohideen MM, et al. Constructing hierarchical polymer nanocomposites with strongly enhanced thermal conductivity. ACS Appl Mater Interfaces. 2023; 15(36): 42900-42911.

[103]

Yan Q, Dai W, Gao J, et al. Ultrahigh-aspect-ratio boron nitride nanosheets leading to superhigh in-plane thermal conductivity of foldable heat spreader. ACS Nano. 2021; 15(4): 6489-6498.

[104]

Ma T, Zhao Y, Ruan K, et al. Highly thermal conductivities, excellent mechanical robustness and flexibility, and outstanding thermal stabilities of aramid nanofiber composite papers with nacre-mimetic layered structures. ACS Appl Mater Interfaces. 2020; 12(1): 1677-1686.

[105]

Zhang X, Xie B, Zhou S, et al. Radially oriented functional thermal materials prepared by flow field-driven self-assembly strategy. Nano Energy. 2022; 104: 107986.

[106]

Chen Y, Hou X, Liao M, et al. Constructing a “pea-pod-like” alumina-graphene binary architecture for enhancing thermal conductivity of epoxy composite. Chem Eng J. 2020; 381: 122690.

[107]

Gao J, Yan Q, Lv L, et al. Lightweight thermal interface materials based on hierarchically structured graphene paper with superior through-plane thermal conductivity. Chem Eng J. 2021; 419: 129609.

[108]

Wei Z, Gong P, Kong X, et al. Enhanced thermal conductivity of nanodiamond nanosheets/polymer nanofiber composite films by uniaxial and coaxial electrospinning: implications for thermal management of nanodevices. ACS Appl Nano Mater. 2023; 6(10): 8358-8366.

[109]

Wang H, Zhang Y, Niu H, et al. An electrospinning–electrospraying technique for connecting electrospun fibers to enhance the thermal conductivity of boron nitride/polymer composite films. Compos B Eng. 2022; 230: 109505.

[110]

Yang L, Zhang L, Li C. Bridging boron nitride nanosheets with oriented carbon nanotubes by electrospinning for the fabrication of thermal conductivity enhanced flexible nanocomposites. Compos Sci Technol. 2020; 200: 108429.

[111]

Chen J, Huang X, Sun B, Jiang P. Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability. ACS Nano. 2019; 13(1): 337-345.

[112]

Ji T, Feng Y, Qin M, et al. Thermal conductive and flexible silastic composite based on a hierarchical framework of aligned carbon fibers-carbon nanotubes. Carbon. 2018; 131: 149-159.

[113]

Erb RM, Libanori R, Rothfuchs N, Studart AR. Composites reinforced in three dimensions by using low magnetic fields. Science. 2012; 335(6065): 199-204.

[114]

He Y, Kuang F, Che Z, et al. Achieving high out-of-plane thermal conductivity for boron nitride nano sheets/epoxy composite films by magnetic orientation. Compos Part A Appl S. 2022; 157: 106933.

[115]

Wang Y, Zhao Z, Gu A, Wei Z, Chen W, Yan C. Enhancement of thermal conductivity of BN-Ni/epoxy resin composites through the orientation of BN-Ni fillers by magnetic field and hot-pressing. Ceram Int. 2022; 48(22): 33571-33579.

[116]

Cho H-B, Nakayama T, Suematsu H, et al. Insulating polymer nanocomposites with high-thermal-conduction routes via linear densely packed boron nitride nanosheets. Compos Sci Technol. 2016; 129: 205-213.

[117]

Zhang H, Xu S. Magnetic field-assisted alignment of boron nitride nanosheets in poly(vinyl alcohol) composites with enhanced in-plane thermal conductivity. J Polym Res. 2023; 30(6): 209.

[118]

Uetani K, Ata S, Tomonoh S, Yamada T, Yumura M, Hata K. Elastomeric thermal interface materials with high through-plane thermal conductivity from carbon fiber fillers vertically aligned by electrostatic flocking. Adv Mater. 2014; 26(33): 5857-5862.

[119]

Yuan C, Xie B, Huang M, Wu R, Luo X. Thermal conductivity enhancement of platelets aligned composites with volume fraction from 10% to 20%. Int J Heat Mass Transfer. 2016; 94: 20-28.

[120]

Yuan J, Qian X, Meng Z, Yang B, Liu Z-Q. Highly thermally conducting polymer-based films with magnetic field-assisted vertically aligned hexagonal boron nitride for flexible electronic encapsulation. ACS Appl Mater Interfaces. 2019; 11(19): 17915-17924.

[121]

Cheng S, Guo X, Tan P, et al. Aligning graphene nanoplates coplanar in polyvinyl alcohol by using a rotating magnetic field to fabricate thermal interface materials with high through-plane thermal conductivity. Compos B Eng. 2023; 264: 110916.

[122]

Wang H, Tazebay AS, Yang G, Lin HT, Choi W, Yu C. Highly deformable thermal interface materials enabled by covalently-bonded carbon nanotubes. Carbon. 2016; 106: 152-157.

[123]

Ouyang Y, Qiu L, Zhang X, Feng Y. Modulating heat transport inside CNT assemblies: multi-level optimization and structural synergy. Carbon. 2023; 205: 236-252.

[124]

Bhanushali S, Ghosh PC, Simon GP, Cheng W. Copper nanowire-filled soft elastomer composites for applications as thermal interface materials. Adv Mater Interfaces. 2017; 4(17): 1700387.

[125]

Dai W, Yu J, Wang Y, et al. Enhanced thermal conductivity for polyimide composites with a three-dimensional silicon carbide nanowire@graphene sheets filler. J Mater Chem A. 2015; 3(9): 4884-4891.

[126]

Yang X, Chen D, Han Z, Ma X, To AC. Effects of welding on thermal conductivity of randomly oriented carbon nanotube networks. Int J Heat Mass Transfer. 2014; 70: 803-810.

[127]

Varshney V, Patnaik SS, Roy AK, Froudakis G, Farmer BL. Modeling of thermal transport in pillared-graphene architectures. ACS Nano. 2010; 4(2): 1153-1161.

[128]

Chen J, Walther JH, Koumoutsakos P. Covalently bonded graphene–carbon nanotube hybrid for high-performance thermal interfaces. Adv Funct Mater. 2015; 25(48): 7539-7545.

[129]

Su M, Han G, Gao J, et al. Carbon welding on graphene skeleton for phase change composites with high thermal conductivity for solar-to-heat conversion. Chem Eng J. 2022; 427: 131665.

[130]

Zhang F, Sun Y, Guo L, et al. Microstructural welding engineering of carbon nanotube/polydimethylsiloxane nanocomposites with improved interfacial thermal transport. Adv Funct Mater. 2023; 34: 2311906.

[131]

Ding D, Huang R, Peng B, et al. Effect of nanoscale in situ interface welding on the macroscale thermal conductivity of insulating epoxy composites: a multiscale simulation investigation. ACS Nano. 2023; 17(19): 19323-19337.

[132]

Yang S, Xue B, Li Y, et al. Controllable Ag-rGO heterostructure for highly thermal conductivity in layer-by-layer nanocellulose hybrid films. Chem Eng J. 2020; 383: 123072.

[133]

Jiang S, Wei Y, Shi SQ, et al. Nacre-inspired strong and multifunctional soy protein-based nanocomposite materials for easy heat-dissipative mobile phone shell. Nano Lett. 2021; 21(7): 3254-3261.

[134]

Song P, Liu B, Liang C, et al. Lightweight, flexible cellulose-derive. carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 2021; 13(1): 91.

[135]

Wang S-S, Feng D-Y, Zhang Z-M. et al. Highly thermally conductive polydimethylsiloxane composites with controllable 3D GO@f-CNTs networks via self-sacrificing template method. Chin J Polym Sci. 2024: 1-10.

[136]

Chen C, Yu H, Lai T, et al. Flexible and elastic thermal regulator for multimode intelligent temperature control. SusMat. 2023; 3(6): 843-858.

[137]

Guo Y, Qiu H, Ruan K, Wang S, Zhang Y, Gu J. Flexible and insulating silicone rubber composites with sandwich structure for thermal management and electromagnetic interference shielding. Compos Sci Technol. 2022; 219: 109253.

[138]

Sun X, Wang Z-Y, Wang Y, et al. Graphene/polyolefin elastomer films as thermal interface materials with high thermal conductivity, flexibility, and good adhesion. Chem Mater. 2023; 35(6): 2486-2494.

[139]

Wei B, zhang L, Yang S. Polymer composites with expanded graphite network with superior thermal conductivity and electromagnetic interference shielding performance. Chem Eng J. 2021; 404: 126437.

[140]

Zhang X, Wu K, Liu Y, et al. Preparation of highly thermally conductive but electrically insulating composites by constructing a segregated double network in polymer composites. Compos Sci Technol. 2019; 175: 135-142.

[141]

Liu C, Wu W, Wang Y, Wang Z, Chen Q. Silver-coated thermoplastic polyurethane hybrid granules for dual-functional elastomer composites with exceptional thermal conductive and electromagnetic interference shielding performances. Compos Commun. 2021; 25: 100719.

[142]

Wang R, Cheng H, Gong Y, et al. Highly thermally conductive polymer composite originated from assembly of boron nitride at an oil–water interface. ACS Appl Mater Interfaces. 2019; 11(45): 42818-42826.

[143]

Cao L, Wang J, Dong J, Zhao X, Li H-B, Zhang Q. Preparation of highly thermally conductive and electrically insulating PI/BNNSs nanocomposites by hot-pressing self-assembled PI/BNNSs microspheres. Compos B Eng. 2020; 188: 107882.

[144]

Li S-Z, Zhou Y-C, Wang L-N. et al. Flexible composite phase change materials with enhanced thermal conductivity and mechanical performance for thermal management. J Mater Chem A. 2023; 11(35): 18832-18842.

[145]

Wang G, Liao X, Zou F, et al. Flexible TPU/MWCNTs/BN composites for frequency-selective electromagnetic shielding and enhanced thermal conductivity. Compos Commun. 2021; 28: 100953.

[146]

Wu K, Lei C, Huang R, et al. Design and preparation of a unique segregated double network with excellent thermal conductive property. ACS Appl Mater Interfaces. 2017; 9(8): 7637-7647.

[147]

Lin Q-h, He S, Liu Q-q, Yang J-h. Qi X-d, Wang Y. Construction of a 3D interconnected boron nitride nanosheets in a PDMS matrix for high thermal conductivity and high deformability. Compos Sci Technol. 2022; 226: 109528.

[148]

Chen X, Lim JSK, Yan W, et al. Salt template assisted BN scaffold fabrication toward highly thermally conductive epoxy composites. ACS Appl Mater Interfaces. 2020; 12(14): 16987-16996.

[149]

Cui Y, Bao D, Xu F, et al. Fabrication of EVA connected 3D BN network for enhancing the thermal conductivity of epoxy composites. Compos B Eng. 2021; 224: 109203.

[150]

Pan D, Li Q, Zhang W, et al. Highly thermal conductive epoxy nanocomposites filled with 3D BN/C spatial network prepared by salt template assisted method. Compos B Eng. 2021; 209: 108609.

[151]

Yao B, Xu X, Li H, et al. Soft liquid-metal/elastomer foam with compression-adjustable thermal conductivity and electromagnetic interference shielding. Chem Eng J. 2021; 410: 128288.

[152]

Dong X, Wan B, Zheng M-S, et al. Dual-effect coupling for superior dielectric and thermal conductivity of polyimide composite films featuring “crystal-like phase” structure. Adv Mater. 2023; 36(7): 2307804.

[153]

Jiang J, Sun H, ShangGuan J, Fu F, Liu X, Zhao S. Facile strategy for constructing highly thermally conductive epoxy composites based on a salt template-assisted 3D carbonization nanohybrid network. ACS Appl Mater Interfaces. 2022; 14(38): 43815-43824.

[154]

Anand S, Vu MC, Mani D, et al. Dual 3D networks of graphene derivatives based polydimethylsiloxane composites for electrical insulating electronic packaging materials with outstanding electromagnetic interference shielding and thermal dissipation performances. Chem Eng J. 2023; 462: 142017.

[155]

Liu L, Bai D, Li Y, Yu X, Li J, Gan G. Thermally conductive, electrically insulating epoxy pads with three-dimensional polydopamine-modified and silver nanoparticle-functionalized hexagonal boron nitride networks. ACS Appl Polym Mater. 2023; 5(10): 8043-8052.

[156]

Cui Y, Xu F, Bao D, et al. Construction of 3D interconnected boron nitride/carbon nanofiber hybrid network within polymer composite for thermal conductivity improvement. J Mater Sci Technol. 2023; 147: 165-175.

[157]

Wang Z, Hou D, Wang F, Zhou J, Cai N, Guo J. Facile and scalable strategy for fabricating highly thermally conductive epoxy composites utilizing 3D graphitic carbon nitride nanosheet skeleton. ACS Appl Mater Interfaces. 2023; 15(23): 28626-28635.

[158]

Jia N, Yang B, Wang X, et al. Salt template-assisted construction of three-dimensional interconnected network in thermally conductive EP/PVDF/NiCo@GNP composites. J Ind Eng Chem. 2023; 125: 178-188.

[159]

Shao G, Hanaor DAH, Shen X, Gurlo A. Freeze casting: from low-dimensional building blocks to aligned porous structures—a review of novel materials, methods, and applications. Adv Mater. 2020; 32(17): 1907176.

[160]

Yao Y, Sun J, Zeng X, Sun R, Xu J-B, Wong C-P. Construction of 3D skeleton for polymer composites achieving a high thermal conductivity. Small. 2018; 14(13): 1704044.

[161]

Hou X, Chen Y, Lv L, et al. High-thermal-transport-channel construction within flexible composites via the welding of boron nitride nanosheets. ACS Appl Nano Mater. 2019; 2(1): 360-368.

[162]

Yao Y, Ye Z, Huang F, et al. Achieving significant thermal conductivity enhancement via an ice-templated and sintered BN-SiC skeleton. ACS Appl Mater Interfaces. 2020; 12(2): 2892-2902.

[163]

Li D, Bu X, Xu Z, Luo Y, Bai H. Bioinspired multifunctional cellular plastics with a negative poisson’s ratio for high energy dissipation. Adv Mater. 2020; 32(33): 2001222.

[164]

Wang H, Liu X, Luo Q, et al. Artificial “honeycomb-honey” decorated with non-noble plasmonic nanoparticles for superior solar capture and thermal energy storage. Nano Res. 2022; 15(9): 8065-8075.

[165]

Zhao N, Li J, Wang W, Gao W, Bai H. Isotropically ultrahigh thermal conductive polymer composites by assembling anisotropic boron nitride nanosheets into a biaxially oriented network. ACS Nano. 2022; 16(11): 18959-18967.

[166]

Liu P, Li X, Min P, et al. 3D lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness. Nano Micro Lett. 2020; 13(1): 22.

[167]

Li L, Zhou Y, Gao Y, et al. Large-scale assembly of isotropic nanofiber aerogels based on columnar-equiaxed crystal transition. Nat Commun. 2023; 14(1): 5410.

[168]

Wang Z, Wang X, Zhang Z, Liang L, Zhao Z. Preparation of hexagonal boron nitride-containing foam with improved thermal conductivity of epoxy resins. ACS Appl Polym Mater. 2023; 5(3): 1786-1796.

[169]

Qin M, Xu Y, Cao R, Feng W, Chen L. Efficiently controlling the 3D thermal conductivity of a polymer nanocomposite via a hyperelastic double-continuous network of graphene and sponge. Adv Funct Mater. 2018; 28(45): 1805053.

[170]

Yu H, Guo P, Qin M, et al. Highly thermally conductive polymer composite enhanced by two-level adjustable boron nitride network with leaf venation structure. Compos Sci Technol. 2022; 222: 109406.

[171]

Jiang F, Zhou S, Xu T, Song N, Ding P. Enhanced thermal conductive and mechanical properties of thermoresponsive polymeric composites: influence of 3D interconnected boron nitride network supported by polyurethane@polydopamine skeleton. Compos Sci Technol. 2021; 208: 108779.

[172]

Wei B, Chen X, Yang S. Construction of a 3D aluminum flake framework with a sponge template to prepare thermally conductive polymer composites. J Mater Chem A. 2021; 9(17): 10979-10991.

[173]

Dai W, Lv L, Ma T, et al. Multiscale structural modulation of anisotropic graphene framework for polymer composites achieving highly efficient thermal energy management. Adv Sci. 2021; 8(7): 2003734.

[174]

Xu X, Hu R, Chen M, et al. 3D boron nitride foam filled epoxy composites with significantly enhanced thermal conductivity by a facial and scalable approach. Chem Eng J. 2020; 397: 125447.

[175]

Bi H, Lin T, Xu F, Tang Y, Liu Z, Huang F. New graphene form of nanoporous monolith for excellent energy storage. Nano Lett. 2016; 16(1): 349-354.

[176]

Yin J, Li X, Zhou J, Guo W. Ultralight three-dimensional boron nitride foam with ultralow permittivity and superelasticity. Nano Lett. 2013; 13(7): 3232-3236.

[177]

Yin J, Li J, Hang Y, et al. Boron nitride nanostructures: fabrication, functionalization and applications. Small. 2016; 12(22): 2942-2968.

[178]

Fang H, Bai S-L, Wong CP. Thermal, mechanical and dielectric properties of flexible BN foam and BN nanosheets reinforced polymer composites for electronic packaging application. Compos Part A Appl S. 2017; 100: 71-80.

[179]

Huang H, Bi H, Zhou M, et al. A three-dimensional elastic macroscopic graphene network for thermal management application. J Mater Chem A. 2014; 2(43): 18215-18218.

[180]

Ashton TS, Moore AL. Three-dimensional foam-like hexagonal boron nitride nanomaterials via atmospheric pressure chemical vapor deposition. J Mater Sci. 2015; 50(18): 6220-6226.

[181]

Shen X, Wang Z, Wu Y, et al. A three-dimensional multilayer graphene web for polymer nanocomposites with exceptional transport properties and fracture resistance. Mater Horiz. 2018; 5(2): 275-284.

[182]

Han L, Li K, Xiao C, et al. Carbon nanotube-vertical edge rich graphene hybrid sponge as multifunctional reinforcements for high performance epoxy composites. Carbon. 2023; 201: 871-880.

[183]

Qin M, Feng Y, Ji T, Feng W. Enhancement of cross-plane thermal conductivity and mechanical strength via vertical aligned carbon nanotube@graphite architecture. Carbon. 2016; 104: 157-168.

[184]

Feng C-P, Chen L-B, Tian G-L. et al. Robust polymer-based paper-like thermal interface materials with a through-plane thermal conductivity over 9 Wm–1K–1. Chem Eng J. 2020; 392: 123784.

[185]

Wang M, He W, Hua Y, et al. Alternative photothermal/electrothermal hierarchical membrane for hypersaline water treatment. SusMat. 2022; 2(6): 679-688.

[186]

Peng L, Yu H, Chen C, et al. Tailoring dense, orientation–tunable, and interleavedly structured carbon-based heat dissipation plates. Adv Sci. 2023; 10(7): 2205962.

[187]

Liu X, Pang K, Qin H, et al. Hyperbolic graphene framework with optimum efficiency for conductive composites. ACS Nano. 2022; 16(9): 14703-14712.

[188]

Han S, Ji Y, Zhang Q, et al. Tetris-style stacking process to tailor the orientation of carbon fiber scaffolds for efficient heat dissipation. Nano Micro Lett. 2023; 15(1): 146.

[189]

Chen Y, Zhang H, Chen J, et al. Thermally conductive but electrically insulating polybenzazole nanofiber/boron nitride nanosheets nanocomposite paper for heat dissipation of 5G base stations and transformers. ACS Nano. 2022; 16(9): 14323-14333.

[190]

Li X, An M, Li P, et al. Phenylamine-functionalized graphene–copper composites with high thermal conductivity: implications for thermal dissipation. ACS Appl Nano Mater. 2021; 4(11): 12170-12179.

[191]

He X, Li B, Cai J, et al. A waterproof, environment-friendly, multifunctional, and stretchable thermoelectric fabric for continuous self-powered personal health signal collection at high humidity. SusMat. 2023; 3(5): 709-720.

[192]

Liu Z, Sun X, Xie J, Zhang X, Li J. Interfacial thermal transport properties and its effect on thermal conductivity of functionalized BNNS/epoxy composites. Int J Heat Mass Transfer. 2022; 195: 123031.

[193]

Yan H, Dai X, Ruan K, et al. Flexible thermally conductive and electrically insulating silicone rubber composite films with BNNS@Al2O3 fillers. Adv Compos Hybrid Mater. 2021; 4(1): 36-50.

[194]

Tang S, Ma M, Zhang X, et al. Covalent cross-links enable the formation of ambient-dried biomass aerogels through the activation of a triazine derivative for energy storage and generation. Adv Funct Mater. 2022; 32(36): 2205417.

[195]

Feng Y, Li X, Zhao X, et al. Synergetic improvement in thermal conductivity and flame retardancy of epoxy/silver nanowires composites by incorporating “branch-like” flame-retardant functionalized graphene. ACS Appl Mater Interfaces. 2018; 10(25): 21628-21641.

[196]

Li X, Shao L, Song N, Shi L, Ding P. Enhanced thermal-conductive and anti-dripping properties of polyamide composites by 3D graphene structures at low filler content. Compos Part A Appl S. 2016; 88: 305-314.

[197]

Owais M, Zhao J, Imani A, Wang G, Zhang H, Zhang Z. Synergetic effect of hybrid fillers of boron nitride, graphene nanoplatelets, and short carbon fibers for enhanced thermal conductivity and electrical resistivity of epoxy nanocomposites. Compos Part A-Appl S. 2019; 117: 11-22.

[198]

Yue Ce, Zhao L, Guan L, et al. Vitrimeric silicone composite with high thermal conductivity and high repairing efficiency as thermal interface materials. J Colloid Interface Sci. 2022; 620: 273-283.

[199]

Luo T, Lloyd JR. Enhancement of thermal energy transport across graphene/graphite and polymer interfaces: a molecular dynamics study. Adv Funct Mater. 2012; 22(12): 2495-2502.

[200]

Wang Y, Zhan HF, Xiang Y, Yang C, Wang CM, Zhang YY. Effect of covalent functionalization on thermal transport across graphene–polymer interfaces. J Phys Chem C. 2015; 119(22): 12731-12738.

[201]

Kaur S, Raravikar N, Helms BA, Prasher R, Ogletree DF. Enhanced thermal transport at covalently functionalized carbon nanotube array interfaces. Nat Commun. 2014; 5(1): 3082.

[202]

Quiles-Díaz S, Martínez-Rubí Y, Guan J, et al. Enhanced thermal conductivity in polymer nanocomposites via covalent functionalization of boron nitride nanotubes with short polyethylene chains for heat-transfer applications. ACS Appl Nano Mater. 2019; 2(1): 440-451.

[203]

Teng C-C, Ma C-CM, Chiou K-C. Lee T-M. Synergetic effect of thermal conductive properties of epoxy composites containing functionalized multi-walled carbon nanotubes and aluminum nitride. Compos B Eng. 2012; 43(2): 265-271.

[204]

An D, Cheng S, Xi S, et al. Flexible thermal interfacial materials with covalent bond connections for improving high thermal conductivity. Chem Eng J. 2020; 383: 123151.

[205]

Xu S, Cheng T, Yan Q, et al. Chloroform-assisted rapid growth of vertical graphene array and its application in thermal interface materials. Adv Sci. 2022; 9(15): 2200737.

[206]

Zhang Y, Park S-J. Imidazolium-optimized conductive interfaces in multilayer graphene nanoplatelet/epoxy composites for thermal management applications and electroactive devices. Polymer. 2019; 168: 53-60.

[207]

Ye H, Han B, Chen H, Xu L. The liquid-exfoliation of graphene assisted with hyperbranched polyethylene-g-polyhedral oligomeric silsesquioxane copolymer and its thermal property in polydimethylsiloxane nanocomposite. Nanotechnology. 2019; 30(35): 355602.

[208]

Tian S, Huang D, Xu Z, Wu S, Luo T, Xiong G. Enhanced thermal transport across the interface between charged graphene and poly(ethylene oxide) by non-covalent functionalization. Int J Heat Mass Transfer. 2022; 183: 122188.

[209]

Teng C-C, Ma C-CM, Lu C-H. et al. Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites. Carbon. 2011; 49(15): 5107-5116.

[210]

Wu Z, Dong J, Li X, Zhao X, Ji C, Zhang Q. Interlayer decoration of expanded graphite by polyimide resins for preparing highly thermally conductive composites with superior electromagnetic shielding performance. Carbon. 2022; 198: 1-10.

[211]

Fang H, Zhao Y, Zhang Y, Ren Y, Bai S-L. Three-dimensional graphene foam-filled elastomer composites with high thermal and mechanical properties. ACS Appl Mater Interfaces. 2017; 9(31): 26447-26459.

[212]

Sun Z, Wong R, Yu M, et al. Nanocomposites for future electronics device packaging: a fundamental study of interfacial connecting mechanisms and optimal conditions of silane coupling agents for polydopamine-graphene fillers in epoxy polymers. Chem Eng J. 2022; 439: 135621.

[213]

Xia L, Wang X, Ren T, et al. Green construction of multi-functional fire resistant epoxy resins based on boron nitride with core-shell structure. Polym Degrad Stab. 2022; 203: 110059.

[214]

Zeng X, Sun J, Yao Y, Sun R, Xu J-B, Wong C-P. A combination of boron nitride nanotubes and cellulose nanofibers for the preparation of a nanocomposite with high thermal conductivity. ACS Nano. 2017; 11(5): 5167-5178.

[215]

Xu X, Shen Y, Yang P. Building efficient thermal transport at graphene/polypropylene interfaces by non-covalent functionalized graphene. Phys Lett A. 2023; 469: 128766.

[216]

Yao T, Zhang C, Chen K, Niu T, Wang J, Yang Y. Hydroxyl-group decreased dielectric loss coupled with 3D-BN network enhanced high thermal conductivity epoxy composite for high voltage-high frequency conditions. Compos Sci Technol. 2023; 234: 109934.

[217]

Song N, Zhang F, Cao D, Wang P, Ding P. Bicontinuous laminated structure design of polypropylene/reduced graphene oxide hybrid films for thermal management. Adv Compos Hybrid Mater. 2022; 5(4): 2873-2883.

[218]

Zhang J, Wang H, Zhang T, et al. Vertically-oriented graphene-boron nitride skeletons using graphene oxide as inorganic adhesives for high-efficiency thermal conduction of polymeric composites with electrical insulation and compressibility. Compos Sci Technol. 2023; 233: 109915.

[219]

Li X, Wu B, Lv Y, Xia R, Qian J. Effect of regulating the interfacial structure of multiple non-covalent bonding on improving thermal management capability. J Mater Chem A. 2024.

[220]

Ding D, Shang Z, Zhang X, et al. Greatly enhanced thermal conductivity of polyimide composites by polydopamine modification and the 2D-aligned structure. Ceram Int. 2020; 46: 28363-28372.

[221]

Liang Y, Liu B, Zhang B, Liu Z, Liu W. Effects and mechanism of filler surface coating strategy on thermal conductivity of composites: a case study on epoxy/SiO2-coated BN composites. Int J Heat Mass Transfer. 2021; 164: 120533.

[222]

O’Callaghan PW, Snaith B, Probert SD, Al-Astrabadi FR. Prediction of interfacial filler thickness for minimum thermal contact resistance. AIAA J. 1983; 21(9): 1325-1330.

[223]

Singaravelu SA, Hu X, Goodson KE, Bond line thickness of thermal interface materials with carbon nanotubes. In International Electronic Packaging Technical Conference and Exhibition, 2005; 42002: 379-383.

[224]

Li J, Zhang Y, Liang T, et al. Thermal interface materials with both high through-plane thermal conductivity and excellent elastic compliance. Chem Mater. 2021; 33(22): 8926-8937.

[225]

Zhang Y-F, Ren Y-J, Bai S-L. Vertically aligned graphene film/epoxy composites as heat dissipating materials. Int J Heat Mass Transfer. 2018; 118: 510-517.

[226]

Hu XJ, Padilla AA, Xu J, Fisher TS, Goodson KE. 3-Omega measurements of vertically oriented carbon nanotubes on silicon. J Heat Transfer. 2005; 128(11): 1109-1113.

[227]

Ping L, Hou P-X, Liu C, et al. Surface-restrained growth of vertically aligned carbon nanotube arrays with excellent thermal transport performance. Nanoscale. 2017; 9(24): 8213-8219.

[228]

Liang Q, Yao X, Wang W, Liu Y, Wong CP. A three-dimensional vertically aligned functionalized multilayer graphene architecture: an approach for graphene-based thermal interfacial materials. ACS Nano. 2011; 5(3): 2392-2401.

[229]

Tong T, Zhao Y, Delzeit L, Kashani A, Meyyappan M, Majumdar A. Dense vertically aligned multiwalled carbon nanotube arrays as thermal interface materials. IEEE Trans Compon Packag Technol. 2007; 30(1): 92-100.

[230]

Tuersun Y, Huang X, Huang M, et al. Enhanced thermal performance from liquid metal in copper/graphite filled elastomer. J Mater Sci Technol. 2023; 152: 247-255.

[231]

Zhang X, Deng Z. Roadmap towards new generation liquid metal thermal interface materials. Sci China Technol Sci. 2023; 66(6): 1530-1550.

[232]

Gao J, Yan Q, Tan X, et al. Surface modification using polydopamine-coated liquid metal nanocapsules for improving performance of graphene paper-based thermal interface materials. Nanomaterials. 2021; 11(5): 1236.

[233]

Razeeb KM, Dalton E, Cross GLW, Robinson AJ. Present and future thermal interface materials for electronic devices. Int Mater Rev. 2018; 63(1): 1-21.

[234]

Bar-Cohen A, Matin K, Narumanchi S. Nanothermal interface materials: technology review and recent results. J Electron Packag. 2015; 137(4).

[235]

Yang Y, Xu Y, Ji Y, Wei Y. Functional epoxy vitrimers and composites. Prog Mater Sci. 2021; 120: 100710.

[236]

Peng L-M, Xu Z, Wang W-Y, et al. Leakage-proof and malleable polyethylene wax vitrimer phase change materials for thermal interface management. ACS Appl Energy Mater. 2021; 4(10): 11173-11182.

[237]

Wang S, Jiang Z, Ren L, Zeng X, Sun R. Interface deciphering for highly interfacial adhesion and efficient heat energy transfer. Appl Phys Lett. 2023; 123(15).

[238]

Wang S, Ren L, Han M, et al. Molecular design of a highly matched and bonded interface achieves enhanced thermal boundary conductance. Nanoscale. 2023; 15(19): 8706-8715.

[239]

Park S, Jang J, Kim H, Park DI, Kim K, Yoon HJ. Thermal conductance in single molecules and self-assembled monolayers: physicochemical insights, progress, and challenges. J Mater Chem A. 2020; 8(38): 19746-19767.

[240]

Zhang T, Gans-Forrest AR. Lee E, et al. Role of hydrogen bonds in thermal transport across hard/soft material interfaces. ACS Appl Mater Interfaces. 2016; 8(48): 33326-33334.

[241]

Zhang Y, Liang T, Ye Z, et al. Plasma-assisted self-assembled monolayers for reducing thermal resistance across graphite films/polymer interfaces. Compos Sci Technol. 2022; 229: 109690.

[242]

Sun F, Zhang T, Jobbins MM, et al. Molecular bridge enables anomalous enhancement in thermal transport across hard-soft material interfaces. Adv Mater. 2014; 26(35): 6093-6099.

[243]

Lu J, Yuan K, Sun F, et al. Self-assembled monolayers for the polymer/semiconductor interface with improved interfacial thermal management. ACS Appl Mater Interfaces. 2019; 11(45): 42708-42714.

[244]

Zheng K, Sun F, Zhu J, et al. Enhancing the thermal conductance of polymer and sapphire interface via self-assembled monolayer. ACS Nano. 2016; 10(8): 7792-7798.

[245]

Losego MD, Grady ME, Sottos NR, Cahill DG, Braun PV. Effects of chemical bonding on heat transport across interfaces. Nat Mater. 2012; 11(6): 502-506.

[246]

Xu B, Hu S, Hung S-W, et al. Weaker bonding can give larger thermal conductance at highly mismatched interfaces. Sci Adv. 2021; 7(17): eabf8197.

[247]

Ma D, Zhang L. Enhancement of interface thermal conductance between Cr–Ni alloy and dielectric via Cu nano-interlayer. J Phys Condens Matter. 2020; 32(42): 425001.

[248]

Ma D, Xing Y, Zhang L. Reducing interfacial thermal resistance by interlayer. J Phys Condens Matter. 2023; 35(5): 053001.

[249]

Yang N, Li N, Wang L, Li B. Thermal rectification and negative differential thermal resistance in lattices with mass gradient. Phys Rev B. 2007; 76(2): 020301.

[250]

Yang L, Yang B, Li B. Enhancing interfacial thermal conductance of an amorphous interface by optimizing the interfacial mass distribution. Phys Rev B. 2023; 108(16): 165303.

[251]

Xiong G, Wang J-S, Ma D, Zhang L. Dramatic enhancement of interfacial thermal transport by mass-graded and coupling-graded materials. Europhys Lett. 2019; 128(5): 54007.

[252]

Ma D, Zhao Y, Zhang L. Facilitating thermal transport across Si/Ge interface via mass-graded interlayer: the role of elastic and inelastic phonon processes. J Appl Phys. 2021; 129(17): 175302.

[253]

Yang L, Wan X, Ma D, Jiang Y, Yang N. Maximization and minimization of interfacial thermal conductance by modulating the mass distribution of the interlayer. Phys Rev B. 2021; 103(15): 155305.

[254]

Prasher RS, Shipley J, Prstic S, Koning P, Wang J-l. Thermal resistance of particle laden polymeric thermal interface materials. J Heat Transfer. 2003; 125(6): 1170-1177.

[255]

Liao C-A, Kwan Y-K, Chang T-C. Fuh Y-K. Ball-milled recycled lead-graphite pencils as highly stretchable and low-cost thermal-interface materials. Polymers. 2018; 10(7): 799.

[256]

Chen F, Yu P, Mao l, Wang J. Simple large-scale method of recycled graphene films vertical arrangement for superhigh through-plane thermal conductivity of epoxy composites. Compos Sci Technol. 2021; 215: 109026.

[257]

Zahid M, Masood MT, Athanassiou A, Bayer IS. Sustainable thermal interface materials from recycled cotton textiles and graphene nanoplatelets. Appl Phys Lett. 2018; 113(4).

[258]

Yang S, Bai S, Duan W, Wang Q. Production of value-added composites from aluminum–plastic package waste via solid-state shear milling process. ACS Sustain Chem Eng. 2018; 6(3): 4282-4293.

[259]

Li C, Han Y, Du Q, et al. Recyclable thermally conductive poly(butylene adipate-co-terephthalate) composites prepared via forced infiltration. SusMat. 2023; 3(3): 345-361.

[260]

Liu J, Feng H, Dai J, et al. A full-component recyclable Epoxy/BN thermal interface material with anisotropy high thermal conductivity and interface adaptability. Chem Eng J. 2023; 469: 143963.

[261]

Kim J-W, Lee DH, Jeon H-J, Jang SI, Cho HM, Kim Y. Recyclable thermosetting thermal pad using silicone-based polyurethane crosslinked by Diels-Alder adduct. Appl Surf Sci. 2018; 429: 128-133.

[262]

He J, Song J, Xu Y, et al. In situ constructing high-performance, recyclable thermally conductive adhesives with a hyperbranched-star reversibly cross-linking structure. ACS Appl Polym Mater. 2023; 5(8): 6232-6243.

[263]

Cheng X, Zhou M, He D, et al. Recyclable, thermally conductive, self-healing, and strong adhesive elastomer composite based on multiple hydrogen-bonded interactions. Compos Commun. 2024; 45: 101799.

[264]

Lyu M, Liu Y, Yang X, et al. Vanillin-based liquid crystalline polyimine thermosets and their composites for recyclable thermal management application. Composites Part B Eng. 2023; 250: 110462.

[265]

Zhu C, Bamidele EA, Shen X, Zhu G, Li B. Machine learning aided design and optimization of thermal metamaterials. Chem Rev. 2024; 124(7): 4258-4331.

[266]

Shen X, Zhu G, Li B. Prediction of thermal conductance of complex networks with deep learning. Chin Phys Lett. 2023; 40(12): 124402.

RIGHTS & PERMISSIONS

2024 The Author(s). SusMat published by Sichuan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

298

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/