Hydrogen bond producers in powerful protic ionic liquids for enhancing dissolution of natural cellulose

Shi-Peng Chen , Dan-Yang Zhao , Jin-Long Zhu , Jing Wang , Gan-Ji Zhong , Hua-Dong Huang , Zhong-Ming Li

SusMat ›› 2024, Vol. 4 ›› Issue (5) : e238

PDF
SusMat ›› 2024, Vol. 4 ›› Issue (5) : e238 DOI: 10.1002/sus2.238
RESEARCH ARTICLE

Hydrogen bond producers in powerful protic ionic liquids for enhancing dissolution of natural cellulose

Author information +
History +
PDF

Abstract

The manipulation of hydrogen bonding within protic ionic liquids is conducive to conquering the robust hydrogen bonding interactions in cellulose for its effective dissolution, but it is a great challenge to establish the delicate balance of hydrogen bonding network between solvent and cellulose. Herein, we proposed the concept of “hydrogen bond producers” for urea molecules in 1,1,3,3-tetramethylguanidinium methoxyacetate acid ([TMGH][MAA]) to enhance the dissolution of cellulose. The optimization of physicochemical properties for [TMGH][MAA] solvent as a function of urea concentration revealed a remarkable increase in cellulose solubility from 13% to 17% (w/w) by adding only 0.25 wt% urea, highlighting the efficiency of [TMGH][MAA] as a powerful solvent for the dissolution of cellulose. The experimental and simulation results verified that the significant improvement on dissolution of cellulose was attributed to the hydrogen bonding interaction of urea molecules with ion pairs and part of free ions, reducing the interference with the active ions bonded to cellulose. Furthermore, the considerable enhancement on comprehensive properties of regenerated cellulose films demonstrated the effectiveness of [TMGH][MAA]/urea solvent. The concept of “hydrogen bond producers” presented here opens a new avenue for significantly enhancing the dissolution of natural cellulose, promoting the sustainable development in large-scale processing of cellulose.

Keywords

cellulose dissolution / hydrogen bond producers / protic ionic liquids

Cite this article

Download citation ▾
Shi-Peng Chen, Dan-Yang Zhao, Jin-Long Zhu, Jing Wang, Gan-Ji Zhong, Hua-Dong Huang, Zhong-Ming Li. Hydrogen bond producers in powerful protic ionic liquids for enhancing dissolution of natural cellulose. SusMat, 2024, 4(5): e238 DOI:10.1002/sus2.238

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sherwood J. The significance of biomass in a circular economy. Bioresource Technol. 2020; 300: 122755.

[2]

D’Amato D, Droste N, Allen B, et al. Green, circular, bio economy: a comparative analysis of sustainability avenues. J Cleaner Prod. 2017; 168: 716-734.

[3]

Kuehnel MF, Reisner E. Solar hydrogen generation from lignocellulose. Angew Chem Int Edit. 2018; 57(13): 3290-3296.

[4]

Wang Y, Wang H, Chen L, et al. Robust ionic liquid/ethanolamine-superbase solvents enable rapid, efficient and mild dissolution of lignocellulosic biomass. Green Chem. 2023; 25(12): 4685-4695.

[5]

Han ZM, Sun WB, Yang KP, et al. An all-natural wood-inspired aerogel. Angew Chem Int Edit. 2023; 62(6): e202211099.

[6]

Quintana AA, Sztapka AM, Santos Ebinuma VC, Agatemor C. Enabling sustainable chemistry with ionic liquids and deep eutectic solvents: a fad or the future? Angew Chem Int Edit. 2022; 61(37): e202205609.

[7]

Akiba T, Tsurumaki A, Ohno H. Induction of lignin solubility for a series of polar ionic liquids by the addition of a small amount of water. Green Chem. 2017; 19(9): 2260-2265.

[8]

Swatloski RP, Spear SK, Holbrey JD, Rogers RD. Dissolution of cellose with ionic liquids. J Am Chem Soc. 2002; 124(18): 4974-4975.

[9]

Zhang H, Wu J, Zhang J, He J. 1-allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules. 2005; 38(20): 8272-8277.

[10]

Zhang J, Wu J, Yu J, Zhang X, He J, Zhang J. Application of ionic liquids for dissolving cellulose and fabricating cellulose-based materials: state of the art and future trends. Mater Chem Front. 2017; 1(7): 1273-1290.

[11]

King AWT, Asikkala J, Mutikainen I, Järvi P, Kilpeläinen I. Distillable acid-base conjugate ionic liquids for cellulose dissolution and processing. Angew Chem Int Edit. 2011; 50(28): 6301-6305.

[12]

Michud A, Tanttu M, Asaadi S, et al. Ioncell-F: ionic liquid-based cellulosic textile fibers as an alternative to viscose and lyocell. Text Res J. 2015; 86(5): 543-552.

[13]

Greaves TL, Drummond CJ. Protic ionic liquids: evolving structure-property relationships and expanding applications. Chem Rev. 2015; 115(20): 11379-11448.

[14]

Kelley SP, Narita A, Holbrey JD, Green KD, Reichert WM, Rogers RD. Understanding the effects of ionicity in salts, solvates, co-crystals, ionic co-crystals, and ionic liquids, rather than nomenclature, is critical to understanding their behavior. Cryst Growth Des. 2013; 13(3): 965-975.

[15]

Chen S-P, Zhu J-L, Chen X-R. et al. Guanidine-based protic ionic liquids as highly efficient intermolecular scissors for dissolving natural cellulose. Green Chem. 2023; 25(22): 9322-9334.

[16]

Gahtori P, Gunwant V, Pandey R. Role of hydrophobic side chain in urea induced protein denaturation at interface. Chem Phys Impact. 2023; 7: 100314.

[17]

Sagle LB, Zhang Y, Litosh VA, Chen X, Cho Y, Cremer PS. Investigating the hydrogen-bonding model of urea denaturation. J Am Chem Soc. 2009; 131(26): 9304-9310.

[18]

Harris KDM. Meldola lecture: understanding the properties of urea and thiourea inclusion compounds. Chem Soc Rev. 1997; 26(4): 279-289.

[19]

Gund P. Guanidine, trimethylenemethane, and “Y-delocalization”. Can acyclic compounds have “aromatic” stability. J Chem Educ. 1972; 49(2): 100-103.

[20]

Grabowski SJ. N–H···O intramolecular hydrogen bonds – the influence of external agents on π-electron delocalization. J Mol Struct-Theochem. 2007; 811(1–3): 61-67.

[21]

Wood PA, Pidcock E, Allen FH. Interaction geometries and energies of hydrogen bonds to C=O and C=S acceptors: a comparative study. Acta Crystallogr B. 2008; 64(4): 491-496.

[22]

Jena S, Routray C, Dutta J, Biswal HS. Hydrogen bonding directed reversal of 13C NMR chemical shielding. Angew Chem Int Edit. 2022; 61(41): e202207521.

[23]

Li FM, Zheng YY, Wang B. Rheological behaviors of graphene oxide/polyacrylonitrile spinning solutions. Mater Sci Forum. 2017; 898: 2187-2196.

[24]

Sun J, Song Y, Zheng Q, Tan H, Yu J, Li H. Nonlinear rheological behavior of silica filled solution-polymerized styrene butadiene rubber. J Polym Sci Pol Phys. 2007; 45(18): 2594-2602.

[25]

Zhang J, Zhang H, Wu J, Zhang J, He J, Xiang J. NMR spectroscopic studies of cellobiose solvation in EmimAc aimed to understand the dissolution mechanism of cellulose in ionic liquids. Phys Chem Chem Phys. 2010; 12(8): 1941-1947.

[26]

Wang J, Li Y, Liu H, Tong J. Surface tension, viscosity and electrical conductivity characteristics of new ether-functionalized ionic liquids. J Mol Liq. 2022; 351: 118621.

[27]

Ebrahimi M, Moosavi F. The effects of temperature, alkyl chain length, and anion type on thermophysical properties of the imidazolium based amino acid ionic liquids. J Mol Liq. 2018; 250: 121-130.

[28]

Castro VIB, Mano F, Reis RL, Paiva A, Duarte ARC. Synthesis and physical and thermodynamic properties of lactic acid and malic acid-based natural deep eutectic solvents. J Chem Eng Data. 2018; 63(7): 2548-2556.

[29]

Arkhipova EA, Ivanov AS, Levin MM, et al. New asymmetrical morpholinium-and 1, 1-dioxidothiomorpholinium-based dicationic ionic liquid: structure, thermophysical and electrochemical properties of propylene carbonate solutions. J Mol Liq. 2022; 346: 117095.

[30]

Greaves TL, Drummond CJ. Protic ionic liquids: properties and applications. Chem Rev. 2008; 108(1): 206-237.

[31]

Nishiyama Y, Langan P, Chanzy H. Crystal structure and hydrogen-bonding system in cellulose I from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc. 2002; 124(31): 4974-4975.

[32]

Gomes TCF, Skaf MS. Cellulose-Builder: a toolkit for building crystalline structures of cellulose. J Comput Chem. 2012; 33(14): 1338-1346.

[33]

Li Y, Liu X, Zhang Y, Jiang K, Wang J, Zhang S. Why only ionic liquids with unsaturated heterocyclic cations can dissolve cellulose: a simulation study. ACS Sustain Chem Eng. 2017; 5(4): 3417-3428.

[34]

Lu T, Chen F. Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem. 2011; 33(5): 580-592.

[35]

Bayly CI, Cieplak P, Cornell WD, Kollman PA. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem. 1993; 97(40): 10269-10280.

[36]

Hess B, Kutzner C, Spoel D, Lindahl E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput. 2008; 4(3): 435-447.

[37]

Payne MC, Teter MP, Allan DC, Arias TA, Joannopoulos JD. Iterative minimization techniques forab initiototal-energy calculations: molecular dynamics and conjugate gradients. Rev Mod Phys. 1992; 64(4): 1045-1097.

[38]

Darden T, York D, Pedersen L. Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys. 1993; 98(12): 10089-10092.

[39]

Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys. 2007; 126(1): 014101.

[40]

Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys. 1981; 52(12): 7182-7190.

RIGHTS & PERMISSIONS

2024 The Author(s). SusMat published by Sichuan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

166

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/