Batteries for electric vehicles: Technical advancements, environmental challenges, and market perspectives

Axel Celadon , Huaihu Sun , Shuhui Sun , Gaixia Zhang

SusMat ›› 2024, Vol. 4 ›› Issue (5) : e234

PDF
SusMat ›› 2024, Vol. 4 ›› Issue (5) : e234 DOI: 10.1002/sus2.234
REVIEW

Batteries for electric vehicles: Technical advancements, environmental challenges, and market perspectives

Author information +
History +
PDF

Abstract

The rapid evolution of electric vehicles (EVs) highlights the critical role of battery technology in promoting sustainable transportation. This review offers a comprehensive introduction to the diverse landscape of batteries for EVs. In particular, it examines the impressive array of available battery technologies, focusing on the predominance of lithium-based batteries, such as lithium-ion and lithium-metal variants. Additionally, it explores battery technologies beyond lithium (“post-lithium”), including aluminum, sodium, and magnesium batteries. The potential of solid-state batteries is also discussed, along with the current status of various battery types in EV applications. The review further addresses end-of-life treatment strategies for EV batteries, including reuse, remanufacturing, and recycling, which are essential for mitigating the environmental impact of batteries and ensuring sustainable lifecycle management. Finally, market perspectives and potential future research directions for battery technologies in EVs are also discussed.

Keywords

electric vehicles / environmental challenges / market perspectives / rechargeable batteries / technical advancements

Cite this article

Download citation ▾
Axel Celadon, Huaihu Sun, Shuhui Sun, Gaixia Zhang. Batteries for electric vehicles: Technical advancements, environmental challenges, and market perspectives. SusMat, 2024, 4(5): e234 DOI:10.1002/sus2.234

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rivera A, Movalia S, Rutkowski E, Rangel Y, Pitt Hand KL. Global Greenhouse Gas Emissions: 1990–2021 and Preliminary 2022 Estimates. 2023. Accessed June, 2024. https://rhg.com/research/global-greenhouse-gas-emissions-2022/

[2]

Lee H, Calvin K, Dasgupta D, et al. Synthesis Report of the IPCC Sixth Assessment Report (AR6). 2023. Accessed December 7, 2023. https://www.ipcc.ch/assessment-report/ar6/

[3]

Ravi SS, Aziz M. Utilization of electric vehicles for vehicle-to-grid services: progress and perspectives. Energies. 2022; 15(2): 589.

[4]

International Energy Agency. Global EV Outlook 2024: Moving Towards Increased Affordabilit. 2024. Accessed May 7, 2024. https://www.iea.org/reports/global-ev-outlook-2024

[5]

Bieker G. A Global Comparison of the Life-Cycle Greenhouse Gas Emissions of Combustion Engine and Electric Passenger Cars. 2021. Accessed December 12, 2023. https://theicct.org/publication/a-global-comparison-of-the-life-cycle-greenhouse-gas-emissions-of-combustion-engine-and-electric-passenger-cars/

[6]

Timilsina L, Badr PR, Hoang PH, Ozkan G, Papari B, Edrington CS. Battery degradation in electric and hybrid electric vehicles: a survey study. IEEE Access. 2023; 11: 42431-42462.

[7]

Ambrose H, Kendall A, Lozano M, Wachche S, Fulton L. Trends in life cycle greenhouse gas emissions of future light duty electric vehicles. Transport Res D Transport Environ. 2020; 81: 102287.

[8]

De Wolf D, Smeers Y. Comparison of battery electric vehicles and fuel cell vehicles. World Electr Vehic J. 2023; 14(9): 262.

[9]

Rietmann N, Hügler B, Lieven T. Forecasting the trajectory of electric vehicle sales and the consequences for worldwide CO2 emissions. J Clean Prod. 2020; 261: 121038.

[10]

Guo LC, Hu P, Wei H. Development of supercapacitor hybrid electric vehicle. J Energy Storage. 2023; 65: 107269.

[11]

Mastoi MS, Zhuang SX, Munir HM, et al. An in-depth analysis of electric vehicle charging station infrastructure, policy implications, and future trends. Energy Rep. 2022; 8: 11504-11529.

[12]

International Energy Agency. Global EV Outlook 2021: Accelerating Ambitions Despite the Pandemic. 2021. Accessed December 12, 2023. https://www.iea.org/reports/global-ev-outlook-2021

[13]

Liu W, Placke T, Chau KT. Overview of batteries and battery management for electric vehicles. Energy Rep. 2022; 8: 4058-4084.

[14]

Höök M. Depletion and Decline Curve Analysis in Crude Oil Production. 2009. Accessed December 13, 2023. https://api.semanticscholar.org/CorpusID:128829241

[15]

Haynes WM. CRC Handbook of Chemistry and Physics. CRC Press; 2016.

[16]

Zubi G, Dufo-López R, Carvalho M, Pasaoglu G. The lithium-ion battery: state of the art and future perspectives. Renew Sustain Energy Rev. 2018; 89: 292-308.

[17]

Zeng X, Li J, Singh N. Recycling of spent lithium-ion battery: a critical review. Crit Rev Environ Sci Technol. 2014; 44(10): 1129-1165.

[18]

Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001; 414(6861): 359-367.

[19]

International Energy Agency. Global EV Outlook 2023: Catching up with Climate Ambitions. 2023. Accessed January 1, 2024. https://www.iea.org/reports/global-ev-outlook-2023

[20]

Agusdinata DB, Liu WJ, Eakin H, Romero H. Socio-environmental impacts of lithium mineral extraction: towards a research agenda. Environ Res Lett. 2018; 13(12): 123001.

[21]

SNE Research. The Next Generation Battery Seminar. Accessed December 17, 2023. https://www.sneresearch.com/kr/

[22]

Contemporary Amperex Technology Co. Limited. A Brief Introduction and Historical Summary of CATL Company. 2023. Accessed December 17, 2023. https://www.catl.com/en/

[23]

LG Energy Solution Ltd. A Brief Introduction to LG Energy Solution and Recent Initiatives in the Field of Electric Vehicles. 2023. Accessed December 18, 2023. https://www.lgensol.com/en/index

[24]

Wayland M. LG to Pay Up to $1.9 Billion to General Motors over Bolt EV Battery Fires. 2021. Accessed January 4, 2024. https://www.cnbc.com/2021/10/12/lg-chem-to-pay-up-to-1point9-billion-to-gm-over-bolt-ev-battery-fires.html

[25]

Build Your Dreams Ltd. Introduction to BYD and the Global Layout of the Automotive Industry. 2023. Accessed December 21, 2023. https://www.byd.com/en

[26]

Huisman J, Ciuta T, Mathieux F, Bobba S, Georgitzikis K, Pennington D. RMIS, Raw Materials in the Battery Value Chain, Final Content for the Raw Materials Information System: Strategic Value Chains: Batteries Section. 2020: 2901-2903. Accessed December 21, 2023. https://op.europa.eu/en/publication-detail/-/publication/33930a0e-7a09-11ea-b75f-01aa75ed71a1/language-en

[27]

NH Research. The Fundamentals of Battery Module and Pack Test. Accessed January 4, 2024. https://nhresearch.com

[28]

Schroder T, Engel P, Schmidt E, Benson O. Integrated and compact fiber-coupled single-photon system based on nitrogen-vacancy centers and gradient-index lenses. Opt Lett. 2012; 37(14): 2901-2903.

[29]

Pampel F, Pischinger S, Teuber M. A systematic comparison of the packing density of battery cell-to-pack concepts at different degrees of implementation. Results Eng. 2022; 13: 100310.

[30]

Frankenberger M, Singh M, Dinter A, Jankowksy S, Schmidt A, Pettinger KH. Laminated lithium ion batteries with improved fast charging capability. J Electroanal Chem. 2019; 837: 151-158.

[31]

Manthiram A, Yu XW, Wang SF. Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater. 2017; 2(4): 16103.

[32]

Fallah N, Fitzpatrick C. Is shifting from Li-ion NMC to LFP in EVs beneficial for second-life storages in electricity markets? J Energy Storage. 2023; 68: 107740.

[33]

Scrosati B, Garche J. Lithium batteries: status, prospects and future. J Power Sources. 2010; 195(9): 2419-2430.

[34]

Li M, Lu J, Chen ZW, Amine K. 30 years of lithium-ion batteries. Adv Mater. 2018; 30(33): 1800561.

[35]

Fu YQ, Wei QL, Zhang GX, Sun SH. Advanced phosphorus-based materials for lithium/sodium-ion batteries: recent developments and future perspectives. Adv Energy Mater. 2018; 8(13): 1703058.

[36]

Bashir T, Zhou S, Yang S, et al. Progress in 3D-MXene electrodes for lithium/sodium/potassium/magnesium/zinc/aluminum-ion batteries. Electrochem Energy Rev. 2023; 6(1): 5.

[37]

Kalhoff J, Eshetu GG, Bresser D, Passerini S. Safer electrolytes for lithium-ion batteries: state of the art and perspectives. ChemSusChem. 2015; 8(13): 2154-2175.

[38]

Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci. 2011; 4(9): 3243-3262.

[39]

Wang QS, Ping P, Zhao XJ, Chu GQ, Sun JH, hen CH. Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources. 2012; 208: 210-224.

[40]

Feng XN, Ouyang MG, Liu X, Lu LG, Xia Y, He XM. Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater. 2018; 10: 246-267.

[41]

Ouyang DX, Liu JH, Chen MY, Wang J. Investigation into the fire hazards of lithium-ion batteries under overcharging. Appl Sci-Basel. 2017; 7(12): 1314.

[42]

Doh CH, Kim DH, Kim HS, et al. Thermal and electrochemical behaviour of C/LiCoxO2 cell during safety test. J Power Sources. 2008; 175(2): 881-885.

[43]

Zeng X, Li M, Abd El-Had. D, Alshitari W, et al. Commercialization of lithium battery technologies for electric vehicles. Adv Energy Mater. 2019; 9(27): 1900161.

[44]

Chen YQ, Kang YQ, Zhao Y, et al. A review of lithium-ion battery safety concerns: the issues, strategies, and testing standards. J Energy Chem. 2021; 59: 83-99.

[45]

Malik M, Chan KH, Azimi G. Review on the synthesis of LiNixMnyCo1-x-yO2 (NMC) cathodes for lithium-ion batteries. Mater Today Energy. 2022; 28: 101066.

[46]

Stephan AK. A pathway to understand NMC cathodes. Joule. 2020; 4(8): 1632-1633.

[47]

Xia J. Advantages and Disadvantages of NCM Lithium Battery. 2019. Accessed January 8, 2024. https://www.linkedin.com/pulse/advantages-disadvantages-ncm-lithium-battery-lithium-battery-pack/

[48]

Tran MK, Mathew M, Janhunen S, et al. A comprehensive equivalent circuit model for lithium-ion batteries, incorporating the effects of state of health, state of charge, and temperature on model parameters. J Energy Storage. 2021; 43: 103252.

[49]

Wentker M, Greenwood M, Leker J. A bottom–up approach to lithium-ion battery cost modeling with a focus on cathode active materials. Energies. 2019; 12(3): 504.

[50]

Preger Y, Barkholtz HM, Fresquez A, et al. Degradation of commercial lithium-ion cells as a function of chemistry and cycling conditions. J Electrochem Soc. 2020; 167(12): 120532.

[51]

Qin P, Jia ZZ, Wu JY, Jin KQ, et al. The thermal runaway analysis on LiFePO4 electrical energy storage packs with different venting areas and void volumes. Appl Energ. 2022; 313: 118767.

[52]

Wang GX, Bradhurst DH, Dou SX, Liu HK. Spinel Li[Li1/3Ti5/3]O4 as an anode material for lithium ion batteries. J Power Sources. 1999; 83(1-2): 156-161.

[53]

Zaghib K, Simoneau M, Armand M, Gauthier M. Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries. J Power Sources. 1999; 81-82: 300-305.

[54]

Amine K, Belharouak I, Chen Z, et al. Nanostructured anode material for high-power battery system in electric vehicles. Adv Mater. 2010; 22(28): 3052-3057.

[55]

Jin Y, Zhu B, Lu Z, Liu N, Zhu J. Challenges and recent progress in the development of Si anodes for lithium-ion battery. Adv Energy Mater. 2017; 7(23): 1700715.

[56]

Wu H, Cui Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today. 2012; 7(5): 414-429.

[57]

Zuo X, Zhu J, Müller-Buschbaum P, Cheng Y-J. Silicon based lithium-ion battery anodes: a chronicle perspective review. Nano Energy. 2017; 31: 113-143.

[58]

Chae S, Choi SH, Kim N, Sung J, Cho J. Integration of graphite and silicon anodes for the commercialization of high-energy lithium-ion batteries. Angew Chem Int Ed Engl. 2020; 59(1): 110-135.

[59]

Feng K, Li M, Liu W, et al. Silicon-based anodes for lithium-ion batteries: from fundamentals to practical applications. Small. 2018; 14(8): 1702737.

[60]

Wu H, Chan G, Choi JW, et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat Nanotechnol. 2012; 7(5): 310-315.

[61]

Liu N, Lu Z, Zhao J, et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat Nanotechnol. 2014; 9(3): 187-192.

[62]

Kovalenko I, Zdyrko B, Magasinski A, et al. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science. 2011; 334(6052): 75-79.

[63]

Wang QY, Liu B, Shen YH, et al. Confronting the challenges in lithium anodes for lithium metal batteries. Adv Sci. 2021; 8(17): 2101111.

[64]

Dai HL, Dong J, Wu MJ, et al. Cobalt-phthalocyanine-derived molecular isolation layer for highly stable lithium anode. Angew Chem Int Ed. 2021; 60(36): 19852-19859.

[65]

Dai HL, Gu XX, Dong J, Wang C, Lai C, Sun SH. Stabilizing lithium metal anode by octaphenyl polyoxyethylene-lithium complexation. Nat Commun. 2020; 11(1): 643.

[66]

Tan S, Shadike Z, Cai XY, et al. Review on low-temperature electrolytes for lithium-ion and lithium metal batteries. Electrochem Energy Rev. 2023; 6(1): 10.

[67]

Liu Q, Chen Q, Tang Y, Cheng H. Interfacial modification, electrode/solid-electrolyte engineering, and monolithic construction of solid-state batteries. Electrochem Energy Rev. 2023; 6(2): 15.

[68]

Ren WC, Zheng YN, Cui ZH, Tao YS, Li BX, Wang WT. Recent progress of functional separators in dendrite inhibition for lithium metal batteries. Energy Storage Mater. 2021; 35: 157-168.

[69]

Li BR, Chao Y, Li MC, et al. A review of solid electrolyte interphase (SEI) and dendrite formation in lithium batteries. Electrochem Energy Rev. 2023; 6(1): 35.

[70]

Wood KN, Kazyak E, Chadwick AF, et al. Dendrites and pits: untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS Central Sci. 2016; 2(11): 790-801.

[71]

Li ZZ, Peng MQ, Zhou XL, et al. In situ chemical lithiation transforms diamond-like carbon into an ultrastrong ion conductor for dendrite-free lithium-metal anodes. Adv Mater. 2021; 33(37): 2100793.

[72]

Zhang R, Shen X, Cheng XB, Zhang Q. The dendrite growth in 3D structured lithium metal anodes: electron or ion transfer limitation? Energy Storage Mater. 2019; 23: 556-565.

[73]

Sun H, Celadon A, Cloutier SG, Al-Haddad K. Sun S, Zhang G. Lithium dendrites in all-solid-state batteries: from formation to suppression. Battery Energy. 2024; 3(3): 20230062.

[74]

Wang G, Xiong XH, Xie D, et al. Suppressing dendrite growth by a functional electrolyte additive for robust Li metal anodes. Energy Storage Mater. 2019; 23: 701-706.

[75]

Ji X, Hou SY, Wang PF, et al. Solid-state electrolyte design for lithium dendrite suppression. Adv Mater. 2020; 32(46): 2002741.

[76]

Aslam MK, Niu YB, Hussain T, et al. How to avoid dendrite formation in metal batteries: innovative strategies for dendrite suppression. Nano Energy. 2021; 86: 106142.

[77]

Dobley A. Catalytic batteries. In: Suib SL, ed. New and Future Developments in Catalysis. Elsevier; 2013: 1-16.

[78]

Matsuda S. Lithium-air batteries. Encyclopedia Energy Storage. 2022; 4: 171-179.

[79]

Diao Y, Xie K, Xiong S, Hong X. Shuttle phenomenon—the irreversible oxidation mechanism of sulfur active material in Li–S battery. J Power Sources. 2013; 235: 181-186.

[80]

Tudron FB, Akridge JR, Puglisi VJ, Lithium-sulfur rechargeabl. batteries: characteristics, state of development, and applicability to powering portable electronics. 2004: 1-2. Accessed January 8, 2024. https://www.researchgate.net/publication/267249582_Lithium-Sulfur_Rechargeable_Batteries_Characteristics_State_of_Development_and_Applicability_to_Powering_Portable_Electronics

[81]

Yang HC, Li HC, Li J, et al. The rechargeable aluminum battery: opportunities and challenges. Angew Chem Int Ed. 2019; 58(35): 11978-11996.

[82]

Das SK, Mahapatra S, Lahan H. Aluminium-ion batteries: developments and challenges. J Mater Chem A. 2017; 5(14): 6347-6367.

[83]

Kraychyk KV, Wang S, Piveteau L, Koyalenko MV. Efficient aluminum chloride natural graphite battery. Chem Mater. 2017; 29(10): 4484-4492.

[84]

Muñoz-Torrero D, Palma J, Marcilla R, Ventosa E. A critical perspective on rechargeable Al-ion battery technology. Dalton Trans. 2019; 48(27): 9906-9911.

[85]

Lin MC, Gong M, Lu BG, et al. An ultrafast rechargeable aluminium-ion battery. Nature. 2015; 520(7547): 324-328.

[86]

Mori R. Recent developments for aluminum-air batteries. Electrochem Energy Rev. 2020; 3(2): 344-369.

[87]

Farsak M, Kardaş G. Electrolytic materials. Comprehensive Energy Syst. 2018; 2: 329-367.

[88]

Ma JL, Wen JB, Gao JW, Li QA. Performance of Al–0.5Mg–0.02Ga–0.1Sn–0.5Mn as anode for Al-air battery. J Electrochem Soc. 2014; 161(3): A376-A380.

[89]

Ma JL, Wen JB, Li QA, Zhang Q. Electrochemical polarization and corrosion behavior of Al–Zn–In based alloy in acidity and alkalinity solutions. Int J Hydrogen Energ. 2013; 38(34): 14896-14902.

[90]

Song JH, Xiao BW, Lin YH, Xu K, Li XL. Interphases in sodium-ion batteries. Adv Energy Mater. 2018; 8(17): 1703082.

[91]

Zlatev D. Mass sodium-ion battery production rolls off GWh-class factory as it paves the way for affordable cells without lithium. 2022. Accessed January 11, 2024. https://www.notebookcheck.net/Mass-sodium-ion-battery-production-rolls-off-GWh-class-factory-as-it-paves-the-way-for-affordable-cells-without-lithium.672646.0.html

[92]

Gao X, Liu HQ, Deng WT, et al. Iron-based layered cathodes for sodium-ion batteries. Batteries Supercaps. 2021; 4(11): 1657-1679.

[93]

Saba N, Jawaid M. Energy and environmental applications of graphene and its derivatives. In: M Jawaid, MM Khan, eds. Polymer-Based Nanocomposites for Energy and Environmental Applications. Elsevier; 2018: 105-129.

[94]

Kim SW, Seo DH, Ma XH, Ceder G, Kang K. Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater. 2012; 2(7): 710-721.

[95]

Pan H, Hu Y-S, Chen L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci. 2013; 6(8): 2338.

[96]

Deivanayagam R, Ingram BJ, Shahbazian-Yassar R. Progress in development of electrolytes for magnesium batteries. Energy Storage Mater. 2019; 21: 136-153.

[97]

Li M, Ding Y, Sun Y, et al. Emerging rechargeable aqueous magnesium ion battery. Mater Rep Energy. 2022; 2(4): 100161.

[98]

TD Gregory, Hoffman RJ, Winterton RC. Nonaqueous electrochemistry of magnesium—applications to energy-storage. J Electrochem Soc. 1990; 137(3): 775-780.

[99]

Aurbach D, Lu Z, Schechter A, et al. Prototype systems for rechargeable magnesium batteries. Nature. 2000; 407(6805): 724-727.

[100]

Mizrahi O, Amir N, Pollak E, et al. Electrolyte solutions with a wide electrochemical window for rechargeable magnesium batteries. J Electrochem Soc. 2008; 155(2): A103.

[101]

Du AB, Zhang ZH, Qu HT, et al. An efficient organic magnesium borate-based electrolyte with non-nucleophilic characteristics for magnesium-sulfur battery. Energy Environ Sci. 2017; 10(12): 2616-2625.

[102]

Tutusaus O, Mohtadi R, Arthur TS, Mizuno F, Nelson EG, Sevryugina YV. An efficient halogen-free electrolyte for use in rechargeable magnesium batteries. Angew Chem Int Ed. 2015; 54(27): 7900-7904.

[103]

Kim HS, Arthur TS, Allred GD, et al. Structure and compatibility of a magnesium electrolyte with a sulphur cathode. Nat Commun. 2011; 2: 427.

[104]

Davidson R, Verma A, Santos D, et al. Formation of magnesium dendrites during electrodeposition. Acs Energy Lett. 2019; 4(2): 375-376.

[105]

Zhang JL, Chang ZY, Zhang ZH, et al. Current design strategies for rechargeable magnesium-based batteries. ACS Nano. 2021; 15(10): 15594-15624.

[106]

Rajagopalan R, Tang YG, Ji XB, Jia CK, Wang HY. Advancements and challenges in potassium ion batteries: a comprehensive review. Adv Funct Mater. 2020; 30(12): 1909486.

[107]

Adams RA, Varma A, Pol VG. Carbon anodes for nonaqueous alkali metal-ion batteries and their thermal safety aspects. Adv Energy Mater. 2019; 9(35): 1900550.

[108]

Hwang JY, Myung ST, Sun YK. Recent progress in rechargeable potassium batteries. Adv Funct Mater. 2018; 28(43): 1802938.

[109]

Ji BF, He HY, Yao WJ, Tang YB. Recent advances and perspectives on calcium-ion storage: key materials and devices. Adv Mater. 2021; 33(2): 2005501.

[110]

Chen CH, Shi FY, Xu ZL. Advanced electrode materials for nonaqueous calcium rechargeable batteries. J Mater Chem A. 2021; 9(20): 11908-11930.

[111]

Hosein ID. The promise of calcium batteries: open perspectives and fair comparisons. ACS Energy Lett. 2021; 6(4): 1560-1565.

[112]

Wang TT, Zhao XD, Liu FF, Fan LZ. Porous polymer electrolytes for long-cycle stable quasi-solid-state magnesium batteries. J Energy Chem. 2021; 59: 608-614.

[113]

Martinez-Cisneros CS, Fernandez A, Antonelli C, et al. Opening the door to liquid-free polymer electrolytes for calcium batteries. Electrochim Acta. 2020; 353: 136525.

[114]

Qin KQ, Huang JH, Holguin K, Luo C. Recent advances in developing organic electrode materials for multivalent rechargeable batteries. Energy Environ Sci. 2020; 13(11): 3950-3992.

[115]

Zhang XY, Lv RJ, Tang WJ, et al. Challenges and opportunities for multivalent metal anodes in rechargeable batteries. Adv Funct Mater. 2020; 30(45): 2004187.

[116]

Song HW, Wang CX. Current status and challenges of calcium metal batteries. Adv Energy Sustain Res. 2022; 3(3): 2100192.

[117]

Aurbach D, Skaletsky R, Gofer Y. The electrochemical-behavior of calcium electrodes in a few organic electrolytes. J Electrochem Soc. 1991; 138(12): 3536-3545.

[118]

Wang D, Gao XW, Chen YH, Jin LY, Kuss C, Bruce PG. Plating and stripping calcium in an organic electrolyte. Nat Mater. 2018; 17(1): 16-20.

[119]

Gao XP, Liu X, Mariani A, et al. Alkoxy-functionalized ionic liquid electrolytes: understanding ionic coordination of calcium ion speciation for the rational design of calcium electrolytes. Energy Environ Sci. 2020; 13(8): 2559-2569.

[120]

Li ZY, Fuhr O, Fichtner M, Zhao-Karger Z. Towards stable and efficient electrolytes for room-temperature rechargeable calcium batteries. Energy Environ Sci. 2019; 12(12): 3496-3501.

[121]

Chen X, Li W, Reed D, Li X, Liu X. On energy storage chemistry of aqueous Zn-ion batteries: from cathode to anode. Electrochem Energy Rev. 2023; 6(1): 33.

[122]

Fu YQ, Wei QL, Zhang GX, et al. High-performance reversible aqueous Zn-ion battery based on porous MnOx nanorods coated by MOF-derived N-doped carbon. Adv Energy Mater. 2018; 8(26): 1801445.

[123]

Wu MJ, Zhang GX, Yang HM, et al. Aqueous Zn-based rechargeable batteries: recent progress and future perspectives. Infomat. 2022; 4(5): e12265.

[124]

Dong F, Wu MJ, Zhang GX, et al. Defect engineering of carbon-based electrocatalysts for rechargeable zinc-air batteries. Chem-Asian J. 2020; 15(22): 3737-3751.

[125]

Wu MJ, Zhang GX, Qiao JL, Chen N, Chen WF, Sun SH. Ultra-long life rechargeable zinc-air battery based on high-performance trimetallic nitride and NCNT hybrid bifunctional electrocatalysts. Nano Energy. 2019; 61: 86-95.

[126]

Zhang J, Zhou QX, Tang YW, Zhang L, Li YG. Zinc-air batteries: are they ready for prime time? Chem Sci. 2019; 10(39): 8924-8929.

[127]

Dong F, Wu MJ, Chen ZS, et al. Atomically dispersed transition metal-nitrogen-carbon bifunctional oxygen electrocatalysts for zinc-air batteries: recent advances and future perspectives. Nano-Micro Lett. 2022; 14(1): 36.

[128]

Wu MJ, Zhang GX, Wang WC, et al. Electronic metal support interaction modulation of single-atom electrocatalysts for rechargeable zinc-air batteries. Small Methods. 2022; 6(3): 2100947.

[129]

Wang F, Borodin O, Gao T, et al. Highly reversible zinc metal anode for aqueous batteries. Nat Mater. 2018; 17(6): 543-549.

[130]

Wu MJ, Zhang GX, Tong H, et al. Cobalt (II) oxide nanosheets with rich oxygen vacancies as highly efficient bifunctional catalysts for ultra-stable rechargeable Zn-air flow battery. Nano Energy. 2021; 79: 105409.

[131]

Wu MJ, Zhang GX, Hu YF, et al. Graphitic-shell encapsulated FeNi alloy/nitride nanocrystals on biomass-derived N-doped carbon as an efficient electrocatalyst for rechargeable Zn-air battery. Carbon Energy. 2021; 3(1): 176-187.

[132]

Wu MJ, Zhang GX, Chen N, et al. Self-reconstruction of Co/CoP heterojunctions confined in N-doped carbon nanotubes for zinc-air flow batteries. ACS Energy Lett. 2021; 6(4): 1153-1161.

[133]

Wang X, Peng LW, Xu NN, et al. Cu/S-occupation bifunctional oxygen catalysts for advanced rechargeable zinc-air batteries. ACS Appl Mater Inter. 2020; 12(47): 52836-52844.

[134]

Wu MJ, Wei QL, Zhang GX, et al. Fe/Co double hydroxide/oxide nanoparticles on N-doped CNTs as highly efficient electrocatalyst for rechargeable liquid and quasi-solid-state zinc-air batteries. Adv Energy Mater. 2018; 8(30): 1801836.

[135]

Shao W, Yan R, Zhou M, et al. Carbon-based electrodes for advanced zinc-air batteries: oxygen-catalytic site regulation and nanostructure design. Electrochem Energy Rev. 2023; 6(2): 11.

[136]

Wu MJ, Zhang GX, Wu MH, Prakash J, Sun SH. Rational design of multifunctional air electrodes for rechargeable Zn-air batteries: recent progress and future perspectives. Energy Storage Mater. 2019; 21: 253-286.

[137]

Tian Y, An YL, Wei CL, et al. Recent advances and perspectives of Zn-metal free “rocking-chair”-type Zn-ion batteries. Adv Energy Mater. 2021; 11(5): 2002529.

[138]

Lv XW, Wang ZL, Lai ZZ, et al. Rechargeable zinc-air batteries: advances, challenges, and prospects. Small. 2023; 20(4): 2306396.

[139]

Zhou XL, Liu QR, Jiang CL, et al. Strategies towards low-cost dual-ion batteries with high performance. Angew Chem Int Ed. 2020; 59(10): 3802-3832.

[140]

Jiang HZ, Chen Z, Yang YY, Fan C, Zhao JW, Cui GL. Rational design of functional electrolytes towards commercial dual-ion batteries. ChemSusChem. 2023; 16(4): e202300148.

[141]

Placke T, Heckmann A, Schmuch R, Meister P, Beltrop K, Winter M. Perspective on performance, cost, and technical challenges for practical dual-ion batteries. Joule. 2018; 2(12): 2528-2550.

[142]

Wang M, Tang YB. A review on the features and progress of dual-ion batteries. Adv Energy Mater. 2018; 8(19): 1703320.

[143]

Zhang LJ, Wang HT, Zhang XM, Tang YB. A review of emerging dual-ion batteries: fundamentals and recent advances. Adv Funct Mater. 2021; 31(20): 2010958.

[144]

Bhauriyal P, Garg P, Patel M, Pathak B. Electron-rich graphite-like electrode: stability voltage for Al batteries. J Mater Chem A. 2018; 6(23): 10776-10786.

[145]

Liu J, Bao ZN, Cui Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat Energy. 2019; 4(3): 180-186.

[146]

Liu B, Zhang JG, Xu W. Advancing lithium metal batteries. Joule. 2018; 2(5): 833-845.

[147]

Zhang JG. Anode-less. Nat Energy. 2019; 4(8): 637-638.

[148]

Qian JF, Adams BD, Zheng JM, et al. Anode-free rechargeable lithium metal batteries. Adv Funct Mater. 2016; 26(39): 7094-7102.

[149]

Chen WY, Salvatierra RV, Ren MQ, Chen JH, Stanford MG, Tour JM. Laser-induced silicon oxide for anode-free lithium metal batteries. Adv Mater. 2020; 32(33): 2002850.

[150]

Neudecker BJ, Dudney NJ, Bates JB. “Lithium-free” thin-film battery with plated Li anode. J Electrochem Soc. 2000; 147(2): 517-523.

[151]

Weber R, Genovese M, Louli AJ, et al. Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nat Energy. 2019; 4(8): 683-689.

[152]

Chen J, Li Q, Pollard TP, Fan XL, Borodin O, Wang CS. Electrolyte design for Li metal-free Li batteries. Mater Today. 2020; 39: 118-126.

[153]

Hagos TM, Berhe GB, Hagos TT, et al. Dual electrolyte additives of potassium hexafluorophosphate and tris (trimethylsilyl) phosphite for anode-free lithium metal batteries. Electrochim Acta. 2019; 316: 52-59.

[154]

Alvarado J, Schroeder MA, Pollard TP, et al. Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes. Energy Environ Sci. 2019; 12(2): 780-794.

[155]

Tu ZY, Zachman MJ, Choudhury S, et al. Stabilizing protic and aprotic liquid electrolytes at high-bandgap oxide interphases. Chem Mater. 2018; 30(16): 5655-5662.

[156]

Assegie AA, Chung CC, Tsai MC, Su WN, Chen CW, Hwang BJ. Multilayer-graphene-stabilized lithium deposition for anode-free lithium-metal batteries. Nanoscale. 2019; 11(6): 2710-2720.

[157]

Chen J, Xiang JW, Chen X, Yuan LX, Li Z, Huang YH. LiS-based anode-free full batteries with modified Cu current collector. Energy Storage Mater. 2020; 30: 179-186.

[158]

Genovese M, Louli AJ, Weber R, Martin C, Taskovic T, Dahn JR. Hot formation for improved low temperature cycling of anode-free lithium metal batteries. J Electrochem Soc. 2019; 166(14): A3342-A3347.

[159]

Louli AJ, Genovese M, Weber R, Hames SG, Logan ER, Dahn JR. Exploring the impact of mechanical pressure on the performance of anode-free lithium metal cells. J Electrochem Soc. 2019; 166(8): A1291-A1299.

[160]

Genovese M, Louli AJ, Weber R, Hames S, Dahn JR. Measuring the coulombic efficiency of lithium metal cycling in anode-free lithium metal batteries. J Electrochem Soc. 2018; 165(14): A3321.

[161]

Kerman K, Luntz A, Viswanathan V, Chiang YM, Chen ZB. Review—practical challenges hindering the development of solid state Li-ion batteries. J Electrochem Soc. 2017; 164(7): A1731-A1744.

[162]

Li C, Wang ZY, He ZJ, et al. An advance review of solid-state battery: challenges, progress and prospects. Sustain Mater Technol. 2021; 29: e00297.

[163]

Janek J, Zeier WG. Challenges in speeding up solid-state battery development. Nat Energy. 2023; 8(3): 230-240.

[164]

Zhang S, Ma J, Dong S, Cui G. Designing all-solid-state batteries by theoretical computation: a review. Electrochem Energy Rev. 2023; 6(1): 4.

[165]

Tuo K, Sun C, Liu S. Recent progress in and perspectives on emerging halide superionic conductors for all-solid-state batteries. Electrochem Energy Rev. 2023; 6(2): 17.

[166]

Gao ZH, Sun HB, Fu L, et al. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv Mater. 2018; 30(17): 1705702.

[167]

Kamaya N, Homma K, Yamakawa Y, et al. A lithium superionic conductor. Nat Mater. 2011; 10(9): 682-686.

[168]

Hu Y-S. Batteries: getting solid. Nat Energy. 2016; 1(4): 16042.

[169]

Sun HH, Celadon A, Cloutier SG, Al-Haddad K. Sun SH, Zhang GX. Lithium dendrites in all-solid-state batteries: from formation to suppression. Battery Energy. 2024:20230062.

[170]

Yoon K, Lee S, Oh K, Kang K. Challenges and strategies towards practically feasible solid-state lithium metal batteries. Adv Mater. 2022; 34(4): 2104666.

[171]

Wu Z, Li XH, Zheng C, et al. Interfaces in sulfide solid electrolyte-based all-solid-state lithium batteries: characterization, mechanism and strategy. Electrochem Energy Rev. 2023; 6(1): 7.

[172]

Liang YH, Liu H, Wang GX, et al. Challenges, interface engineering, and processing strategies toward practical sulfide-based all-solid-state lithium batteries. Infomat. 2022; 4(5): e12292.

[173]

Banerjee A, Wang XF, Fang CC, Wu EA, Meng YS. Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem Rev. 2020; 120(14): 6878-6933.

[174]

Shen H, Yi E, Cheng L, et al. Solid-state electrolyte considerations for electric vehicle batteries. Sustain Energ Fuels. 2019; 3(7): 1647-1659.

[175]

Alanazi F. Electric vehicles: benefits, challenges, and potential solutions for widespread adaptation. Appl Sci. 2023; 13(10): 6016.

[176]

Heimes H, Kampker A, Offermanns C, et al. Recycling of Lithium-Ion Batteries. Vol 2024. ResearchGate; 2021.

[177]

Maisel F, Neef C, Marscheider-Weidemann F. Nissen NF. A forecast on future raw material demand and recycling potential of lithium-ion batteries in electric vehicles. Resour Conserv Recy. 2023: 192.

[178]

Xu CJ, Behrens P, Gasper P, Smith K, Hu MM, Tukker A, et al. Electric vehicle batteries alone could satisfy short-term grid storage demand by as early as 2030. Nat Commun. 2023; 14(1): 119.

[179]

Canada S. Average Household Energy Consumption Falls in 2019. 2022. Accessed January 17, 2024. https://www150.statcan.gc.ca/n1/daily-quotidien/220502/dq220502b-fra.htm

[180]

Ahmadi L, Young SB, Fowler M, Fraser RA, Achachlouei MA. A cascaded life cycle: reuse of electric vehicle lithium-ion battery packs in energy storage systems. Int J Life Cycle Ass. 2017; 22(1): 111-124.

[181]

Xiong SQ, Ji JP, Ma XM. Environmental and economic evaluation of remanufacturing lithium-ion batteries from electric vehicles. Waste Manage. 2020; 102: 579-586.

[182]

Foster M, Isely P, Standridge CR, Hasan MM. Feasibility assessment of remanufacturing, repurposing, and recycling of end of vehicle application lithium-ion batteries. J Indus Eng Manage. 2014; 7(3): 698-715.

[183]

Deveci M, Simic V, Torkayesh AE. Remanufacturing facility location for automotive lithium-ion batteries: an integrated neutrosophic decision-making model. J Clean Prod. 2021; 317: 128438.

[184]

Schäfer J, Singer R, Hofmann J, Fleischer J. Challenges and solutions of automated disassembly and condition-based remanufacturing of lithium-ion battery modules for a circular economy. Procedia Manuf. 2020; 43: 614-619.

[185]

Alfaro-Algaba M, Ramirez FJ. Techno-economic and environmental disassembly planning of lithium-ion electric vehicle battery packs for remanufacturing. Resour Conserv Recy. 2020; 154: 104461.

[186]

Beaudet A, Larouche F, Amouzegar K, Bouchard P, Zaghib K. Key challenges and opportunities for recycling electric vehicle battery materials. Sustainability. 2020; 12(14): 5837.

[187]

Mo S, Du L, Huang Z, et al. Recent advances on PEM fuel cells: from key materials to membrane electrode assembly. Electrochem Energy Rev. 2023; 6(1): 28.

[188]

Harper G, Sommerville R, Kendrick E, et al. Recycling lithium-ion batteries from electric vehicles. Nature. 2019; 575(7781): 75-86.

[189]

Larouche F, Tedjar F, Amouzegar K, et al. Progress and status of hydrometallurgical and direct recycling of Li-ion batteries and beyond. Materials. 2020; 13(3): 801.

[190]

Baum ZJ, Bird RE, Yu X, Ma J. Lithium-ion battery recycling-overview of techniques and trends. ACS Energy Lett. 2022; 7(2): 712-719.

[191]

Zhang N, Xu Z, Deng W, Wang X. Recycling and upcycling spent LIB cathodes: a comprehensive review. Electrochem Energy Rev. 2022; 5(1): 33.

[192]

Sommerville R, Zhu PC, Rajaeifar MA, Heidrich O, Goodship V, Kendrick E. A qualitative assessment of lithium ion battery recycling processes. Resour Conserv Recy. 2021; 165: 105219.

[193]

Gaines L. Lithium-ion battery recycling processes: research towards a sustainable course. Sustain Mater Technol. 2018; 17: e00068.

[194]

Yang ZJ, Huang HB, Lin F. Sustainable electric vehicle batteries for a sustainable world: perspectives on battery cathodes, environment, supply chain, manufacturing, life cycle, and policy. Adv Energy Mater. 2022; 12(26): 2200383.

[195]

Kaya M. State-of-the-art lithium-ion battery recycling technologies. Circ Econ. 2022; 1(2): 100015.

[196]

Latini D, Vaccari M, Lagnoni M, et al. A comprehensive review and classification of unit operations with assessment of outputs quality in lithium-ion battery recycling. J Power Sources. 2022; 546: 231979.

[197]

Chen MY, Ma XT, Chen B, et al. Recycling end-of-life electric vehicle lithium-ion batteries. Joule. 2019; 3(11): 2622-2646.

[198]

Brückner L, Frank J, Elwert T. Industrial recycling of lithium-ion batteries—a critical review of metallurgical process routes. Metals-Basel. 2020; 10(8): 1107.

[199]

Yang CY, Wang JW, Yang P, et al. Recovery of valuable metals from spent LiNi0.8Co0.1Mn0.1O2 cathode materials using compound leaching agents of sulfuric acid and oxalic acid. Sustainability. 2022; 14(21): 14169.

RIGHTS & PERMISSIONS

2024 The Author(s). SusMat published by Sichuan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

157

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/