Tuning on passive interfacial cooling of covalent organic framework hydrogel for enhancing freshwater and electricity generation

Jianfei Wu , Ziwei Cui , Yuxuan Su , Dongfang Wu , Jundie Hu , Jiafu Qu , Jianzhang Li , Fangyuan Kang , Dan Tian , Qichun Zhang , Yahui Cai

SusMat ›› 2024, Vol. 4 ›› Issue (5) : e231

PDF
SusMat ›› 2024, Vol. 4 ›› Issue (5) : e231 DOI: 10.1002/sus2.231
RESEARCH ARTICLE

Tuning on passive interfacial cooling of covalent organic framework hydrogel for enhancing freshwater and electricity generation

Author information +
History +
PDF

Abstract

Developing an efficient freshwater and electricity co-generation device (FECGD) can solve the shortage of freshwater and electricity. However, the poor salt resistance and refrigeration properties of the materials for FECGD put big challenges in the efficient and stable operation of these devices. To address these issues, we propose the covalent organic framework (COF) confined co-polymerization strategy to prepare COF-modified acrylamide cationic hydrogels (ACH-COF), where hydrogen bonding interlocking between negatively charged polymer chains and COF pores can form a salt resistant hydrogel for stabilizing tunable passive interfacial cooling (TPIC). The FECPDs based on the TPIC and salt resistance of ACH-COF display a maximum output power density of 2.28 W m–2, which is 4.3 times higher than that of a commercial thermoelectric generator under one solar radiation. The production rate of freshwater can reach 2.74 kg m–2 h–1. Our results suggest that the high efficiency and scalability of the FECGD can hold the promise of alleviating freshwater and power shortages.

Keywords

COF confined co-polymerization / environmental sensing / freshwater and electricity cogeneration / passive interfacial cooling / salt resistance

Cite this article

Download citation ▾
Jianfei Wu, Ziwei Cui, Yuxuan Su, Dongfang Wu, Jundie Hu, Jiafu Qu, Jianzhang Li, Fangyuan Kang, Dan Tian, Qichun Zhang, Yahui Cai. Tuning on passive interfacial cooling of covalent organic framework hydrogel for enhancing freshwater and electricity generation. SusMat, 2024, 4(5): e231 DOI:10.1002/sus2.231

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Graham F. Daily briefing: France’s nuclear industry faces uncertainty. Nature. 2022. doi:10.1038/d41586-022-02852-z

[2]

The Lancet. Far from universal access to electricity. Lancet. 2017; 390(10111): 2414.

[3]

Pryor SC, Barthelmie RJ, Shepherd TJ. Wind power production from very large offshore wind farms. Joule. 2021; 5(10): 2663-2686.

[4]

O’Grady C. Gravity powers batteries for renewable energy. Science. 2021; 372(6541): 446-446.

[5]

Li R, Shi Y, Wu M, Hong S, Wang P. Photovoltaic panel cooling by atmospheric water sorption–evaporation cycle. Nat Sustain. 2020; 3(8): 636-643.

[6]

Nan Y, Tan D, Shao J, Willatzen M, Wang ZL. 2D materials as effective cantilever piezoelectric nano energy harvesters. ACS Energy Lett. 2021; 6(6): 2313-2319.

[7]

Feng T, Wang P, Han Z, et al. Giant transverse thermoelectric effect induced by topological transition in polycrystalline Dirac semimetal Mg3Bi2. Energy Environ Sci. 2023; 16(4): 1560-1568.

[8]

Zhang Y, Zhang Q, Chen G. Carbon and carbon composites for thermoelectric applications. Carbon Energy. 2020; 2(3): 408-436.

[9]

Yao Y, Zhang P, Jiang C, DuChanois RM, Zhang X, Elimelech M. High performance polyester reverse osmosis desalination membrane with chlorine resistance. Nat Sustain. 2021; 4(2): 138-146.

[10]

Gao M, Peh CK, Zhu L, Yilmaz G, Ho GW. Photothermal catalytic gel featuring spectral and thermal management for parallel freshwater and hydrogen production. Adv Energy Mater. 2020; 10(23): 2000925.

[11]

Zhou G, Mei Y, Wang Y, et al. Recovery of salinity gradient energy with an inorganic sodium superionic conductor. ACS Energy Lett. 2022; 7(5): 1806-1813.

[12]

Xu N, Zhu P, Sheng Y, et al. Synergistic tandem solar electricity-water generators. Joule. 2020; 4(2): 347-358.

[13]

Mu X, Zhou J, Wang P, et al. A robust starch–polyacrylamide hydrogel with scavenging energy harvesting capacity for efficient solar thermoelectricity–freshwater cogeneration. Energ Environ Sci. 2022; 15(8): 3388-3399.

[14]

Kim SW, Yang UJ, Lee JW, et al. Triboelectric charge-driven enhancement of the output voltage of BiSbTe-based thermoelectric generators. ACS Energy Lett. 2021; 6(3): 1095-1103.

[15]

Burton MR, Mehraban S, Beynon D, et al. 3D printed SnSe thermoelectric generators with high figure of merit. Adv Energy Mater. 2019; 9(26): 1900201.

[16]

Zeb K, Ali SM, Khan B, et al. A survey on waste heat recovery: electric power generation and potential prospects within Pakistan. Renew Sust Energy Rev. 2017; 75: 1142-1155.

[17]

Shen ZG, Tian LL, Liu X. Automotive exhaust thermoelectric generators: current status, challenges and future prospects. Energy Convers Manage. 2019; 195: 1138-1173.

[18]

Diez JC, Madre MA, Rasekh S, et al. Ceramics, squared. Mater Today. 2013; 16(4): 151-152.

[19]

Li J, Du M, Lv G, et al. Interfacial solar steam generation enables fast-responsive, energy-efficient, and low-cos. off-grid sterilization. Adv Mater. 2018; 30(49): 1805159.

[20]

Li C, Cao S, Lutzki J, et al. A covalent organic framework/graphene dual-region hydrogel for enhanced solar-driven water generation. J Am Chem Soc. 2022; 144(7): 3083-3090.

[21]

Chen X, He S, Falinski MM, et al. Sustainable off-grid desalination of hypersaline waters using Janus wood evaporators. Energy Environ Sci. 2021; 14(10): 5347-5357.

[22]

Sun S, Shi C, Kuang Y, et al. 3D-printed solar evaporator with seashell ornamentation-inspired structure for zero liquid discharge desalination. Water Res. 2022; 226: 119279.

[23]

Wu J, Cui Z, Yu Y, et al. Multifunctional solar evaporator with adjustable island structure improves performance and salt discharge capacity of desalination. Adv Sci. 2023; 10(35): 2305523.

[24]

Zhao K, Lee JW, Yu ZG, et al. Humidity-tolerant moisture-driven energy generator with MXene aerogel–organohydrogel bilayer. ACS Nano. 2023; 17(6): 5472-5485.

[25]

Wang X, Zhang L, Zheng D, Xu X, Bai B, Du M. A polyelectrolyte hydrogel coated loofah sponge evaporator based on Donnan effect for highly efficient solar-driven desalination. Chem Eng J. 2023; 462: 142265.

[26]

He N, Yang Y, Wang H, et al. Ion-transfer engineering via janus hydrogels enables ultrahigh performance and salt-resistant solar desalination. Adv Mater. 2023; 35(24): e2300189.

[27]

Zou H, Meng X, Zhao X, Qiu J. Hofmeister effect-enhanced hydration chemistry of hydrogel for high-efficiency solar-driven interfacial desalination. Adv Mater. 2023; 35(5): e2207262.

[28]

Qian C, Feng L, Teo WL, et al. Imine and imine-derived linkages in two-dimensional covalent organic frameworks. Nat Rev Chem. 2022; 6(12): 881-898.

[29]

Mu Z, Zhu Y, Li B, Dong A, Wang B, Feng X. Covalent organic frameworks with record pore apertures. J Am Chem Soc. 2022; 144(11): 5145-5154.

[30]

Kang F, Wang X, Chen C, Lee C-S, Han Y, Zhang Q. Construction of crystalline nitrone-linked covalent organic frameworks via Kröhnke oxidation. J Am Chem Soc. 2023; 145(28): 15465-15472.

[31]

Xu S, Zhang Q. Recent progress in covalent organic frameworks as light-emitting materials. Mater Today Energy. 2021; 20: 100635.

[32]

Shi Y, Yang J, Gao F, Zhang Q. Covalent organic frameworks: recent progress in biomedical applications. ACS Nano. 2023; 17(3): 1879-1905.

[33]

Shi B, Pang X, Li S, et al. Short hydrogen-bond network confined on COF surfaces enables ultrahigh proton conductivity. Nat Commun. 2022; 13(1): 6666.

[34]

Liang S, Zhou R, Dong S, Shi S. Adaptation to salinity in mangroves: implication on the evolution of salt-tolerance. Sci Bull. 2008; 53(11): 1708-1715.

[35]

Du Y, Liu P, Zhang H, et al. Nature-inspired structure-engineered TiN/TiO2 nanotubes array toward solar desalination synergy with photothermal-enhanced degradation and thermoelectric generation. Adv Funct Mater. 2023; 34(10): 2309830.

[36]

Wang X, Zhang L, Zheng D, Xu X, Bai B, Du M. A polyelectrolyte hydrogel coated loofah sponge evaporator based on Donnan effect for highly efficient solar-driven desalination. Chem Eng J. 2023; 462: 142265.

[37]

Lu Y, Fan D, Wang Y, Xu H, Lu C, Yang X. Surface patterning of two-dimensional nanostructure-embedded photothermal hydrogels for high-yield solar steam generation. ACS Nano. 2021; 15(6): 10366-10376.

[38]

Liu F, Ma Z, Deng Y, et al. Tunable covalent organic frameworks with different heterocyclic nitrogen locations for efficient Cr(VI) reduction, Escherichia coli disinfection, and paracetamol degradation under visible-light irradiation. Environ Sci Technol. 2021; 55(8): 5371-5381.

[39]

Li W, Wang X, Liu Z, et al. Nanoconfined polymerization limits crack propagation in hysteresis-free gels. Nat Mater. 2024; 23(1): 131-138.

[40]

Mou K, Meng F, Zhang Z, et al. Pyridazine-promoted construction of vinylene-linked covalent organic frameworks with exceptional capability of stepwise water harvesting. Angew Chem Int Ed. 2024:e202402446.

[41]

Lu Y, Fan D, Shen Z, Zhang H, Xu H, Yang X. Design and performance boost of a MOF-functionalized-wood solar evaporator through tuning the hydrogen-bonding interactions. Nano Energy. 2022; 95: 107016.

[42]

Lu Y, Yue Y, Ding Q, et al. Environment-tolerant ionic hydrogel–elastomer hybrids with robust interfaces, high transparence, and biocompatibility for a mechanical–thermal multimode sensor. InfoMat. 2023; 5(4): e12409.

[43]

Sarkar S, SenGupta AK, Prakash P. The Donnan membrane principle: opportunities for sustainable engineered processes and materials. Environ Sci Technol. 2010; 44(4): 1161-1166.

RIGHTS & PERMISSIONS

2024 The Author(s). SusMat published by Sichuan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

182

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/