High-performance porous transport layers for proton exchange membrane water electrolyzers

Youkun Tao , Minhua Wu , Meiqi Hu , Xihua Xu , Muhammad I. Abdullah , Jing Shao , Haijiang Wang

SusMat ›› 2024, Vol. 4 ›› Issue (4) : e230

PDF
SusMat ›› 2024, Vol. 4 ›› Issue (4) : e230 DOI: 10.1002/sus2.230
REVIEW

High-performance porous transport layers for proton exchange membrane water electrolyzers

Author information +
History +
PDF

Abstract

Hydrogen is a favored alternative to fossil fuels due to the advantages of cleanliness, zero emissions, and high calorific value. Large-scale green hydrogen production can be achieved using proton exchange membrane water electrolyzers (PEMWEs) with utilization of renewable energy. The porous transport layer (PTL), positioned between the flow fields and catalyst layers (CLs) in PEMWEs, plays a critical role in facilitating water/gas transport, enabling electrical/thermal conduction, and mechanically supporting CLs and membranes. Superior corrosion resistance is essential as PTL operates in acidic media with oxygen saturation and high working potential. This paper covers the development of high-performance titanium-based PTLs for PEMWEs. The heat/electrical conduction and mass transport mechanisms of PTLs and how they affect the overall performances are reviewed. By carefully designing and controlling substrate microstructure, protective coating, and surface modification, the performance of PTL can be regulated and optimized. The two-phase mass transport characteristics can be enhanced by fine-tuning the microstructure and surface wettability of PTL. The addition of a microporous top-layer can effectively improve PTL|CL contact and increase the availability of catalytic sites. The anticorrosion coatings, which are crucial for chemical stability and conductivity of the PTL, are compared and analyzed in terms of composition, fabrication, and performance.

Keywords

mass transport / microstructure / performance / porous transport layer / proton exchange membrane water electrolysis

Cite this article

Download citation ▾
Youkun Tao, Minhua Wu, Meiqi Hu, Xihua Xu, Muhammad I. Abdullah, Jing Shao, Haijiang Wang. High-performance porous transport layers for proton exchange membrane water electrolyzers. SusMat, 2024, 4(4): e230 DOI:10.1002/sus2.230

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

International Energy Agency. World Energy Outlook 2022. Accessed November 1, 2023. https://www.iea.org/reports/world-energy-outlook-2022

[2]

International Energy Agency. Net Zero by 2050. Accessed November 1, 2023. https://www.iea.org/reports/net-zero-by-2050

[3]

Liu HW, Ma S, Li W, et al. A review on the development of tidal current energy in China. Renew Sust Energ Rev. 2011; 15(2): 1141-1146.

[4]

Gralla F, Abson DJ, Møller AP, Lang DJ, von Wehrden H. Energy transitions and national development indicators: a global review of nuclear energy production. Renew Sust Energ Rev. 2017; 70: 1251-1265.

[5]

Rissman J, Bataille C, Masanet E, et al. Technologies and policies to decarbonize global industry: review and assessment of mitigation drivers through 2070. Appl Energ. 2020; 266: 114848.

[6]

Coppez G, Chowdhury S, Chowdhury SP, The importance of energy storage in Renewable Power Generation: a review. 45th Int. Univ. Power Eng. Conf.; August, 2010; Cardiff, UK.

[7]

Khare V, Nema S, Baredar P, et al. Solar–wind hybrid renewable energy system: a review. Renew Sust Energ Rev. 2016; 58: 23-33.

[8]

Pivovar B, Rustagi N, Satyapal S. Hydrogen at scale (H2@Scale): key to a clean, economic, and sustainable energy system. Electrochem Soc Interface. 2018; 27(1): 47-52.

[9]

Akinyele DO, Rayudu RK. Review of energy storage technologies for sustainable power networks. Sustain Energy Technol Assess. 2014; 8: 74-91.

[10]

Zhou Z, Benbouzid M, Frédéric Charpentier J, Scuiller F, Tang T. A review of energy storage technologies for marine current energy systems. Renew Sust Energ Rev. 2013; 18: 390-400.

[11]

NREL. Role of Energy Storage with Renewable Electricity Generation. Accessed November 1, 2023. https://www.osti.gov/biblio/972169

[12]

Carmo M, Fritz DL, Mergel J, Stolten D. A comprehensive review on PEM water electrolysis. Int J Hydrog Energy. 2013; 38(12): 4901-4934.

[13]

Millet P, Ngameni R, Grigoriev SA, et al. PEM water electrolyzers: from electrocatalysis to stack development. Int J Hydrog Energy. 2010; 35(10): 5043-5052.

[14]

Schmidt O, Gambhir A, Staffell I, et al. Future cost and performance of water electrolysis: an expert elicitation study. Int J Hydrog Energy. 2017; 42(52): 30470-30492.

[15]

Badgett A, Ruth M, James B, Pivovar B. Methods identifying cost reduction potential for water electrolysis systems. Curr Opin Chem Eng. 2021; 33: 100714-100723.

[16]

Omrani R, Shabani B. Review of gas diffusion layer for proton exchange membrane-based technologies with a focus on unitised regenerative fuel cells. Int J Hydrog Energy. 2019; 44(7): 3834-3860.

[17]

Dawood F, Anda M, Shafiullah GM. Hydrogen production for energy: an overview. Int J Hydrog Energy. 2020; 45(7): 3847-3869.

[18]

Feng Q, Yuan XZ, Liu G, et al. A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies. J Power Sources. 2017; 366: 33-55.

[19]

Pellow MA, Emmott CJM, Barnhart CJ, Benson SM. Hydrogen or batteries for grid storage? A net energy analysis. Energ Environ Sci. 2015; 8(7): 1938-1952.

[20]

Yuan X-Z, Shaigan N, Song C, et al. The porous transport layer in proton exchange membrane water electrolysis: perspectives on a complex component. Sustain Energ Fuels. 2022; 6(8): 1824-1853.

[21]

Doan TL, Lee HE, Shah SSH, et al. A review of the porous transport layer in polymer electrolyte membrane water electrolysis. Int J Energy Res. 2021; 45(10): 14207-14220.

[22]

Alia SM, Stariha S, Borup RL. Electrolyzer durability at low catalyst loading and with dynamic operation. J Electrochem Soc. 2019; 166(15): F1164-F1172.

[23]

Serna Á, Yahyaoui I, Normey-Rico JE. de Prada C, Tadeo F. Predictive control for hydrogen production by electrolysis in an offshore platform using renewable energies. Int J Hydrog Energy. 2017; 42(17): 12865-12876.

[24]

Det Norske Veritas. Hydrogen Forecast 2022 to 2050. Accessed November 1, 2023. https://www.dnv.com/focus-areas/hydrogen/forecast-to-2050.html

[25]

International Energy Agency. The Future of Hydrogen Accessed November 1, 2023. https://www.iea.org/reports/the-future-of-hydrogen

[26]

International Energy Agency. Global Hydrogen Review 2021. Accessed November 1, 2023. https://www.iea.org/reports/global-hydrogen-review-2021

[27]

Ni M, Leung DYC, Leung MKH. A review on reforming bio-ethanol for hydrogen production. Int J Hydrog Energy. 2007; 32(15): 3238-3247.

[28]

Rostrup-Nielsen JR, Sehested J, Nørskov JK. Hydrogen and synthesis gas by steam-and C02 reforming. Adv Catal. 2002; 47(2002): 65-139.

[29]

Zhang L, Jie X, Shao Z-G, et al. The influence of sodium ion on the solid polymer electrolyte water electrolysis. Int J Hydrog Energy. 2012; 37(2): 1321-1325.

[30]

Bowles BJ. Formation of monolayers of copper on platinum electrodes. Electrochim Acta. 1970; 15(4): 589-598.

[31]

Grigoriev SA, Porembsky VI, Fateev VN. Pure hydrogen production by PEM electrolysis for hydrogen energy. Int J Hydrog Energy. 2006; 31(2): 171-175.

[32]

Shiva Kumar S, Himabindu V. Hydrogen production by PEM water electrolysis – A review. Mater Sci Energy Technol. 2019; 2(3): 442-454.

[33]

Buttler A, Spliethoff H. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: a review. Renew Sust Energ Rev. 2018; 82: 2440-2454.

[34]

Maroufmashat A, Fowler M. Transition of future energy system infrastructure; through power-to-gas pathways. Energies. 2017; 10(8): 1089-1099.

[35]

Fouda-Onana F, Chandesris M, Médeau V, et al. Investigation on the degradation of MEAs for PEM water electrolysers part I: effects of testing conditions on MEA performances and membrane properties. Int J Hydrog Energy. 2016; 41(38): 16627-16636.

[36]

Medina P, Santarelli M. Analysis of water transport in a high pressure PEM electrolyzer. Int J Hydrog Energy. 2010; 35(11): 5173-5186.

[37]

Espinosa-López M, Darras C, Poggi P, et al. Modelling and experimental validation of a 46 kW PEM high pressure water electrolyzer. Renew Energ. 2018; 119: 160-173.

[38]

Gutiérrez-Martín F, Guerrero-Hernández I. Balancing the grid loads by large scale integration of hydrogen technologies: the case of the Spanish power system. Int J Hydrog Energy. 2012; 37(2): 1151-1161.

[39]

Pickard WF, Shen AQ, Hansing NJ. Parking the power: strategies and physical limitations for bulk energy storage in supply–demand matching on a grid whose input power is provided by intermittent sources. Renew Sust Energ Rev. 2009; 13(8): 1934-1945.

[40]

Mo J, Dehoff RR, Peter WH, et al. Additive manufacturing of liquid/gas diffusion layers for low-cost and high-efficiency hydrogen production. Int J Hydrog Energy. 2016; 41(4): 3128-3135.

[41]

Hackemüller FJ, Borgardt E, Panchenko O, Müller M, Bram M. Manufacturing of large-scale titanium-based porous transport layers for polymer electrolyte membrane electrolysis by tape casting. Adv Eng Mater. 2019; 21(6): 18011201-18011210.

[42]

Pham CV, Escalera-López D, Mayrhofer K, Cherevko S, Thiele S. Essentials of high performance water electrolyzers – from catalyst layer materials to electrode engineering. Adv Energy Mater. 2021; 11(44): 2101998-2102022.

[43]

Babic U, Suermann M, Büchi FN, Gubler L, Schmidt TJ. Critical review—identifying critical gaps for polymer electrolyte water electrolysis development. J Electrochem Soc. 2017; 164(4): F387-F399.

[44]

Escribano S, Blachot J-F, Ethève J, Morin A, Mosdale R. Characterization of PEMFCs gas diffusion layers properties. J Power Sources. 2006; 156(1): 8-13.

[45]

Kim T, Popov BN. Development of highly-active and stable Pt/C catalyst for polymer electrolyte membrane fuel cells under simulated start-up/shut-down cycling. Int J Hydrog Energy. 2016; 41(3): 1828-1836.

[46]

Ross PN, Sokol H. The corrosion of carbon black anodes in alkaline electrolyte: I. acetylene black and the effect of cobalt catalyzation. J Electrochem Soc. 1984; 131(8): 1742.

[47]

Rozain C, Mayousse E, Guillet N, Millet P. Influence of iridium oxide loadings on the performance of PEM water electrolysis cells: part II – Advanced oxygen electrodes. Appl Catal B. 2016; 182: 123-131.

[48]

Siracusano S, Baglio V, Di Blasi A, et al. Electrochemical characterization of single cell and short stack PEM electrolyzers based on a nanosized IrO2 anode electrocatalyst. Int J Hydrog Energy. 2010; 35(11): 5558-5568.

[49]

Siracusano S, Van Dijk N, Payne-Johnson E. Baglio V, Aricò AS. Nanosized IrOx and IrRuOx electrocatalysts for the O2 evolution reaction in PEM water electrolysers. Appl Catal B. 2015; 164: 488-495.

[50]

Antonucci V, Di Blasi A, Baglio V, et al. High temperature operation of a composite membrane-based solid polymer electrolyte water electrolyser. Electrochim Acta. 2008; 53(24): 7350-7356.

[51]

Siracusano S, Baglio V, Lufrano F, Staiti P, Aricò AS. Electrochemical characterization of a PEM water electrolyzer based on a sulfonated polysulfone membrane. J Membr Sci. 2013; 448: 209-214.

[52]

Siracusano S, Baglio V, Navarra MA, et al. Investigation of composite nafion/sulfated zirconia membrane for solid polymer electrolyte electrolyzer applications. Int J Electrochem Sci. 2012; 7(2): 1532-1542.

[53]

Alia SM. Current research in low temperature proton exchange membrane-based electrolysis and a necessary shift in focus. Curr Opin Chem Eng. 2021; 33: 100703-100709.

[54]

Grigoriev SA, Millet P, Volobuev SA, Fateev VN. Optimization of porous current collectors for PEM water electrolysers. Int J Hydrog Energy. 2009; 34(11): 4968-4973.

[55]

Nie J, Chen Y. Numerical modeling of three-dimensional two-phase gas–liquid flow in the flow field plate of a PEM electrolysis cell. Int J Hydrog Energy. 2010; 35(8): 3183-3197.

[56]

Teuku H, Alshami I, Goh J, Masdar MS, Loh KS. Review on bipolar plates for low-temperature polymer electrolyte membrane water electrolyzer. Int J Energy Res. 2021; 45(15): 20583-20600.

[57]

Jung HY, Huang S-Y, Ganesan P, Popov BN. Performance of gold-coated titanium bipolar plates in unitized regenerative fuel cell operation. J Power Sources. 2009; 194(2): 972-975.

[58]

NREL. Manufacturing cost analysis for proton exchange membrane water electrolyzers. Accessed November 1, 2023. https://www.osti.gov/servlets/purl/1557965

[59]

Hackemüller FJ, Borgardt E, Panchenko O, Müller M, Bram M. Manufacturing of large-scale titanium-based porous transport layers for polymer electrolyte membrane electrolysis by tape casting. Adv Eng Mater. 2019; 21(6): 1801201.

[60]

Jabbari M, Bulatova R, Tok AIY, et al. Ceramic tape casting: a review of current methods and trends with emphasis on rheological behaviour and flow analysis. Mater Sci Eng B. 2016; 212: 39-61.

[61]

Nishihora RK, Rachadel PL, Quadri MGN, Hotza D. Manufacturing porous ceramic materials by tape casting—a review. J Eur Ceram Soc. 2018; 38(4): 988-1001.

[62]

Park SH, Koo J, Park Y-J, et al. Uniformly scalable and stackable porous transport layer manufactured by tape casting and calendering for efficient water electrolysis. Chem Eng J. 2024; 481: 148276.

[63]

Kumbur EC, Sharp KV, Mench MM. On the effectiveness of Leverett approach for describing the water transport in fuel cell diffusion media. J Power Sources. 2007; 168(2): 356-368.

[64]

Zinser A, Papakonstantinou G, Sundmacher K. Analysis of mass transport processes in the anodic porous transport layer in PEM water electrolysers. Int J Hydrog Energy. 2019; 44(52): 28077-28087.

[65]

Grigoriev SA, Kalinnikov AA, Millet P, Porembsky VI, Fateev VN. Mathematical modeling of high-pressure PEM water electrolysis. J Appl Electrochem. 2010; 40(5): 921-932.

[66]

Parra-Restrepo J, Bligny R, Dillet J, et al. Influence of the porous transport layer properties on the mass and charge transfer in a segmented PEM electrolyzer. Int J Hydrog Energy. 2020; 45(15): 8094-8106.

[67]

Schmidt G, Suermann M, Bensmann B, Hanke-Rauschenbach R. Neuweiler I. Modeling overpotentials related to mass transport through porous transport layers of PEM water electrolysis cells. J Electrochem Soc. 2020; 167(11): 114511.

[68]

Mo J, Steen SM, Zhang F-Y, et al. Electrochemical investigation of stainless steel corrosion in a proton exchange membrane electrolyzer cell. Int J Hydrog Energy. 2015; 40(36): 12506-12511.

[69]

Zhang F-Y, Advani SG, Prasad AK. Performance of a metallic gas diffusion layer for PEM fuel cells. J Power Sources. 2008; 176(1): 293-298.

[70]

Borgardt E, Panchenko O, Hackemüller F, et al. Mechanical characterization and durability of sintered porous transport layers for polymer electrolyte membrane electrolysis. J Power Sources. 2018; 374: 84-91.

[71]

Panchenko O, Borgardt E, Zwaygardt W, et al. In-situ two-phase flow investigation of different porous transport layer for a polymer electrolyte membrane (PEM) electrolyzer with neutron spectroscopy. J Power Sources. 2018; 390: 108-115.

[72]

Grigoriev SA, Bessarabov DG, Fateev VN. Degradation mechanisms of MEA characteristics during water electrolysis in solid polymer electrolyte cells. Russ J Electrochem. 2017; 53(3): 318-323.

[73]

Jung H-Y, Huang S-Y, Popov BN. High-durability titanium bipolar plate modified by electrochemical deposition of platinum for unitized regenerative fuel cell (URFC). J Power Sources. 2010; 195(7): 1950-1956.

[74]

Wang S-H, Peng J, Lui W-B, Zhang J-S. Performance of the gold-plated titanium bipolar plates for the light weight PEM fuel cells. J Power Sources. 2006; 162(1): 486-491.

[75]

Jung H-Y, Huang S-Y, Ganesan P, Popov BN. Performance of gold-coated titanium bipolar plates in unitized regenerative fuel cell operation. J Power Sources. 2009; 194(2): 972-975.

[76]

Sung C-C, Liu C-Y. A novel micro protective layer applied on a simplified PEM water electrolyser. Int J Hydrog Energy. 2013; 38(24): 10063-10067.

[77]

Gago AS, Ansar SA, Saruhan B, et al. Protective coatings on stainless steel bipolar plates for proton exchange membrane (PEM) electrolysers. J Power Sources. 2016; 307: 815-825.

[78]

Park S, Lee J-W, Popov BN. A review of gas diffusion layer in PEM fuel cells: materials and designs. Int J Hydrog Energy. 2012; 37(7): 5850-5865.

[79]

Rakousky C, Reimer U, Wippermann K, et al. An analysis of degradation phenomena in polymer electrolyte membrane water electrolysis. J Power Sources. 2016; 326: 120-128.

[80]

Bromberger K, Ghinaiya J, Lickert T, Fallisch A, Smolinka T. Hydraulic ex situ through-plane characterization of porous transport layers in PEM water electrolysis cells. Int J Hydrog Energy. 2018; 43(5): 2556-2569.

[81]

Lickert T, Kiermaier ML, Bromberger K, et al. On the influence of the anodic porous transport layer on PEM electrolysis performance at high current densities. Int J Hydrog Energy. 2020; 45(11): 6047-6058.

[82]

Hoeh MA, Arlt T, Manke I, et al. In operando synchrotron X-ray radiography studies of polymer electrolyte membrane water electrolyzers. Electrochem Commun. 2015; 55: 55-59.

[83]

Wang T, Cao X, Jiao L. PEM water electrolysis for hydrogen production: fundamentals, advances, and prospects. Carb Neutrality. 2022; 1(1): 21-40.

[84]

Tanaka Y, Kikuchi K, Saihara Y, Ogumi Z. Investigation of current feeders for SPE cell. Electrochim Acta. 2005; 50(22): 4344-4349.

[85]

Bender G, Carmo M, Smolinka T, et al. Initial approaches in benchmarking and round robin testing for proton exchange membrane water electrolyzers. Int J Hydrog Energy. 2019; 44(18): 9174-9187.

[86]

Suermann M, Takanohashi K, Lamibrac A, Schmidt TJ, Büchi FN. Influence of operating conditions and material properties on the mass transport losses of polymer electrolyte water electrolysis. J Electrochem Soc. 2017; 164(9): F973.

[87]

Marshall A, Børresen B, Hagen G, Tsypkin M, Tunold R. Electrochemical characterisation of IrxSn1–xO2 powders as oxygen evolution electrocatalysts. Electrochim Acta. 2006; 51(15): 3161-3167.

[88]

De Angelis S, Schuler T, Charalambous MA, et al. Unraveling two-phase transport in porous transport layer materials for polymer electrolyte water electrolysis. J Mater Chem A. 2021; 9(38): 22102-22113.

[89]

Liu C, Shviro M, Gago AS, et al. Exploring the interface of skin-layered titanium fibers for electrochemical water splitting. Adv Energy Mater. 2021; 11(8): 2002926-2002935.

[90]

Schuler T, Ciccone JM, Krentscher B, et al. Hierarchically structured porous transport layers for polymer electrolyte water electrolysis. Adv Energy Mater. 2019; 10(2): 1903216-1903227.

[91]

Kang Z, Schuler T, Chen Y, et al. Effects of interfacial contact under different operating conditions in proton exchange membrane water electrolysis. Electrochim Acta. 2022; 429: 140942-140950.

[92]

Falcão DS, Pinto AMFR. A review on PEM electrolyzer modelling: guidelines for beginners. J Cleaner Prod. 2020; 261: 121184.

[93]

Wrubel JA, Kang Z, Witteman L, et al. Mathematical modeling of novel porous transport layer architectures for proton exchange membrane electrolysis cells. Int J Hydrog Energy. 2021; 46(50): 25341-25354.

[94]

Wang W, Yu S, Li K, et al. Insights into the rapid two-phase transport dynamics in different structured porous transport layers of water electrolyzers through high-speed visualization. J Power Sources. 2021; 516: 230641-230650.

[95]

Kim YJ, Lim A, Kim JM, et al. Highly efficient oxygen evolution reaction via facile bubble transport realized by three-dimensionally stack-printed catalysts. Nat Commun. 2020; 11(1): 4921.

[96]

Peng X, Satjaritanun P, Taie Z, et al. Insights into interfacial and bulk transport phenomena affecting proton exchange membrane water electrolyzer performance at ultra-low iridium loadings. Adv Sci (Weinh). 2021; 8(21): 2102950-2102958.

[97]

Maier M, Smith K, Dodwell J, et al. Mass transport in PEM water electrolysers: a review. Int J Hydrog Energy. 2022; 47(1): 30-56.

[98]

Maier M, Dodwell J, Ziesche R, et al. Mass transport in polymer electrolyte membrane water electrolyser liquid-gas diffusion layers: a combined neutron imaging and X-ray computed tomography study. J Power Sources. 2020; 455: 227968-227977.

[99]

Chen Q, Wang Y, Yang F, Xu H. Two-dimensional multi-physics modeling of porous transport layer in polymer electrolyte membrane electrolyzer for water splitting. Int J Hydrog Energy. 2020; 45(58): 32984-32994.

[100]

Ito H, Maeda T, Nakano A, et al. Experimental study on porous current collectors of PEM electrolyzers. Int J Hydrog Energy. 2012; 37(9): 7418-7428.

[101]

Zhao B, Lee C, Lee JK, et al. Superhydrophilic porous transport layer enhances efficiency of polymer electrolyte membrane electrolyzers. Cell Rep Phys Sci. 2021; 2(10): 100580-100590.

[102]

Xu C, Wang J, Wang J, et al. Structural optimization study on porous transport layers of sintered titanium for polymer electrolyte membrane electrolyzers. Appl Energ. 2024; 357: 122541.

[103]

He Y, Cui Y, Shang W, Zhao Z, Tan P. Insight into the bubble-induced overpotential towards high-rate charging of Zn-air batteries. Chem Eng J. 2022; 448: 137782-137793.

[104]

Peter V, Penas-Lopez P. Soto AM, et al. Gas bubble evolution on microstructured silicon substrates. Energ Environ Sci. 2018; 11(12): 3452-3462.

[105]

He Y, Cui Y, Zhao Z, et al. Strategies for bubble removal in electrochemical systems. Energy Rev. 2023; 2(1): 100015-100025.

[106]

Brandon NP, Kelsall GH. Growth kinetics of bubbles electrogenerated at microelectrodes. J Appl Electrochem. 1985; 15(4): 475-484.

[107]

Enríquez O, Hummelink C, Bruggert GW, et al. Growing bubbles in a slightly supersaturated liquid solution. Rev Sci Instrum. 2013; 84(6): 65111-65111.

[108]

Yang X, Karnbach F, Uhlemann M, Odenbach S, Eckert K. Dynamics of single hydrogen bubbles at a platinum microelectrode. Langmuir. 2015; 31(29): 8184-8193.

[109]

Iwata R, Zhang L, Wilke KL, Gong S, Wang EN. Bubble growth and departure modes on wettable/non-wettable porous foams in alkaline water splitting. Joule. 2021; 5(4): 887-900.

[110]

Lopata J, Kang Z, Young J, et al. Effects of the transport/catalyst layer interface and catalyst loading on mass and charge transport phenomena in polymer electrolyte membrane water electrolysis devices. J Electrochem Soc. 2020; 167(6): 064507-064516.

[111]

Tian B, Li Y, Liu Y, et al. Ordered membrane electrode assembly with drastically enhanced proton and mass transport for proton exchange membrane water electrolysis. Nano Lett. 2023; 23(14): 6474-6481.

[112]

Weber CC, Wrubel JA, Gubler L, et al. How the porous transport layer interface affects catalyst utilization and performance in polymer electrolyte water electrolysis. ACS Appl Mater Interfaces. 2023; 15(29): 34750-34763.

[113]

Wang W, Ding L, Xie Z, et al. Discovering reactant supply pathways at electrode/pem reaction interfaces via a tailored interface-visible characterization cell. Small. 2023; 19(28): 2207809-2207818.

[114]

He X, Luo M, Chen B. Characteristics of oxygen bubble transport process in proton exchange membrane electrolysis cell. J Jiangsu Univ (Nat Sci Ed). 2021; 42(2): 139-144.

[115]

Sepe M, Lopata J, Madkour S, et al. Multiscale three-dimensional modeling of two-phase transport inside porous transport layers. Int J Hydrog Energy. 2024; 59: 1143-1155.

[116]

Millet P, Ranjbari A, de Guglielmo F, Grigoriev SA, Auprêtre F. Cell failure mechanisms in PEM water electrolyzers. Int J Hydrog Energy. 2012; 37(22): 17478-17487.

[117]

Zhang Z, Xing X. Simulation and experiment of heat and mass transfer in a proton exchange membrane electrolysis cell. Int J Hydrog Energy. 2020; 45(39): 20184-20193.

[118]

Chen Y, Mojica F, Li G, Chuang P-YA. Experimental study and analytical modeling of an alkaline water electrolysis cell. Int J Energy Res. 2017; 41(14): 2365-2373.

[119]

Toghyani S, Afshari E, Baniasadi E, Atyabi SA, Naterer GF. Thermal and electrochemical performance assessment of a high temperature PEM electrolyzer. Energy. 2018; 152: 237-246.

[120]

Lee CH, Banerjee R, Arbabi F, Hinebaugh J, Bazylak A, Porous Transport Layer Related Mass Transport Losses in Polymer Electrolyte Membrane Electrolysis: a Review. the ASME 14th Int. Conf. Nanochannels, Microchannels, Minichannels; October, 2016; Washington, D.C., USA.

[121]

Millet P, Andolfatto F, Durand R. Design and performance of a solid polymer electrolyte water electrolyzer. Int J Hydrog Energy. 1996; 21(2): 87-93.

[122]

Mo J, Kang Z, Yang G, et al. Thin liquid/gas diffusion layers for high-efficiency hydrogen production from water splitting. Appl Energ. 2016; 177: 817-822.

[123]

Arbabi F, Kalantarian A, Abouatallah R, et al. Feasibility study of using microfluidic platforms for visualizing bubble flows in electrolyzer gas diffusion layers. J Power Sources. 2014; 258: 142-149.

[124]

Lafmejani SS, Müller M, Olesen AC, Kær SK. Experimental and numerical study of flow in expanded metal plate for water electrolysis applications. J Power Sources. 2018; 397: 334-342.

[125]

Lee JK, Anderson G, Tricker AW, et al. Ionomer-free and recyclable porous-transport electrode for high-performing proton-exchange-membrane water electrolysis. Nat Commun. 2023; 14(1): 4592-4602.

[126]

Majasan JO, Iacouiello F, Cho J, et al. Correlative study of microstructure and performance for porous transport layers in polymer electrolyte membrane water electrolysers by X-ray computed tomography and electrochemical characterization. Int J Hydrog Energy. 2019; 44(36): 19519-19532.

[127]

Hwang CM, Ishida M, Ito H, et al. Effect of titanium powder loading in gas diffusion layer of a polymer electrolyte unitized reversible fuel cell. J Power Sources. 2012; 202: 108-113.

[128]

Pan Y, Wang H, Brandon NP. Gas diffusion layer degradation in proton exchange membrane fuel cells: mechanisms, characterization techniques and modelling approaches. J Power Sources. 2021; 513(230579): 230560.

[129]

Kim PJ, Lee JK, Lee CH, et al. Tailoring catalyst layer interface with titanium mesh porous transport layers. Electrochim Acta. 2021; 373: 137879-137887.

[130]

Han B, Mo J, Kang Z, Zhang F-Y. Effects of membrane electrode assembly properties on two-phase transport and performance in proton exchange membrane electrolyzer cells. Electrochim Acta. 2016; 188: 317-326.

[131]

Li H, Fujigaya T, Nakajima H, Inada A, Ito K. Optimum structural properties for an anode current collector used in a polymer electrolyte membrane water electrolyzer operated at the boiling point of water. J Power Sources. 2016; 332: 16-23.

[132]

Majasan JO, Iacouiello F, Shearing PR, Brett D. Effect of microstructure of porous transport layer on performance in polymer electrolyte membrane water electrolyser. Energy Procedia. 2018; 151: 111-119.

[133]

Steen SM, Mo J, Kang Z, Yang G, Zhang F-Y. Investigation of titanium liquid/gas diffusion layers in proton exchange membrane electrolyzer cells. Int J Green Energy. 2016; 14(2): 162-170.

[134]

Ito H, Maeda T, Nakano A, Kato A, Yoshida T. Influence of pore structural properties of current collectors on the performance of proton exchange membrane electrolyzer. Electrochim Acta. 2013; 100: 242-248.

[135]

Kaviany M. Principles of Heat Transfer in Porous Media. Springer-Verlag; 1991.

[136]

Duran S, Grimaud A, Faustini M, Peron J. Porosity as a morphology marker to probe the degradation of IrO2 anode catalyst layers in proton exchange membrane water electrolyzers. Chem Mater. 2023; 35(20): 8590-8598.

[137]

Amano F, Furusho Y, Hwang Y-M. Amorphous iridium and tantalum oxide layers coated on titanium felt for electrocatalytic oxygen evolution reaction. ACS Appl Energy Mater. 2020; 3(5): 4531-4538.

[138]

Pushkarev AS, Pushkareva IV, Solovyev MA, et al. On the influence of porous transport layers parameters on the performances of polymer electrolyte membrane water electrolysis cells. Electrochim Acta. 2021; 399: 139436-139445.

[139]

Schuler T, De Bruycker R, Schmidt TJ, Büchi FN. Polymer electrolyte water electrolysis: correlating porous transport layer structural properties and performance: part I. tomographic analysis of morphology and topology. J Electrochem Soc. 2019; 166(4): F270-F281.

[140]

Lettenmeier P, Kolb S, Sata N, et al. Comprehensive investigation of novel pore-graded gas diffusion layers for high-performance and cost-effective proton exchange membrane electrolyzers. Energ Environ Sci. 2017; 10(12): 2521-2533.

[141]

Wang Y. Porous-media flow fields for polymer electrolyte fuel cells. J Electrochem Soc. 2009; 156(10): B1124-B1133.

[142]

Kang Z, Alia SM, Young JL, Bender G. Effects of various parameters of different porous transport layers in proton exchange membrane water electrolysis. Electrochim Acta. 2020; 354: 136641-136651.

[143]

Mo J, Steen S, Han B, et al. Investigation of titanium felt transport parameters for energy storage and hydrogen/oxygen production. 13th Int. Energ. Convers. Eng. Conf.; July, 2015; Orlando, USA.

[144]

Kang Z, Yu S, Yang G, et al. Performance improvement of proton exchange membrane electrolyzer cells by introducing in-plane transport enhancement layers. Electrochim Acta. 2019; 316: 43-51.

[145]

Kang Z, Yang G, Mo J, et al. Developing titanium micro/nano porous layers on planar thin/tunable LGDLs for high-efficiency hydrogen production. Int J Hydrog Energy. 2018; 43(31): 14618-14628.

[146]

Weber CC, Schuler T, De Bruycker R, et al. On the role of porous transport layer thickness in polymer electrolyte water electrolysis. J Power Sources Adv. 2022; 15: 100095-100100.

[147]

Lee JK, Lee C, Fahy KF, et al. Spatially graded porous transport layers for gas evolving electrochemical energy conversion: high performance polymer electrolyte membrane electrolyzers. Energ Convers Manage. 2020; 226: 113545-113553.

[148]

Liu J, Kerner F, Schlüter N, Schröder D. Predicting the topological and transport properties in porous transport layers for water electrolyzers. ACS Appl Mater Interfaces. 2023; 15(46): 54129-54142.

[149]

Zhang P, Sun S, Yu H, et al. Influence of different materials as anode diffusion layer on performance of PEMWE. Renew Energy Resources. 2018; 37(10): 1429-1433.

[150]

Kang Z, Mo J, Yang G, Talley D, Cullen DA, Investigation of Pore Shape Effects of Novel Thin LGDLs for High-Efficiency Hydrogen Oxygen Generation and Energy Storage. 15th Int. Energy Convers. Eng. Conf.; July, 2017; Atlanta, USA.

[151]

Kang Z, Mo J, Yang G, et al. Investigation of thin/well-tunable liquid/gas diffusion layers exhibiting superior multifunctional performance in low-temperature electrolytic water splitting. Energ Environ Sci. 2017; 10(1): 166-175.

[152]

Stiber S, Sata N, Morawietz T, et al. A high-performance, durable and low-cost proton exchange membrane electrolyser with stainless steel components. Energ Environ Sci. 2022; 15(1754-5706): 109-122.

[153]

Lee JK, Lee C, Fahy KF, et al. Accelerating bubble detachment in porous transport layers with patterned through-pores. ACS Appl Energy Mater. 2020; 3(10): 9676-9684.

[154]

Kim PJ, Lee CH, Lee JK, Fahy KF, Bazylak A. In-plane transport in water electrolyzer porous transport layers with through pores. J Electrochem Soc. 2020; 167(12): 124522-124537.

[155]

Suermann M, Gimpel T, Bühre LV, et al. Femtosecond laser-induced surface structuring of the porous transport layers in proton exchange membrane water electrolysis. J Mater Chem A. 2020; 8(9): 4898-4910.

[156]

Kang Z, Mo J, Yang G, et al. Thin film surface modifications of thin/tunable liquid/gas diffusion layers for high-efficiency proton exchange membrane electrolyzer cells. Appl Energ. 2017; 206: 983-990.

[157]

Liu C, Carmo M, Bender G, et al. Performance enhancement of PEM electrolyzers through iridium-coated titanium porous transport layers. Electrochem Commun. 2018; 97: 96-99.

[158]

Rakousky C, Keeley GP, Wippermann K, Carmo M, Stolten D. The stability challenge on the pathway to high-current-density polymer electrolyte membrane water electrolyzers. Electrochim Acta. 2018; 278: 324-331.

[159]

Srour T, Kumar K, Martin V, et al. On the contact resistance between the anode and the porous transport layer in a proton exchange membrane water electrolyzer. Int J Hydrog Energy. 2024; 58: 351-361.

[160]

Kang Z, Mo J, Yang G, et al. Thin film surface modifications of thin tunable liquid gas diffusion layers for high efficiency proton exchange membrane electrolyzer cells. Appl Energ. 2017; 206: 983-990.

[161]

Pham AT, Baba T, Sugiyama T, Shudo T. Efficient hydrogen production from aqueous methanol in a PEM electrolyzer with porous metal flow field: influence of PTFE treatment of the anode gas diffusion layer. Int J Hydrog Energy. 2013; 38(1): 73-81.

[162]

Zhou H, Meng K, Chen W, Chen B. Exploratory research on bubbles migration behavior and mass transfer capacity evaluation of proton exchange membrane water electrolyzer based on a volume of fluid-coupled electrochemical model. Energ Convers Manage. 2023; 290: 117217-117235.

[163]

Nouri-Khorasani A, Tabu Ojong E, Smolinka T, Wilkinson DP. Model of oxygen bubbles and performance impact in the porous transport layer of PEM water electrolysis cells. Int J Hydrog Energy. 2017; 42(48): 28665-28680.

[164]

Polonský J, Kodým R, Vágner P, et al. Anodic microporous layer for polymer electrolyte membrane water electrolysers. J Appl Electrochem. 2017; 47(10): 1137-1146.

[165]

Kulkarni D, Ouimet R, Erb B, et al. Influence of microporous layers on interfacial properties, oxygen flow distribution, and durability of proton exchange membrane water electrolyzers. ACS Appl Mater Interfaces. 2023; 15(41): 48060-48071.

[166]

Schuler T, Weber CC, Wrubel JA, et al. Ultrathin microporous transport layers: implications for low catalyst loadings, thin membranes, and high current density operation for proton exchange membrane electrolysis. Adv Energy Mater. 2024; 14(7): 2302786.

[167]

Stiber S, Balzer H, Wierhake A, et al. Porous transport layers for proton exchange membrane electrolysis under extreme conditions of current density, temperature, and pressure. Adv Energy Mater. 2021; 11(33): 2100630-2100631.

[168]

Lettenmeier P, Kolb S, Burggraf F, Gago AS, Friedrich KA. Towards developing a backing layer for proton exchange membrane electrolyzers. J Power Sources. 2016; 311: 153-158.

RIGHTS & PERMISSIONS

2024 The Author(s). SusMat published by Sichuan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

1498

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/