Advanced carbon nitride-based single-atom photocatalysts

Zifan Zhang , Kun Xiang , Haitao Wang , Xin Li , Jing Zou , Guijie Liang , Jizhou Jiang

SusMat ›› 2024, Vol. 4 ›› Issue (5) : e229

PDF
SusMat ›› 2024, Vol. 4 ›› Issue (5) : e229 DOI: 10.1002/sus2.229
REVIEW

Advanced carbon nitride-based single-atom photocatalysts

Author information +
History +
PDF

Abstract

Single-atom catalysts (SACs) have rapidly become a hot topic in photocatalytic research due to their unique physical and chemical properties, high activity, and high selectivity. Among many semiconductor carriers, the special structure of carbon nitride (C3N4) perfectly meets the substrate requirements for stabilizing SACs; they can also compensate for the photocatalytic defects of C3N4 materials by modifying energy bands and electronic structures. Therefore, developing advanced C3N4-based SACs is of great significance. In this review, we focus on elucidating efficient preparation strategies and the burgeoning photocatalytic applications of C3N4-based SACs. We also outline prospective strategies for enhancing the performance of SACs and C3N4-based SACs in the future. A comprehensive array of methodologies is presented for identifying and characterizing C3N4-based SACs. This includes an exploration of potential atomic catalytic mechanisms through the simulation and regulation of atomic catalytic behaviors and the synergistic effects of single or multiple sites. Subsequently, a forward-looking perspective is adopted to contemplate the future prospects and challenges associated with C3N4-based SACs. This encompasses considerations, such as atomic loading, regulatory design, and the integration of machine learning techniques. It is anticipated that this review will stimulate novel insights into the synthesis of high-load and durable SACs, thereby providing theoretical groundwork for scalable and controllable applications in the field.

Keywords

atomic catalytic mechanism / carbon nitride / improvement strategies / photocatalytic applications / single-atom catalysts

Cite this article

Download citation ▾
Zifan Zhang, Kun Xiang, Haitao Wang, Xin Li, Jing Zou, Guijie Liang, Jizhou Jiang. Advanced carbon nitride-based single-atom photocatalysts. SusMat, 2024, 4(5): e229 DOI:10.1002/sus2.229

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ong W, Tan L, Ng Y, Yong S, Chai S. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev. 2016; 116(12): 7159-7329.

[2]

Yang M, Lian R, Zhang X, Wang C, Cheng J, Wang X. Photocatalytic cyclization of nitrogen-centered radicals with carbon nitride through promoting substrate/catalyst interaction. Nat Commun. 2022; 13(1): 4900.

[3]

Roy S, Li Z, Chen Z, et al. Cooperative copper single-atom catalyst in 2D carbon nitride for enhanced CO2 electrolysis to methane. Adv Mater. 2024; 11: 2311346.

[4]

Li F, Yue X, Liao Y, Qiao L, Lv K, Xiang Q. Understanding the unique S-scheme charge migration in triazine/heptazine crystalline carbon nitride homojunction. Nat Commun. 2023; 14(1): 3901.

[5]

Zhao D, Wang Y, Dong C-L, et al. Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting. Nat Energy. 2021; 6(4): 388-397.

[6]

Ling Y, Liu H, Li B, et al. Efficient photocatalytic ozonation of azithromycin by three-dimensional g-C3N4 nanosheet loaded magnetic Fe-MCM-48 under simulated solar light. Appl Catal B. 2023; 324(5): 122208.

[7]

Tao D, Liu X, Huang S, et al. Suppressing hydrogen evolution and eliminating sulfation in lead–carbon batteries via potential-matching g-C3N4@rGO nanosheets. Chem Eng J. 2023; 474(15): 145880.

[8]

Feng C, Luo J, Chen C, et al. Cooperative tungsten centers in polymeric carbon nitride for efficient overall photosynthesis of hydrogen peroxide. Energy Environ Sci. 2024; 17(4): 1520-1530.

[9]

Liang X, Xue S, Yang C, et al. The directional crystallization process of poly (triazine imide) single crystals in molten salts. Angew Chem Int Ed. 2023; 62(14): 202216434.

[10]

Hu J, Wu L, Liu H, et al. Strengthened H2O adsorption and photogenerated carrier separation: surface C-coupled hydroxylation of g-C3N4 photocatalysts for efficient H2 production. J Mater Chem A. 2024; 12(8): 4854-4865.

[11]

Liu T, Zhu W, Wang N, et al. Preparation of structure vacancy defect modified diatomic-layered g-C3N4 nanosheet with enhanced photocatalytic performance. Adv Sci. 2023; 10(24): e2302.

[12]

Chen L, Maigbay M, Li M, Qiu X. Synthesis and modification strategies of g-C3N4 nanosheets for photocatalytic applications. Adv Powder Mater. 2024(1):100150.

[13]

Fang X, Chen L, Cheng H, et al. Homojunction and ohmic contact coexisting carbon nitride for efficient photocatalytic hydrogen evolution. Nano Res. 2023; 16(7): 8782-8792.

[14]

Zhang J, Fu J, Dai K. Graphitic carbon nitride/antimonene van der Waals heterostructure with enhanced photocatalytic CO2 reduction activity. J Mater Sci Technol. 2022; 116: 192-198.

[15]

Wu X, Zhong R, Lv X, et al. Modulating g-C3N4-based van der Waals heterostructures with spatially separated reductive centers for tandem photocatalytic CO2 methanation. Appl Catal B. 2023; 330(5): 122666.

[16]

Chu X, Sathish CI, Yang JH, et al. Strategies for improving the photocatalytic hydrogen evolution reaction of carbon nitride-based catalysts. Small. 2023; 19(41): 2302875.

[17]

Zhang M, Li Y, Chang W, et al. Negative inductive effect enhances charge transfer driving in sulfonic acid functionalized graphitic carbon nitride with efficient visible-light photocatalytic performance. Chin J Catal. 2022; 43(2): 526-535.

[18]

Jing B, Ao Z, Zhao W, Xu Y, Chen Z, An T. Evaluation procedure of photocatalysts for VOCs degradation from the view of density functional theory calculations: g-C3N4 dots/graphene as an example. J Mater Chem A. 2020; 8(39): 20363-20372.

[19]

Wang H, Ma Y, Tang S, et al. Integrating configuration, doping and heterojunction into the g-C3N4-based photocatalyst for water splitting. Carbon. 2024; 218: 118723.

[20]

Du L, Gao B, Xu S, Xu Q. Strong ferromagnetism of g-C3N4 achieved by atomic manipulation. Nat Commun. 2023; 14(1): 2278.

[21]

Roškarič M, Zavašnik J, Zámbó D, et al. Optimization method based on simplex for surface area improved photocatalytic performance of g-C3N4. ACS Catal. 2023; 13(20): 13282-13300.

[22]

Liu J, Wang H, Antonietti M. Graphitic carbon nitride “reloaded”: emerging applications beyond (photo)catalysis. Chem Soc Rev. 2016; 45(8): 2308-2326.

[23]

Ge M, Chen Q, Zhao Y, Zhang JF, Van der Bruggen B, Dewil R. Advanced graphitic carbon nitride-based membranes for ionic resource recovery. Chem Eng J. 2024; 481: 148445.

[24]

Kessler F, Zheng Y, Schwarz D, et al. Functional carbon nitride materials—design strategies for electrochemical devices. Nat Rev Mater. 2017; 2(6): 17030.

[25]

Wang N, Cheng L, Liao Y, Xiang Q. Effect of functional group modifications on the photocatalytic performance of g-C3N4. Small. 2023; 19(27): e2300109.

[26]

Shang W, Liu W, Cai X, et al. Insights into atomically dispersed reactive centers on g-C3N4 photocatalysts for water splitting. Adv Powder Mater. 2023; 2(2): 100094.

[27]

Li L, Zeng H, Tang R, et al. Carbon nitride with grafted molecular as electron acceptor and active site to achieve efficient photo-activated peroxymonosulfate for organic pollutants removal. Appl Catal B. 2024; 345: 123693.

[28]

Wang Y, Liu L, Ma T, Zhang Y, Huang H. 2D graphitic carbon nitride for energy conversion and storage. Adv Funct Mater. 2021; 31(34): 2102540.

[29]

Zeng W, Dong Y, Ye X, et al. Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chin Chem Lett. 2024; 35(4): 109252.

[30]

Hu C, Chen F, Wang Y, et al. Exceptional cocatalyst-free photo-enhanced piezocatalytic hydrogen evolution of carbon nitride nanosheets from strong in-plane polarization. Adv Mater. 2021; 33(24): 2101751.

[31]

Deng J, Zeng Y, Almatrafi E, et al. Advances of carbon nitride based atomically dispersed catalysts from single-atom to dual-atom in advanced oxidation process applications. Coord Chem Rev. 2024; 505: 215693.

[32]

Dharmarajan N, Vidyasagar D, Yang JH, et al. Bio-inspired supramolecular self-assembled carbon nitride nanostructures for photocatalytic water splitting. Adv Mater. 2023; 36(2): 2306895.

[33]

Chen D, Wang Z, Fu J, Zhang J, Dai K. Ethyl-activated carbon nitride for efficient photocatalytic CO2 conversion. Sci China Mater. 2024; 67(2): 541-549.

[34]

Zhong J, Jiang H, Wang Z, et al. Efficient photocatalytic destruction of recalcitrant micropollutants using graphitic carbon nitride under simulated sunlight irradiation. Environ Sci Ecotechnol. 2021; 5: 100079.

[35]

Tao S, Wan S, Huang Q, Li C, Yu J, Cao S. Molecular engineering of g-C3N4 with dibenzothiophene groups as electron donor for enhanced photocatalytic H2-production. Chin J Struct Chem. 2022; 41(6): 2206048-2206054.

[36]

Jiang J, Li N, Zou J, et al. Synergistic additive-mediated CVD growth and chemical modification of 2D materials. Chem Soc Rev. 2019; 48(17): 4639-4654.

[37]

Chen Y, Tu C, Liu Y, et al. Microstructure and mechanical properties of carbon graphite composites reinforced by carbon nanofibers. Carbon Lett. 2022; 33(2): 561-571.

[38]

Wang S, Li YL, Wang X, et al. One-step supramolecular preorganization constructed crinkly graphitic carbon nitride nanosheets with enhanced photocatalytic activity. J Mater Sci Technol. 2022; 104: 155-162.

[39]

Chen Y, Cheng M, Lai C, et al. The collision between g-C3N4 and QDs in the fields of energy and environment: synergistic effects for efficient photocatalysis. Small. 2023; 19(14): 2205902.

[40]

Nguyen P, Tran T, Nguyen Q, et al. Constructing a rhenium complex supported on g-C3N4 for efficient visible-light-driven photoreduction of CO2 to CO via a novel Z-scheme heterojunction. J Mater Chem A. 2023; 11(32): 17145-17158.

[41]

Xu Y, Lin W, Yuan D, et al. “1+1>2”: highly efficient removal of organic pollutants by composite nanofibrous membrane based on the synergistic effect of adsorption and photocatalysis. J Mater Sci Technol. 2022; 124: 76-85.

[42]

Nguyen T, Kim D, Ko S. Catalytic degradation of acetaminophen by C and O co-doped graphitic carbon nitride: peroxymonosulfate vs. peroxydisulfate. Chem Eng J. 2024; 480: 148348.

[43]

Hao Z, Ma L, Jia J, Wu H. Metal-free B4@g-C3N4: a potential electrocatalyst for highly selective and efficient conversion of CO to ethanol. J Mater Chem A. 2023; 11(34): 18365-18374.

[44]

Wang J, Zhao Q, Kumar P, et al. Solar-driven cellulose photorefining into arabinose over oxygen-doped carbon nitride. ACS Catal. 2024; 14(5): 3376-3386.

[45]

Jiang B, Huang H, Gong W, et al. Wood-inspired binder enabled vertical 3D printing of g-C3N4/CNT arrays for highly efficient photoelectrochemical hydrogen evolution. Adv Funct Mater. 2021; 31(45): 2105045.

[46]

Tahir M. Triphenylphosphine ruthenium (RuP) complex anchored with exfoliated g-C3N4 (ECN) with an externally reflected solar photoreactor system for highly efficient solar H2 production. Chem Eng J. 2023; 471(1): 144511.

[47]

Yang H, Zhang A, Ding J, et al. Amino modulation on the surface of graphitic carbon nitride for enhanced photocatalytic hydrogen production. Carbon. 2024; 219: 118841.

[48]

Yang F, Hu P, Hua X, Chen B, Gao L, Wang K. Photocatalytic applications and modification methods of two-dimensional nanomaterials: a review. Tungsten. 2024; 6(1): 77-113.

[49]

Li Y, He Z, Liu L, et al. Inside-and-out modification of graphitic carbon nitride (g-C3N4) photocatalysts via defect engineering for energy and environmental science. Nano Energy. 2023; 105: 108032.

[50]

Huang C, Wen Y, Ma J, et al. Unraveling fundamental active units in carbon nitride for photocatalytic oxidation reactions. Nat Commun. 2021; 12(1): 320.

[51]

Liu B, Du J, Ke G, et al. Boosting O2 reduction and H2O dehydrogenation kinetics: surface N-hydroxymethylation of g-C3N4 photocatalysts for the efficient production of H2O2. Adv Funct Mater. 2021; 32(15): 2111125.

[52]

Luo W, Li Y, Wang J, et al. Asymmetric structure engineering of polymeric carbon nitride for visible-light-driven reduction reactions. Nano Energy. 2021; 87: 106168.

[53]

Wu J, Liu Z, Lin X, et al. Breaking through water-splitting bottlenecks over carbon nitride with fluorination. Nat Commun. 2022; 13(1): 6999.

[54]

Li Y, He Z, Liu L, et al. Inside-and-out modification of graphitic carbon nitride (g-C3N4) photocatalysts via defect engineering for energy and environmental science. Nano Energy. 2023; 105: 108032.

[55]

Karjule N, Singh C, Barrio J, et al. Carbon nitride-based photoanode with enhanced photostability and water oxidation kinetics. Adv Funct Mater. 2021; 31(25): 2101724.

[56]

Jourshabani M, Asrami M, Lee B. An efficient and unique route for the fabrication of highly condensed oxygen-doped carbon nitride for the photodegradation of synchronous pollutants and H2O2 production under ambient conditions. Appl Catal B. 2022; 302: 120839.

[57]

Wang H, Jiang J, Yu L, et al. Tailoring advanced N-defective and S-doped g-C3N4 for photocatalytic H2 evolution. Small. 2023; 19(28): e2301116.

[58]

Wang H, Yu L, Jiang J, Arramel A, Zou J. S-doping of the N-sites of g-C3N4 to enhance photocatalytic H2 evolution activity. Acta Phys Chim Sin. 2023; 40(0): 2305047.

[59]

Jun Y, Lee E, Wang X, Hong W, Stucky G, Thomas A. From melamine-cyanuric acid supramolecular aggregates to carbon nitride hollow spheres. Adv Funct Mater. 2013; 23(29): 3661-3667.

[60]

Hou S, Gao X, Lv X, et al. Decade milestone advancement of defect-engineered g-C3N4 for solar catalytic applications. Nano-Micro Lett. 2024; 16(1): 70.

[61]

Zhu YL, Liu XT, Liu H, et al. Regulating nitrogen vacancies within graphitic carbon nitride to boost photocatalytic hydrogen peroxide production. SusMat. 2022; 2(5): 617-629.

[62]

Guo Y, Liu G, Yin W, Zhang Y, Shi L. Precise defect engineering g-C3N4 fabrication to improve hydrogen production performance. Fuel. 2024; 362: 130743.

[63]

Wang Z, Huang Y, Chen M, et al. Roles of N-vacancies over porous g-C3N4 microtubes during photocatalytic NOx removal. ACS Appl Mater Interfaces. 2019; 11(11): 10651-10662.

[64]

Yang T, Deng P, Wang L, Hu J, Liu Q, Tang H. Simultaneous photocatalytic oxygen production and hexavalent chromium reduction in Ag3PO4/C3N4 S-scheme heterojunction. Chin J Struct Chem. 2022; 41(6): 2206023-2206030.

[65]

Jiang J, Xiong Z, Wang H, et al. Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution. J Mater Sci Technol. 2022; 118: 15-24.

[66]

Zhang T, Zhang Q, Li Q, Li F, Xu L. Enhanced catalytic CuCo2Se4/g-C3N4 nano-composites as counter electrodes for high-performance quantum dot sensitized solar cells. Chem Eng J. 2023; 454(15): 140518.

[67]

Omr H, Putikam R, Feng S, Lin M, Lee H. Synergistic role of Cu–C and Cu–N dual bonding of nanostructured g-C3N4/Cu2SnS3 photocatalysts for efficient CO2 conversion to CO. Appl Catal B. 2023; 339(15): 123103.

[68]

Chen J, Zhao J, Feng R, et al. Competitive photoelectrochemical aptamer sensor based on a Z-scheme Fe2O3/g-C3N4 heterojunction for sensitive detection of lead ions. J Hazard Mater. 2023; 459(5): 132122.

[69]

Zhou L, Li Y, Zhang Y, Qiu L, Xing Y. A 0D/2D Bi4V2O11/g-C3N4/S-scheme heterojunction with rapid interfacial charges migration for photocatalytic antibiotic degradation. Acta Phys Chim Sin. 2022; 38(0): 2112027.

[70]

Dong H, Tong L, Zhang P, Zhu D, Jiang J, Li C. Built-in electric field intensified by photothermoelectric effect drives charge separation over Z-scheme 3D/2D In2Se3/PCN heterojunction for high-efficiency photocatalytic CO2 reduction. J Mater Sci Technol. 2024; 179: 251-261.

[71]

Li Y, Xia Z, Yang Q, Wang L, Xing Y. Review on g-C3N4-based S-scheme heterojunction photocatalysts. J Mater Sci Technol. 2022; 125: 128-144.

[72]

Shen S, Chen J, Wang Y, et al. Boosting photocatalytic hydrogen production by creating isotype heterojunctions and single-atom active sites in highly-crystallized carbon nitride. Sci Bull. 2022; 67(5): 520-528.

[73]

Ruan X, Huang C, Cheng H, et al. A twin S-scheme artificial photosynthetic system with self-assembled heterojunctions yields superior photocatalytic hydrogen evolution rate. Adv Mater. 2023; 35(6): e2209141.

[74]

Ni J, Liu D, Wang W, et al. Hierarchical defect-rich flower-like BiOBr/Ag nanoparticles/ultrathin g-C3N4 with transfer channels plasmonic Z-scheme heterojunction photocatalyst for accelerated visible-light-driven photothermal-photocatalytic oxytetracycline degradation. Chem Eng J. 2021; 419(1): 129969.

[75]

Yin H, Fan T, Cao Y, Li P, Yao X, Liu X. Construction of three-dimensional MgIn2S4 nanoflowers/two-dimensional oxygen-doped g-C3N4 nanosheets direct Z-scheme heterojunctions for efficient Cr(VI) reduction: insight into the role of superoxide radicals. J Hazard Mater. 2021; 420(15): 126567.

[76]

Zou J, Liao G, Jiang J, et al. In-situ construction of sulfur-doped g-C3N4/defective g-C3N4 isotype step-scheme heterojunction for boosting photocatalytic H2 evolution. Chin J Struct Chem. 2022; 41(1): 2201025-2201033.

[77]

Lee D, Moru S, Reddy K, Jo W, Tonda S. 2D/2D BiOIO3/g-C3N4 S-scheme hybrid heterojunction with face-to-face interfacial contact for effective photocatalytic H2 production and norfloxacin degradation. J Mater Sci Technol. 2023; 148: 19-30.

[78]

Guo S, Zhang H, Hu Z, et al. Composition-dependent micro-structure and photocatalytic performance of g-C3N4 quantum dots@SnS2 heterojunction. Nano Res. 2021; 14(11): 4188-4196.

[79]

Li F, Zhu G, Jiang J, et al. A review of updated S-scheme heterojunction photocatalysts. J Mater Sci Technol. 2024; 177: 142-180.

[80]

Zou J, Liao G, Wang H, et al. Controllable interface engineering of g-C3N4/CuS nanocomposite photocatalysts. J Alloys Compd. 2022; 911: 165020.

[81]

Zhang J, Zhao Y, Qi K, Liu S-Y. CuInS2 quantum-dot-modified g-C3N4 S-scheme heterojunction photocatalyst for hydrogen production and tetracycline degradation. J Mater Sci Technol. 2024; 172: 145-155.

[82]

Meng J, Wang X, Liu Y, et al. Acid-induced molecule self-assembly synthesis of Z-scheme WO3/g-C3N4 heterojunctions for robust photocatalysis against phenolic pollutants. Chem Eng J. 2021; 403(1): 126354.

[83]

Lu W, Xu L, Shen X, et al. Highly efficient activation of sulfite by p-type S-doped g-C3N4 under visible light for emerging contaminants degradation. Chem Eng J. 2023; 472: 144708.

[84]

Xu J, Chen Y, Chen M, Wang J, Wang L. In situ growth strategy synthesis of single-atom nickel/sulfur co-doped g-C3N4 for efficient photocatalytic tetracycline degradation and CO2 reduction. Chem Eng J. 2022; 442: 136208.

[85]

Lin L, Lin Z, Zhang J, et al. Molecular-level insights on the reactive facet of carbon nitride single crystals photocatalysing overall water splitting. Nat Catal. 2020; 3(8): 649-655.

[86]

Liu T, Li Y, Sun H, Zhang M, Xia Z, Yang Q. Asymmetric structure awakened n–π* electron transition in sulfur and selenium Co-doped g-C3N4 with efficient photocatalytic performance. Chin J Struct Chem. 2022; 41(6): 2206055-2206061.

[87]

Zhao X, Liu Q, Li X, Ji H, Shen Z. Two-dimensional g-C3N4 nanosheets-based photo-catalysts for typical sustainable processes. Chin Chem Lett. 2023; 34(11): 108306.

[88]

Li J, Wu D, Iocozzia J, et al. Achieving efficient incorporation of pi-electrons into graphitic carbon nitride for markedly improved hydrogen generation. Angew Chem Int Ed. 2019; 58(7): 1985-1989.

[89]

Tian S, Fu Q, Chen W, et al. Carbon nitride supported Fe2 cluster catalysts with superior performance for alkene epoxidation. Nat Commun. 2018; 9(1): 2353.

[90]

Zhou Y, Zhang L, Wang W. Direct functionalization of methane into ethanol over copper modified polymeric carbon nitride via photocatalysis. Nat Commun. 2019; 10(1): 506.

[91]

Jing L, Wang D, He M, et al. An efficient broad spectrum-driven carbon and oxygen co-doped g-C3N4 for the photodegradation of endocrine disrupting: mechanism, degradation pathway, DFT calculation and toluene selective oxidation. J Hazard Mater. 2021; 401(5): 123309.

[92]

Che H, Che G, Zhou P, et al. Nitrogen doped carbon ribbons modified g-C3N4 for markedly enhanced photocatalytic H2-production in visible to near-infrared region. Chem Eng J. 2020; 382(15): 122870.

[93]

Hu Y, Li X, Wang W, et al. Bi and S Co-doping g-C3N4 to enhance internal electric field for robust photocatalytic degradation and H2 production. Chin J Struct Chem. 2022; 41(6): 2206069-2206078.

[94]

Wang Y, Shen S. Progress and prospects of non-metal doped graphitic carbon nitride for improved photocatalytic performances. Acta Phys Chim Sin. 2020; 36(3): 1905080.

[95]

Zou J, Mao D, Arramel , Li N, Jiang J. Reliable and selective lead-ion sensor of sulfur-doped graphitic carbon nitride nanoflakes. Appl Surf Sci. 2020; 506(15): 144672.

[96]

Wang F, Xu J, Wang Z, Lou Y, Pan C, Zhu Y. Unprecedentedly efficient mineralization performance of photocatalysis-self-Fenton system towards organic pollutants over oxygen-doped porous g-C3N4 nanosheets. Appl Catal B. 2022; 312: 121438.

[97]

Cirena Z, Nie Y, Li Y, et al. Fe doped g-C3N4 composited ZnIn2S4 promoting Cr(VI) photoreduction. Chin Chem Lett. 2023; 34(4): 107726.

[98]

Liu Y, Zheng Y, Zhang W, et al. Template-free preparation of non-metal (B, P, S) doped g-C3N4 tubes with enhanced photocatalytic H2O2 generation. J Mater Sci Technol. 2021; 95: 127-135.

[99]

Chang C, Wu JC, Wu D, Jiang G, Xu X, Chang S. PtCu nanoalloy loaded on sulfur-doped porous g-C3N4 for electrocatalytic hydrogen evolution. New J Chem. 2024; 48(10): 4296-4303.

[100]

Zhang Y, Antonietti M. Photocurrent generation by polymeric carbon nitride solids: an initial step towards a novel photovoltaic system. J Am Chem Soc. 2010; 5(6): 1307-1311.

[101]

Ren H, Wang Y, Yang Y, et al. Fe/N/C nanotubes with atomic Fe sites: a highly active cathode catalyst for alkaline polymer electrolyte fuel cells. ACS Catal. 2017; 7(10): 6485-6492.

[102]

Marcinkowski M, Darby M, Liu J, et al. Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C–H activation. Nat Chem. 2018; 10(3): 325-332.

[103]

Chen Z, Bu Y, Wang L, Wang X, Ao J-P. Single-sites Rh-phosphide modified carbon nitride photocatalyst for boosting hydrogen evolution under visible light. Appl Catal B. 2020; 274(5): 119117.

[104]

Vajda S, Pellin MJ, Greeley J, et al. Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. Nat Mater. 2009; 8(3): 213-216.

[105]

Guo W, Wang Z, Wang X, Wu Y. General design concept for single-atom catalysts toward heterogeneous catalysis. Adv Mater. 2021; 33(34): 2004287.

[106]

Weng B, Lu K, Tang Z, Chen H, Xu Y. Stabilizing ultrasmall Au clusters for enhanced photoredox catalysis. Nat Commun. 2018; 9(1): 1543.

[107]

Yang W, Zhao X, Wang Y, et al. Selective dissolution to synthesize densely populated Pt single atom catalyst. Nano Res. 2022; 16(1): 219-227.

[108]

Qin S, Will J, Kim H, et al. Single atoms in photocatalysis: low loading is good enough! ACS Energy Lett. 2023; 8(2): 1209-1214.

[109]

Lu C, Fang R, Chen X. Single-atom catalytic materials for advanced battery systems. Adv Mater. 2020; 32(16): 1906548.

[110]

Rong H, Ji S, Zhang J, Wang D, Li Y. Synthetic strategies of supported atomic clusters for heterogeneous catalysis. Nat Commun. 2020; 11(1): 5884.

[111]

Li R, Wang D. Superiority of dual-atom catalysts in electrocatalysis: one step further than single-atom catalysts. Adv Energy Mater. 2022; 12(9): 2103564.

[112]

Shen L, Ma M, Tu F, et al. Recent advances in high-loading catalysts for low-temperature fuel cells: from nanoparticle to single atom. SusMat. 2021; 1(4): 569-592.

[113]

Qiao B, Wang A, Yang X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem. 2011; 3(8): 634-641.

[114]

Zhao L, Wang S, Liang S, An Q, Fu J, Hu J. Coordination anchoring synthesis of high-density single-metal-atom sites for electrocatalysis. Coord Chem Rev. 2022; 466(1): 214603.

[115]

Yang Q, Jiang Y, Zhuo H, Mitchell EM, Yu Q. Recent progress of metal single-atom catalysts for energy applications. Nano Energy. 2023; 111: 108404.

[116]

Wang Y, Zhang Y, Yu W, Chen F, Ma T, Huang H. Single-atom catalysts for energy conversion. J Mater Chem A. 2023; 11(6): 2568-2594.

[117]

Qin R, Liu K, Wu Q, Zheng N. Surface coordination chemistry of atomically dispersed metal catalysts. Chem Rev. 2020; 120(21): 11810-11899.

[118]

Xi J, Jung HS, Xu Y, Xiao F, Bae JW, Wang S. Synthesis strategies, catalytic applications, and performance regulation of single-atom catalysts. Adv Funct Mater. 2021; 31(12): 2008318.

[119]

Li X, Yang X, Huang Y, Zhang T, Liu B. Supported noble-metal single atoms for heterogeneous catalysis. Adv Mater. 2019; 31(50): 1902031.

[120]

Ye X, Yang C, Pan X, et al. Highly selective hydrogenation of CO2 to ethanol via designed bifunctional Ir1-In2O3 single-atom catalyst. J Am Chem Soc. 2020; 142(45): 19001-19005.

[121]

Li X, Yang X, Huang Y, Zhang T, Liu B. Supported noble-metal single atoms for heterogeneous catalysis. Adv Mater. 2019; 31(50): 1902031.

[122]

Jin H, Cui P, Cao C, et al. Understanding the density-dependent activity of Cu single-atom catalyst in the benzene hydroxylation reaction. ACS Catal. 2023; 13(2): 1316-1325.

[123]

Hai X, Zheng Y, Yu Q, et al. Geminal-atom catalysis for cross-coupling. Nature. 2023; 622(7984): 754-760.

[124]

Zhang F, Zhu Y, Lin Q, Zhang L, Zhang X, Wang H. Noble-metal single-atoms in thermocatalysis, electrocatalysis, and photocatalysis. Energy Environ Sci. 2021; 14(5): 2954-3009.

[125]

Li L, Chang X, Lin X, Zhao ZJ, Gong J. Theoretical insights into single-atom catalysts. Chem Soc Rev. 2020; 49(22): 8156-8178.

[126]

Hu Y, Li H, Li Z, et al. Progress in batch preparation of single-atom catalysts and application in sustainable synthesis of fine chemicals. Green Chem. 2021; 23(22): 8754-8794.

[127]

Mitchell S, Perez-Ramirez J. Single atom catalysis: a decade of stunning progress and the promise for a bright future. Nat Commun. 2020; 11(1): 4302.

[128]

Liu J, Jiao M, Lu L, et al. High performance platinum single atom electrocatalyst for oxygen reduction reaction. Nat Commun. 2017; 8(1): 15938.

[129]

Zhou L, Lu S, Guo S. Recent progress on precious metal single atom materials for water splitting catalysis. SusMat. 2021; 1(2): 194-210.

[130]

Ding Z, Li X, Kang C, et al. Single Ru atoms confined into MOF/C3N4 for dual improved photocatalytic carbon dioxide reduction and nitrogen fixation. Chem Eng J. 2023; 473(1): 145256.

[131]

Sun T, Zang W, Sun J, et al. SACs on non-carbon substrates: can they outperform for water splitting? Adv Funct Mater. 2023; 33(30): 2301526.

[132]

Li W, Liu C, Gu C, Choi J, Wang S, Jiang J. Interlayer charge transfer regulates single-atom catalytic activity on electride/graphene 2D heterojunctions. J Am Chem Soc. 2023; 145(8): 4774-4783.

[133]

Cao F, Sang Y, Liu C, et al. Self-adaptive single-atom catalyst boosting selective ferroptosis in tumor cells. ACS Nano. 2022; 16(1): 855-868.

[134]

Pan C, Wu F, Mao J, et al. Highly stable and selective sensing of hydrogen sulfide in living mouse brain with NiN4 single-atom catalyst-based galvanic redox potentiometry. J Am Chem Soc. 2022; 144(32): 14678-14686.

[135]

Shi J, Wei Y, Zhou D, et al. Introducing Co–O moiety to Co–N–C single-atom catalyst for ethylbenzene dehydrogenation. ACS Catal. 2022; 12(13): 7760-7772.

[136]

Ning S, Jiang J, Hong S, Wang Y, Li C, Dong H. State-of-the-art advancements in single atom electrocatalysts originating from MOFs for electrochemical energy conversion. Chin J Catal. 2024; 59: 38-81.

[137]

Liang X, Fu N, Yao S, Li Z, Li Y. The progress and outlook of metal single-atom-site catalysis. J Am Chem Soc. 2022; 144(40): 18155-18174.

[138]

Zhang W, Chao Y, Zhang W, et al. Emerging dual-atomic-site catalysts for efficient energy catalysis. Adv Mater. 2021; 33(36): 2102576.

[139]

Xu H, Zhao Y, Wang Q, He G, Chen H. Supports promote single-atom catalysts toward advanced electrocatalysis. Coord Chem Rev. 2022; 451(15): 214261.

[140]

Li Y, Wu Z, Lu P, et al. High-valence nickel single-atom catalysts coordinated to oxygen sites for extraordinarily activating oxygen evolution reaction. Adv Sci. 2020; 7(5): 1903089.

[141]

Chen R, Chen J, Che H, Zhou G, Ao Y, Liu B. Atomically dispersed main group magnesium on cadmium sulfide as the active site for promoting photocatalytic hydrogen evolution catalysis. Chin J Struct Chem. 2022; 41(1): 2201014-2201018.

[142]

Yang Y, Wu J, Cheng B, et al. Enhanced photocatalytic H2-production activity of CdS nanoflower using single atom Pt and graphene quantum dot as dual cocatalysts. Chin J Struct Chem. 2022; 41(6): 2206006-2206014.

[143]

Lee S, Jang H, Lee H, Joh H. Size effect of metal-organic frameworks with iron single-atom catalysts on oxygen-reduction reactions. Carbon Lett. 2021; 31(6): 1349-1355.

[144]

Li X, Xu W, Fang Y, et al. Single-atom catalyst application in distributed renewable energy conversion and storage. SusMat. 2023; 3(2): 160-179.

[145]

Liang H, Zeng Z, Qiao Z, Li Y, Wang C. The heterointerface effect to boost the catalytic performance of single atom catalysts for sulfur conversion in lithium-sulfur batteries. Phys Chem Chem Phys. 2024; 26(7): 5858-5867.

[146]

Choi C, Kim M, Kwon H, et al. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat Commun. 2016; 7(1): 10922.

[147]

Wu X, Zhang H, Zuo S, et al. Engineering the coordination sphere of isolated active sites to explore the intrinsic activity in single-atom catalysts. Nano-Micro Lett. 2021; 13(1): 136.

[148]

Xue Z, Luan D, Zhang H, Lou X. Single-atom catalysts for photocatalytic energy conversion. Joule. 2022; 6(1): 92-133.

[149]

Lv S, Pei M, Liu Y, et al. An isolation strategy to anchor atomic Ni or Co cocatalysts on TiO2(A) for photocatalytic hydrogen production. Nano Res. 2022; 15(7): 5848-5856.

[150]

Li C, Pan W, Zhang Z, Wu T, Guo R. Recent progress of single-atom photocatalysts applied in energy conversion and environmental protection. Small. 2023; 19(22): 2300460.

[151]

Li T, Ren S, Zhang C, et al. Cobalt single atom anchored on N-doped carbon nanoboxes as typical single-atom catalysts (SACs) for boosting the overall water splitting. Chem Eng J. 2023; 458(15): 141435.

[152]

Zhuang Z, Xia L, Huang J, et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p–n junction rectification. Angew Chem Int Ed. 2023; 62(5): 202212335.

[153]

Chen H, Xiong Y, Li J, et al. Epitaxially grown silicon-based single-atom catalyst for visible-light-driven syngas production. Nat Commun. 2023; 14(1): 1719.

[154]

Zhang H, Tian W, Duan X, et al. Single-atom catalysts on metal-based supports for solar photoreduction catalysis. Chin J Catal. 2022; 43(9): 2301-2315.

[155]

Xu J, Li R, Yan X, et al. Platinum single atom catalysts for hydrogen isotope separation during hydrogen evolution reaction. Nano Res. 2022; 15(5): 3952-3958.

[156]

He J, Liu P, Ran R, Wang W, Zhou W, Shao Z. Single-atom catalysts for high-efficiency photocatalytic and photoelectrochemical water splitting: distinctive roles, unique fabrication methods and specific design strategies. J Mater Chem A. 2022; 10(13): 6835-6871.

[157]

Miao Y, Liu J, Chen L, et al. Single-atomic-Co cocatalyst on (040) facet of BiVO4 toward efficient photoelectrochemical water splitting. Chem Eng J. 2022; 427(1): 131011.

[158]

Ruta V, Sivo A, Bonetti L, Bajada M, Vile G. Structural effects of metal single-atom catalysts for enhanced photocatalytic degradation of gemfibrozil. ACS Appl Nano Mater. 2022; 5(10): 14520-14528.

[159]

Song Q, He G, Fei H. Photothermal catalytic conversion based on single atom catalysts: fundamentals and applications. Acta Phys Chim Sin. 2023; 39(0): 2212038.

[160]

Huang G, Lin G, Niu Q, Bi J, Wu L. Covalent triazine-based frameworks confining cobalt single atoms for photocatalytic CO2 reduction and hydrogen production. J Mater Sci Technol. 2022; 116: 41-49.

[161]

Denisov N, Qin S, Will J, et al. Light-induced agglomeration of single-atom platinum in photocatalysis. Adv Mater. 2023; 35(5): 2206569.

[162]

Zeng L, Zhao Z, Huang Q, et al. Single-atom Cr–N4 Sites with high oxophilicity interfaced with Pt atomic clusters for practical alkaline hydrogen evolution catalysis. J Am Chem Soc. 2023; 145(39): 21432-21441.

[163]

Gao G, Jiao Y, Waclawik E, Du A. Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide. J Am Chem Soc. 2016; 138(19): 6292-6297.

[164]

Zhao E, Li M, Xu B, et al. Transfer hydrogenation with a carbon-nitride-supported palladium single-atom photocatalyst and water as a proton source. Angew Chem Int Ed. 2022; 61(40): 202207410.

[165]

Jang D, Jeon S, Shin E, Park S. Polymeric carbon nitrides produced from different gaseous conditions and their photocatalytic performance for degrading organic pollutants. Carbon Lett. 2023; 33(3): 803-809.

[166]

Shang W, Liu W, Cai X, et al. Insights into atomically dispersed reactive centers on g-C3N4 photocatalysts for water splitting. Adv Powder Mater. 2023; 2(2): 100094.

[167]

Li Y, Song Z, Xiao X, et al. In-situ electronic structure redistribution tuning of single-atom Mn/g-C3N4 catalyst to trap atomic-scale lead(II) for highly stable and accurate electroanalysis. J Hazard Mater. 2022; 435(5): 129009.

[168]

Zhang Y, Wang B, Fan M, Ling L, Zhang R. Ethane dehydrogenation over the g-C3N4 supported metal single-atom catalysts to enhance reactivity and coking-resistance ability. Nano Res. 2022; 16(5): 6142-6152.

[169]

Song J, Chen Z, Cai X, et al. Promoting dinuclear-type catalysis in Cu1-C3N4 single-atom catalysts. Adv Mater. 2022; 34(33): 2204638.

[170]

Xiao X, Gao Y, Zhang L, et al. A promoted charge separation/transfer system from Cu single atoms and C3N4 layers for efficient photocatalysis. Adv Mater. 2020; 32(33): 2003082.

[171]

Sheng B, Deng C, Li Y, et al. In situ hydroxylation of a single-atom iron catalyst for preferential 1O2 production from H2O2. ACS Catal. 2022; 12(23): 14679-14688.

[172]

Qin X, Wan J, Zhang Q, Zhang Y, Yu H, Shi S. Polyaniline-modified graphitic carbon nitride as electrode materials for high-performance supercapacitors. Carbon Lett. 2023; 33(3): 781-790.

[173]

Li X, Liu J, Wu J, Zhang L, Cao D, Cheng D. Constructing a highly active Pd atomically dispersed catalyst for cinnamaldehyde hydrogenation: synergistic catalysis between Pd–N3 single atoms and fully exposed Pd clusters. ACS Catal. 2024; 14(4): 2369-2379.

[174]

Rocha G, da Silva M, Rogolino A, et al. Carbon nitride based materials: more than just a support for single-atom catalysis. Chem Soc Rev. 2023; 52(15): 4878-4932.

[175]

Suja P, John J, Rajan T, et al. Graphitic carbon nitride (g-C3N4) based heterogeneous single atom catalysts: synthesis, characterisation and catalytic applications. J Mater Chem A. 2023; 11: 8599-8646.

[176]

Jia T, Meng D, Duan R, et al. Single-atom nickel on carbon nitride photocatalyst achieves semihydrogenation of alkynes with water protons via monovalent nickel. Angew Chem Int Ed. 2023; 135(9): 202216511.

[177]

Zhu L, Liang Z, Li H, et al. A pi-conjugated van der Waals heterostructure between single-atom Ni-anchored salphen-based covalent organic framework and polymeric carbon nitride for high-efficiency interfacial charge separation. Small. 2023; 19(33): 2301017.

[178]

Qin L, Meng J, Yang G, et al. Interlayer single-atomic Fe–N4 sites on carbon-rich graphitic carbon nitride for notably enhanced photo-Fenton-like catalytic oxidation processes towards recalcitrant organic micropollutants. Appl Catal B. 2024; 345(15): 123695.

[179]

Wu C, Dai J, Li X, et al. Ion-exchange enabled synthetic swarm. Nat Nanotechnol. 2021; 16(3): 288-295.

[180]

Wang H, Yang H, Diao Y, Lu Y, Chrulski K, D’Arcy JM. Solid-state precursor impregnation for enhanced capacitance in hierarchical flexible poly(3, 4-ethylenedioxythiophene) supercapacitors. ACS Nano. 2021; 15(4): 7799-7810.

[181]

Kim Y, Woo W, Kim D, et al. Atomic-layer-deposition-based 2D transition metal chalcogenides: synthesis, modulation, and applications. Adv Mater. 2021; 33(47): 2005907.

[182]

Lang R, Xi W, Liu J, et al. Non defect-stabilized thermally stable single-atom catalyst. Nat Commun. 2019; 10(1): 234.

[183]

Cheng Q, Yang L, Zou L, et al. Single cobalt atom and N codoped carbon nanofibers as highly durable electrocatalyst for oxygen reduction reaction. ACS Catal. 2017; 7(10): 6864-6871.

[184]

Wang Y, Xie D, Wang G, et al. Single-atomic Co–N4–O site boosting exciton dissociation and hole extraction for improved photocatalytic hydrogen evolution in crystalline carbon nitride. Nano Energy. 2022; 104: 107938.

[185]

Feng X, Guo J, Wang S, Wu Q, Chen Z. Atomically dispersed gold anchored on carbon nitride nanosheets as effective catalyst for regioselective hydrosilylation of alkynes. J Mater Chem A. 2021; 9(33): 17885-17892.

[186]

Huang Y, Xiong J, Zou Z, Chen Z. Emerging strategies for the synthesis of correlated single atom catalysts. Adv Mater. 2024; 19: 2312182.

[187]

Hai X, Xi S, Mitchell S, et al. Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries. Nat Nanotechnol. 2022; 17(3): 331.

[188]

Wang Z, Almatrafi E, Wang H, et al. Cobalt single atoms anchored on oxygen-doped tubular carbon nitride for efficient peroxymonosulfate activation: simultaneous coordination structure and morphology modulation. Angew Chem Int Ed. 2022; 61(29): 202202338.

[189]

Buchele S, Yakimov A, Collins S, et al. Elucidation of metal local environments in single-atom catalysts based on carbon nitrides. Small. 2022; 18(33): 2202080.

[190]

Leskela M, Ritala M. Atomic layer deposition chemistry: recent developments and future challenges. Angew Chem Int Ed. 2003; 42(45): 5548-5554.

[191]

Wang H, Lu J. Atomic layer deposition: a gas phase route to bottom-up precise synthesis of heterogeneous catalyst. Acta Phys Chim Sin. 2018; 34(12): 1334-1357.

[192]

Yan H, Cheng H, Yi H, et al. Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1, 3-butadiene. J Am Chem Soc. 2015; 137(33): 10484-10487.

[193]

Zhou L, Chang X, Zheng W, Liu X, Zhang J. Single atom Rh-sensitized SnO2 via atomic layer deposition for efficient formaldehyde detection. Chem Eng J. 2023; 475(1): 146300.

[194]

Swain S, Altaee A, Saxena M, Samal A. A comprehensive study on heterogeneous single atom catalysis: current progress, and challenges. Coord Chem Rev. 2022; 470(1): 214710.

[195]

Jiao S, Kong M, Hu Z, Zhou S, Xu X, Liu L. Pt atom on the wall of atomic layer deposition (ALD)-made MoS2 nanotubes for efficient hydrogen evolution. Small. 2022; 18(16): 2105129.

[196]

Fonseca J, Lu J. Single-atom catalysts designed and prepared by the atomic layer deposition technique. ACS Catal. 2021; 11(12): 7018-7059.

[197]

Li J, Banis M, Ren Z, et al. Unveiling the nature of Pt single-atom catalyst during electrocatalytic hydrogen evolution and oxygen reduction reactions. Small. 2021; 17(11): 2007245.

[198]

Chen S, Gong B, Gu J, et al. Dehydrogenation of ammonia borane by platinum-nickel dimers: regulation of heteroatom interspace boosts bifunctional synergetic catalysis. Angew Chem Int Ed. 2022; 61(41): 202211919.

[199]

Li J, Jiang Y, Wang Q, et al. A general strategy for preparing pyrrolic-N4 type single-atom catalysts via pre-located isolated atoms. Nat Commun. 2021; 12(1): 6806.

[200]

Huang B, Wu Z, Zhou H, et al. Recent advances in single-atom catalysts for advanced oxidation processes in water purification. J Hazard Mater. 2021; 412(15): 125253.

[201]

Jia Y, Huang R, Qi R. Iron single atoms anchored on carbon matrix/g-C3N4 hybrid supports by single-atom migration-trapping based on MOF pyrolysis. Nanomaterials. 2022; 12(9): 1416.

[202]

Wang Q, Long G, Gao X, et al. A highly active and stable single-atom catalyst for oxygen reduction with axial Fe-O coordination prepared through a fast medium-temperature pyrolysis process. Appl Catal B. 2023; 337(15): 123009.

[203]

Cheng Y, He S, Lu S, et al. Iron single atoms on graphene as nonprecious metal catalysts for high-temperature polymer electrolyte membrane fuel cells. Adv Sci. 2019; 6(10): 1802066.

[204]

Wang Q, Ina T, Chen W, et al. Evolution of Zn(II) single atom catalyst sites during the pyrolysis-induced transformation of ZIF-8 to N-doped carbons. Sci Bull. 2020; 65(20): 1743-1751.

[205]

Zheng Y, Zhang L, Jiang H, Li C, Hu Y. Pd single-atom loaded Ce-Zr solid solution catalysts prepared by flame spray pyrolysis for efficient CO catalytic oxidation. Small. 2024; 11: 2311346.

[206]

Chen F, Liu L, Wu J, Rui X, Chen J, Yu Y. Single-Atom iron anchored tubular g-C3N4 catalysts for ultrafast Fenton-like reaction: roles of high-valency iron-oxo species and organic radicals. Adv Mater. 2022; 34(31): 2202891.

[207]

Xie W, Li K, Liu X, Zhang X, Huang H. P-mediated Cu–N4 sites in carbon nitride realizing CO2 photoreduction to C2H4 with selectivity modulation. Adv Mater. 2023; 35(3): 2208132.

[208]

Zhu C, Nie Y, Cun F, Wang Y, Tian Z, Liu F. Two-step pyrolysis to anchor ultrahigh-density single-atom FeN5 sites on carbon nitride for efficient Fenton-like catalysis near 0°C. Appl Catal B. 2022; 319(15): 121900.

[209]

Zhou H, Zhao Y, Gan J, et al. Cation-exchange induced precise regulation of single copper site triggers room-temperature oxidation of benzene. J Am Chem Soc. 2020; 142(29): 12643-12650.

[210]

Yu L, Xia W, Ma W, et al. Universal method to fabricate transition metal single-atom-anchored carbon with excellent oxygen reduction reaction activity. ACS Appl Mater Interfaces. 2021; 13(11): 13534-13540.

[211]

Zeng Z, Su Y, Quan X, et al. Single-atom platinum confined by the interlayer nanospace of carbon nitride for efficient photocatalytic hydrogen evolution. Nano Energy. 2020; 69: 104409.

[212]

Wang Y, Qu Y, Qu B, et al. Construction of six-oxygen-coordinated single Ni sites on g-C3N4 with boron-oxo species for photocatalytic water-activation-induced CO2 reduction. Adv Mater. 2021; 33(48): 2105482.

[213]

Liu Y, Sun J, Huang H, et al. Improving CO2 photoconversion with ionic liquid and Co single atoms. Nat Commun. 2023; 14(1): 1457.

[214]

Yao Y, Huang Z, Xie P, et al. High temperature shockwave stabilized single atoms. Nat Nanotechnol. 2019; 14(9): 851-857.

[215]

Xie P, Ding J, Yao Z, et al. Oxo dicopper anchored on carbon nitride for selective oxidation of methane. Nat Commun. 2022; 13(1): 1375.

[216]

Li A, Kan E, Chen S, et al. Enabling high loading in single-atom catalysts on bare substrate with chemical scissors by saturating the anchoring sites. Small. 2022; 18(19): 2200073.

[217]

Yu F, Huo T, Deng Q, et al. Single-atom cobalt-hydroxyl modification of polymeric carbon nitride for highly enhanced photocatalytic water oxidation: ball milling increased single atom loading. Chem Sci. 2022; 13(3): 754-762.

[218]

Li Z, Li B, Yu C. Atomic aerogel materials (or single-atom aerogels): an interesting new paradigm in materials science and catalysis science. Adv Mater. 2023; 35(24): 2211221.

[219]

Din M, Shah S, Javed M, et al. Synthesis of MXene-based single-atom catalysts for energy conversion applications. Chem Eng J. 2023; 474(15): 145700.

[220]

Humayun M, Israr M, Khan A, Bououdina M. State-of-the-art single-atom catalysts in electrocatalysis: from fundamentals to applications. Nano Energy. 2023; 113: 108570.

[221]

Lin X, Ng S, Ong W. Coordinating single-atom catalysts on two-dimensional nanomaterials: a paradigm towards bolstered photocatalytic energy conversion. Coord Chem Rev. 2022; 471(15): 214743.

[222]

Wu S, Yang Z, Zhou Z, et al. Catalytic activity and reaction mechanisms of single-atom metals anchored on nitrogen-doped carbons for peroxymonosulfate activation. J Hazard Mater. 2023; 459(5): 132133.

[223]

Chen J, Weng H, Li Z, et al. Spotlight on Pt/γ-Al2O3 with high catalytic performance induced by barium: synergistic effect of electron-rich Ptδ– single-atoms and available oxygen species. Chem Eng J. 2023; 474(15): 145574.

[224]

Tian H, Cui K, Chen X, Liu J, Zhang Q. Size-matched hierarchical porous carbon materials anchoring single-atom Fe–N4 sites for PMS activation: an in-depth study of key active species and catalytic mechanisms. J Hazard Mater. 2024; 461(5): 132647.

[225]

Jiang M, Yan D, Lv X, Gao Y, Jia H. Recognition of water-dissociation effect toward lattice oxygen activation on single-atom Co catalyst in toluene oxidation. Appl Catal B. 2022; 319(15): 121962.

[226]

Zhu S, Li Z, Zhang F, et al. Single-atom cobalt catalysts as highly efficient oxidase mimics for time-based visualization monitoring the TAC of skin care products. Chem Eng J. 2023; 456(15): 141053.

[227]

Wang S, Gao H, Li L, et al. High-throughput identification of highly active and selective single-atom catalysts for electrochemical ammonia synthesis through nitrate reduction. Nano Energy. 2022; 100: 107517.

[228]

Lunardon M, Kosmala T, Durante C, Agnoli S, Granozzi G. Atom-by-atom identification of catalytic active sites in operando conditions by quantitative noise detection. Joule. 2022; 6(3): 617-635.

[229]

Li X, Cao C, Hung S, et al. Identification of the electronic and structural dynamics of catalytic centers in single-Fe-atom material. Chem. 2020; 6(12): 3440-3454.

[230]

Song X, Shi Y, Wu Z, et al. Unraveling the discriminative mechanisms for peroxy activation via atomically dispersed Fe–N5 sites for tunable water decontamination. Appl Catal B. 2024; 340: 123240.

[231]

Yin K, Peng L, Chen D, et al. High-loading of well dispersed single-atom catalysts derived from Fe-rich marine algae for boosting Fenton-like reaction: role identification of iron center and catalytic mechanisms. Appl Catal B. 2023; 336(5): 122951.

[232]

Du P, Qi R, Zhang Y, et al. Single-atom-driven dynamic carburization over Pd1–FeOx catalyst boosting CO2 conversion. Chem. 2022; 8(12): 3252-3262.

[233]

Wang C, Wang K, Feng Y, et al. Co and Pt dual-single-atoms with oxygen-coordinated Co–O–Pt dimer sites for ultrahigh photocatalytic hydrogen evolution efficiency. Adv Mater. 2021; 33(13): 2003327.

[234]

Quílez-Bermejo J, García-Dalí S, Daouli A, et al. Advanced design of metal nanoclusters and single atoms embedded in C1N1-derived carbon materials for ORR, HER, and OER. Adv Funct Mater. 2023; 33(21): 2300405.

[235]

Zheng J, Lin Q, Liu Y, et al. Efficient activation of peroxymonosulfate by Fe single-atom: the key role of Fe-pyrrolic nitrogen coordination in generating singlet oxygen and high-valent Fe species. J Hazard Mater. 2023; 462(15): 132753.

[236]

Chai Y, Dai H, Duan X, et al. Elucidation of the mechanistic origin of spin-state-dependent P-doped Fe single-atom catalysts for the oxidation of organic pollutants through peroxymonosulfate activation. Appl Catal B. 2024; 341: 123289.

[237]

Li Z. Isogenous single atom catalysts (I-SACs): a significative new concept connecting nano-catalysts and SACs. Nano Energy. 2023; 113: 108527.

[238]

Tang M, Yang T, Yang X, et al. Single-atom catalysts for proton exchange membrane fuel cell: anode anti-poisoning & characterization technology. Electrochim Acta. 2023; 446(1): 142120.

[239]

Hu X, Zhou D, Wang H, Zhang W, Zhong H, Chen Y. Preparation and characterization of M1–Nx–Cy based single atom catalysts for environmental applications. Chin Chem Lett. 2023; 34(8): 108050.

[240]

Liu S, Xu H, Liu D, et al. Identify the activity origin of Pt single-atom catalyst via atom-by-atom counting. J Am Chem Soc. 2021; 143(37): 15243-15249.

[241]

Yan H, Lin Y, Wu H, et al. Bottom-up precise synthesis of stable platinum dimers on graphene. Nat Commun. 2017; 8(1): 1070.

[242]

Wang Y, Mao J, Meng X, Yu L, Deng D, Bao X. Catalysis with two-dimensional materials confining single atoms: concept, design, and applications. Chem Rev. 2019; 119(3): 1806-1854.

[243]

Kim B, Kwon D, Baeg J, et al. Dual-atom-site Sn-Cu/C3N4 photocatalyst selectively produces formaldehyde from CO2 reduction. Adv Funct Mater. 2023; 33(19): 2212453.

[244]

Kaiser S, Chen Z, Faust Akl D, Mitchell S, Perez-Ramirez J. Single-atom catalysts across the periodic table. Chem Rev. 2020; 120(21): 11703-11809.

[245]

Wang M, Fan S, Li X, et al. Construction of monoatomic-modified defective Ti4+αTi3+1-αO2-δ nanofibers for photocatalytic oxidation of HMF to valuable chemicals. ACS Appl Mater Interfaces. 2024; 16(5): 5735-5744.

[246]

Yang T, Mao X, Zhang Y, et al. Coordination tailoring of Cu single sites on C3N4 realizes selective CO2 hydrogenation at low temperature. Nat Commun. 2021; 12(1): 6022.

[247]

Lv X, Li G, Zhang G, Feng K, Deng J, Zhong J. Soft X-ray absorption spectroscopy of advanced two-dimensional photo/electrocatalysts for water splitting. Chin J Struct Chem. 2022; 41(10): 2210016-2210028.

[248]

Frenkel A. Applications of extended X-ray absorption fine-structure spectroscopy to studies of bimetallic nanoparticle catalysts. Chem Soc Rev. 2012; 41(24): 8163-8178.

[249]

Finzel J, Sanroman K, Hoffman A, Resasco J, Christopher P, Bare S. Limits of detection for EXAFS characterization of heterogeneous single-atom catalysts. ACS Catal. 2023; 13(9): 6462-6473.

[250]

Liu X, Wang C, Meng J, et al. Single-atom cobalt catalysts for chemoselective hydrogenation of nitroarenes to anilines. Chin Chem Lett. 2023; 34(12): 108745.

[251]

Huang W, Bo T, Zuo S, et al. Surface decorated Ni sites for superior photocatalytic hydrogen production. SusMat. 2022; 2(4): 466-475.

[252]

Li X, Bi W, Zhang L, et al. Single-atom Pt as co-catalyst for enhanced photocatalytic H2 evolution. Adv Mater. 2016; 28(12): 2427-2431.

[253]

Liu L, Wu X, Wang L, et al. Atomic palladium on graphitic carbon nitride as a hydrogen evolution catalyst under visible light irradiation. Commun Chem. 2019; 2(1): 18.

[254]

Qu W, Chen C, Tang Z, et al. Progress in metal-organic-framework-based single-atom catalysts for environmental remediation. Coord Chem Rev. 2023; 474(1): 214855.

[255]

Jiao L, Yan H, Wu Y, et al. When nanozymes meet single-atom catalysis. Angew Chem Int Ed. 2020; 59(7): 2565-2576.

[256]

Ji S, Chen Y, Wang X, Zhang Z, Wang D, Li Y. Chemical synthesis of single atomic site catalysts. Chem Rev. 2020; 120(21): 11900-11955.

[257]

Chen R, Chen S, Wang L, Wang D. Nanoscale metal particle modified single-atom catalyst: synthesis, characterization, and application. Adv Mater. 2023; 36(2): 2304713.

[258]

Shang Y, Xu X, Gao B, Wang S, Duan X. Single-atom catalysis in advanced oxidation processes for environmental remediation. Chem Soc Rev. 2021; 50(8): 5281-5322.

[259]

Zhang J, Yang H, Liu B. Coordination engineering of single-atom catalysts for the oxygen reduction reaction: a review. Adv Energy Mater. 2020; 11(3): 2002473.

[260]

Li L, Huang B, Tang X, et al. Recent developments of microenvironment engineering of single-atom catalysts for oxygen reduction toward desired activity and selectivity. Adv Funct Mater. 2021; 31(45): 2103857.

[261]

Xiong H, Datye A, Wang Y. Thermally stable single-atom heterogeneous catalysts. Adv Mater. 2021; 33(50): 2004319.

[262]

Xu J, Li R, Xu C, et al. Underpotential-deposition synthesis and in-line electrochemical analysis of single-atom copper electrocatalysts. Appl Catal B. 2021; 289(15): 120028.

[263]

Bajada MA, Sanjose-Orduna J. Di Liberto G, et al. Interfacing single-atom catalysis with continuous-flow organic electrosynthesis. Chem Soc Rev. 2022; 51(10): 3898-3925.

[264]

Zhang J, You C, Lin H, Wang J. Electrochemical kinetic modulators in lithium–sulfur batteries: from defect-rich catalysts to single atomic catalysts. Energy Environ Mater. 2022; 5(3): 731-750.

[265]

Xu S, Carter E. Theoretical insights into heterogeneous (photo)electrochemical CO2 reduction. Chem Rev. 2019; 119(11): 6631-6669.

[266]

Dalle K, Warnan J, Leung J, Reuillard B, Karmel I, Reisner E. Electro-and solar-driven fuel synthesis with first row transition metal complexes. Chem Rev. 2019; 119(4): 2752-2875.

[267]

Ling C, Niu X, Li Q, Du A, Wang J. Metal-free single atom catalyst for N2 fixation driven by visible light. J Am Chem Soc. 2018; 140(43): 14161-14168.

[268]

Talib S, Lu Z, Bashir B, et al. CO oxidation on MXene (Mo2CS2) supported single-atom catalyst: a termolecular Eley–Rideal mechanism. Chin Chem Lett. 2023; 34(2): 107412.

[269]

Zhang R, Cao Y, Doronkin D, Ma M, Dong F, Zhou Y. Single-atom dispersed Zn–N3 active sites bridging the interlayer of g-C3N4 to tune NO oxidation pathway for the inhibition of toxic by-product generation. Chem Eng J. 2023; 454(15): 140084.

[270]

Teng Z, Zhang Q, Yang H, et al. Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide. Nat Catal. 2021; 4(5): 374-384.

[271]

Zhang L, Long R, Zhang Y, et al. Direct observation of dynamic bond evolution in single-atom Pt/C3N4 catalysts. Angew Chem Int Ed. 2020; 59(15): 6224-6229.

[272]

Zhang H, Liu Q, Shen Z. Highly efficient photocatalytic conversion of CO2 into CH4 over Cu single atom promoted heterojunction: the effect of uplifted d-band center. Chin Chem Lett. 2024; 35(2): 108607.

[273]

Wang J, Yu G, Wang Y, et al. Surface density of cobalt single atoms manipulating hydroxyl radical generation via dual pathways: electrons supply and active sites. Adv Funct Mater. 2023; 33(21): 2215245.

[274]

Sharma P, Kumar S, Tomanec O, et al. Carbon nitride-based ruthenium single atom photocatalyst for CO2 reduction to methanol. Small. 2021; 17(16): 2006478.

[275]

Gao C, Low J, Long R, Kong T, Zhu J, Xiong Y. Heterogeneous single-atom photocatalysts: fundamentals and applications. Chem Rev. 2020; 120(21): 12175-12216.

[276]

Wang L, Chen W, Zhang D, et al. Surface strategies for catalytic CO2 reduction: from two-dimensional materials to nanoclusters to single atoms. Chem Soc Rev. 2019; 48(21): 5310-5349.

[277]

Shi X, Huang Y, Bo Y, et al. Highly selective photocatalytic CO2 methanation with water vapor on single-atom platinum-decorated defective carbon nitride. Angew Chem Int Ed. 2022; 61(27): 202203063.

[278]

Peng X, Wu J, Zhao Z, et al. Activation of peroxymonosulfate by single-atom Fe-g-C3N4 catalysts for high efficiency degradation of tetracycline via nonradical pathways: role of high-valent iron-oxo species and Fe–Nx sites. Chem Eng J. 2022; 427(1): 130803.

[279]

Han J, Guan J. Heteronuclear dual-metal atom catalysts for nanocatalytic tumor therapy. Chin J Catal. 2023; 47: 1-31.

[280]

Hou C, Wang H, Li C, Xu Q. From metal-organic frameworks to single/dual-atom and cluster metal catalysts for energy applications. Energy Environ Sci. 2020; 13(6): 1658-1693.

[281]

Fang C, Zhou J, Zhang L, Wan W, Ding Y, Sun X. Synergy of dual-atom catalysts deviated from the scaling relationship for oxygen evolution reaction. Nat Commun. 2023; 14(1): 4449.

[282]

Du J, Han G, Zhang W, et al. CoIn dual-atom catalyst for hydrogen peroxide production via oxygen reduction reaction in acid. Nat Commun. 2023; 14(1): 4766.

[283]

Gan T, Wang D. Atomically dispersed materials: ideal catalysts in atomic era. Nano Res. 2023; 17(1): 18-38.

[284]

Luo Y, Wang D. Enhancing heterogeneous catalysis by electronic property regulation of single atom catalysts. Acta Phys Chim Sin. 2023; 39(0): 2212020.

[285]

Li X, Mitchell S, Fang Y, Li J, Perez-Ramirez J. Lu J. Advances in heterogeneous single-cluster catalysis. Nat Rev Chem. 2023; 7(11): 754-767.

[286]

Zhao T, Li Y, Liu J, et al. Highly dispersed L12–Pt3Fe intermetallic particles supported on single atom Fe–Nx–Cy active sites for enhanced activity and durability towards oxygen reduction. Chin Chem Lett. 2023; 34(5): 107824.

[287]

Fu J, Dong J, Si R, et al. Synergistic effects for enhanced catalysis in a dual single-atom catalyst. ACS Catal. 2021; 11(4): 1952-1961.

[288]

Hai X, Zheng Y, Yu Q, et al. Geminal-atom catalysis for cross-coupling. Nature. 2023; 622(7984): 754-760.

[289]

Tian S, Wang B, Gong W, et al. Dual-atom Pt heterogeneous catalyst with excellent catalytic performances for the selective hydrogenation and epoxidation. Nat Commun. 2021; 12(1): 3181.

[290]

Huang F, Peng M, Chen Y, et al. Low-temperature acetylene semi-hydrogenation over the Pd1–Cu1 dual-atom catalyst. J Am Chem Soc. 2022; 144(40): 18485-18493.

[291]

Tang T, Wang Y, Han J, et al. Dual-atom Co–Fe catalysts for oxygen reduction reaction. Chin J Catal. 2023; 46: 48-55.

[292]

Wei X, Wei S, Cao S, et al. Cu acting as Fe activity promoter in dual-atom Cu/Fe–NC catalyst in CO2RR to C1 products. Appl Surf Sci. 2021; 564: 150423.

[293]

Yang X, Priest C, Hou Y, Wu G. Atomically dispersed dual-metal-site PGM-free electrocatalysts for oxygen reduction reaction: opportunities and challenges. SusMat. 2022; 2(5): 569-590.

[294]

Cui E, Lu Y, Jiang J, Arramel , Wang D, Zhai T. Tailoring CuNi heteronuclear diatomic catalysts: precision in structural design for exceptionally selective CO2 photoreduction to ethanol. Chin J Catal. 2024; 59: 26-136.

[295]

Zhou P, Hou X, Chao Y, et al. Synergetic interaction between neighboring platinum and ruthenium monomers boosts CO oxidation. Chem Sci. 2019; 10(23): 5898-5905.

[296]

Zeng L, Chen J, Zhong L, et al. Synergistic effect of Ru–N4 sites and Cu–N3 sites in carbon nitride for highly selective photocatalytic reduction of CO2 to methane. Appl Catal B. 2022; 307(15): 121154.

[297]

Deng J, Zhou C, Yang Y, et al. Visible-light-driven selective cleavage of C–C bonds in lignin model substrates using carbon nitride-supported ruthenium single-atom catalyst. Chem Eng J. 2023; 462(15): 142282.

[298]

Zhang L, Jiang X, Zhong Z, et al. Carbon nitride supported high-loading Fe single-atom catalyst for activation of peroxymonosulfate to generate 1O2 with 100 % selectivity. Angew Chem Int Ed. 2021; 133(40): 21751-21755.

[299]

Jia Y, Zhang F, Liu Q, et al. Single-atomic Fe anchored on hierarchically porous carbon frame for efficient oxygen reduction performance. Chin Chem Lett. 2022; 33(2): 1070-1073.

[300]

Wang Y, Yan F, Wu J, Huang Z, Song L, Yuan S. Full utilization of Cu single atoms on carbon nitride nanofibers for enhanced Fenton-like degradation of methylene blue. Colloids Surf A. 2024; 680: 132708.

[301]

Chang X, Xu S, Wang D, Zhang Z, Guo Y, Kang S. Flash dual-engineering of surface carboxyl defects and single Cu atoms of g-C3N4 via unique CO2 plasma immersion approach for boosted photocatalytic activity. Mater Today Adv. 2022; 15: 100274.

[302]

Shi X, Huang Y, Zhu G, Peng W, Chen M. Promoted surface charge density from interlayer Zn–N4 configuration in carbon nitride for enhanced CO2 photoreduction. Nano Res. 2023; 17(4): 2400-2409.

[303]

Ren M, Zhang X, Liu Y, et al. Interlayer palladium-single-atom-coordinated cyano-group-rich graphitic carbon nitride for enhanced photocatalytic hydrogen production performance. ACS Catal. 2022; 12(9): 5077-5093.

[304]

Yuan E, Yu Y, Shi G, Jian P, Hou X, Wu C. Fabrication of single Co sites in graphitic carbon nitride via the ion exchange to boost aerobic cyclohexane oxidation. Carbon. 2024; 217(25): 118612.

[305]

Zuo Y, Li T, Zhang N, et al. Spatially confined formation of single atoms in highly porous carbon nitride nanoreactors. ACS Nano. 2021; 15(4): 7790-7798.

[306]

Xiao Z, Qu K, Ye F, et al. B-doped graphite carbon nitride loaded Fe single atoms with enhanced peroxidase-like activity. Sci China Mater. 2023; 66(9): 3592-3600.

[307]

Wang Z, Almatrafi E, Wang H, et al. Cobalt single atoms anchored on oxygen-doped tubular carbon nitride for efficient peroxymonosulfate activation: simultaneous coordination structure and morphology modulation. Angew Chem Int Ed. 2022; 61(29): e202202338.

[308]

Shao W, Yu M, Xu X, et al. Design of a single-atom In–N3–S site to modulate exciton behavior in carbon nitride for enhanced photocatalytic performance. Small. 2023; 9: e2306567.

[309]

Liu G, Huang Y, Lv H, et al. Confining single-atom Pd on g-C3N4 with carbon vacancies towards enhanced photocatalytic NO conversion. Appl Catal B. 2021; 284(5): 119683.

[310]

Zhang C, Qin D, Zhou Y, et al. Dual optimization approach to Mo single atom dispersed g-C3N4 photocatalyst: morphology and defect evolution. Appl Catal B. 2022; 303: 120904.

[311]

Shen J, Luo C, Qiao S, et al. Single-atom Cu channel and N-vacancy engineering enables efficient charge separation and transfer between C3N4 interlayers for boosting photocatalytic hydrogen production. ACS Catal. 2023; 13(9): 6280-6288.

[312]

Luo J, Han H, Wang X, et al. Single-atom Nb anchored on graphitic carbon nitride for boosting electron transfer towards improved photocatalytic performance. Appl Catal B. 2023; 328(5): 122495.

[313]

Luo C, Long Q, Cheng B, Zhu B, Wang L. A DFT study on S-scheme heterojunction consisting of Pt single atom loaded g-C3N4 and BiOCl for photocatalytic CO2 reduction. Acta Phys Chim Sin. 2023; 39(0): 2212026.

[314]

Yang S, Wang K, Chen Q, Wu Y. Enhanced photocatalytic hydrogen production of S-scheme TiO2/g-C3N4 heterojunction loaded with single-atom Ni. J Mater Sci Technol. 2024; 175: 104-114.

[315]

Li H, Zhu B, Cheng B, Luo G, Xu J, Cao S. Single-atom Cu anchored on N-doped graphene/carbon nitride heterojunction for enhanced photocatalytic H2O2 production. J Mater Sci Technol. 2023; 161: 192-200.

[316]

Hirjibehedin C, Lin C, Otte A, et al. Large magnetic anisotropy of a single atomic spin embedded in a surface molecular network. Science. 2007; 317(5842): 1199-1203.

[317]

Wang Y, Zhang X, Cheng C, Yang Z. TiC supported single-atom platinum catalyst for CO oxidation: a density functional theory study. Appl Surf Sci. 2018; 453(30): 159-165.

[318]

Hossain M, Liu Z, Zhuang M, et al. Rational design of graphene-supported single atom catalysts for hydrogen evolution reaction. Adv Energy Mater. 2019; 9(10): 1803689.

[319]

He Q, Tian D, Jiang H, et al. Achieving efficient alkaline hydrogen evolution reaction over a Ni5P4 catalyst incorporating single-atomic Ru sites. Adv Mater. 2020; 32(11): 1906972.

[320]

Zhu C, Lu L, Fang Q, Song S, Chen B, Shen Y. Unveiling spin state-dependent micropollutant removal using single-atom covalent triazine framework. Adv Funct Mater. 2023; 33(19): 2210905.

[321]

Fang S, Zhu X, Liu X, et al. Uncovering near-free platinum single-atom dynamics during electrochemical hydrogen evolution reaction. Nat Commun. 2020; 11(1): 1029.

[322]

Pan Y, Wang X, Zhang W, et al. Boosting the performance of single-atom catalysts via external electric field polarization. Nat Commun. 2022; 13(1): 3063.

[323]

Jin Z, Li P, Meng Y, Fang Z, Xiao D, Yu G. Understanding the inter-site distance effect in single-atom catalysts for oxygen electroreduction. Nat Catal. 2021; 4(7): 615-622.

[324]

Jyothirmai M, Roshini D, Abraham B, Singh J. Accelerating the discovery of g-C3N4-supported single atom catalysts for hydrogen evolution reaction: a combined DFT and machine learning strategy. ACS Appl Energy Mater. 2023; 6(10): 5598-5606.

[325]

Fan M, Cui J, Zhang J, et al. The modulating effect of N coordination on single-atom catalysts researched by Pt–Nx–C model through both experimental study and DFT simulation. J Mater Sci Technol. 2021; 91: 160-167.

[326]

Gao M, Tian F, Guo Z, et al. Mutual-modification effect in adjacent Pt nanoparticles and single atoms with sub-nanometer inter-site distances to boost photocatalytic hydrogen evolution. Chem Eng J. 2022; 446(15): 137127.

[327]

Zhang Y, Yang J, Ge R, et al. The effect of coordination environment on the activity and selectivity of single-atom catalysts. Coord Chem Rev. 2022; 461(15): 214493.

[328]

Lien H, Chang S, Chen P, et al. Probing the active site in single-atom oxygen reduction catalysts via operando X-ray and electrochemical spectroscopy. Nat Commun. 2020; 11(1): 4233.

[329]

Li X, Yang X, Zhang J, Huang Y, Liu B. In situ/operando techniques for characterization of single-atom catalysts. ACS Catal. 2019; 9(3): 2521-2531.

[330]

Pan Y, Zhang C, Liu Z, Chen C, Li Y. Structural regulation with atomic-level precision: from single-atomic site to diatomic and atomic interface catalysis. Matter. 2020; 2(1): 78-110.

[331]

Zhang D, Li Y, Li Y, Zhan S. Towards single-atom photocatalysts for future carbon-neutral application. SmartMat. 2022; 3(3): 417-446.

[332]

Liu D, He Q, Ding S, Song L. Structural regulation and support coupling effect of single-atom catalysts for heterogeneous catalysis. Adv Energy Mater. 2020; 10(32): 2001482.

[333]

Zeng Y, Li X, Wang J, et al. In situ/operando Mössbauer spectroscopy for probing heterogeneous catalysis. Chem Catal. 2021; 1(6): 1215-1233.

[334]

Sun W, Gao B, Chi M, et al. Understanding memristive switching via in situ characterization and device modeling. Nat Commun. 2019; 10(1): 3453.

[335]

Ding J, Teng Z, Su X, et al. Asymmetrically coordinated cobalt single atom on carbon nitride for highly selective photocatalytic oxidation of CH4 to CH3OH. Chem. 2023; 9(4): 1017-1035.

[336]

Huang Y, Li Y, Arul K, et al. Atomic nickel on graphitic carbon nitride as a visible light-driven hydrogen production photocatalyst studied by X-ray spectromicroscopy. ACS Sustain Chem Eng. 2023; 11(14): 5390-5399.

[337]

Wang S, Liu G, Wang L. Crystal facet engineering of photoelectrodes for photoelectrochemical water splitting. Chem Rev. 2019; 119(8): 5192-5247.

[338]

Yu X, Su H, Zou J, Liu Q, Wang L, Tang H. Doping-induced metal–N active sites and bandgap engineering in graphitic carbon nitride for enhancing photocatalytic H2 evolution performance. Chin J Catal. 2022; 43(2): 421-432.

[339]

Wang M, Xu S, Zhou Z, et al. Atomically dispersed Janus nickel sites on red phosphorus for photocatalytic overall water splitting. Angew Chem Int Ed. 2022; 61(29): 202204711.

[340]

Yu F, Deng Q, Li H, Xia Y, Hou W. A general strategy to synthesize single-atom metal-oxygen doped polymeric carbon nitride with highly enhanced photocatalytic water splitting activity. Appl Catal B. 2023; 323: 122180.

[341]

Guo Y, Zhou Q, Chen X, et al. Near-infrared response Pt-tipped Au nanorods/g-C3N4 realizes photolysis of water to produce hydrogen. J Mater Sci Technol. 2022; 119: 53-60.

[342]

Zouggari H, Mahir F, Imgharn A, et al. Arginine-polyaniline@g-C3N4 for outstanding retention of Orange G dye from water. Carbon Lett. 2023; 33(6): 1897-1908.

[343]

Jian L, Zhang H, Liu B, et al. Monodisperse Ni-clusters anchored on carbon nitride for efficient photocatalytic hydrogen evolution. Chin J Catal. 2022; 43(2): 536-545.

[344]

Sun T, Zang W, Yan H, et al. Engineering the coordination environment of single cobalt atoms for efficient oxygen reduction and hydrogen evolution reactions. ACS Catal. 2021; 11(8): 4498-4509.

[345]

Kang N, Liao LW, Zhang X, et al. Engineering the axial coordination of cobalt single atom catalysts for efficient photocatalytic hydrogen evolution. Nano Res. 2024;17:5114-5121.

[346]

Jiang W, Zhao Y, Zong X, et al. Photocatalyst for high-performance H2 production: Ga-doped polymeric carbon nitride. Angew Chem Int Ed. 2021; 60(11): 6124-6129.

[347]

Liu W, Cao L, Cheng W, et al. Single-site active cobalt-based photocatalyst with a long carrier lifetime for spontaneous overall water splitting. Angew Chem Int Ed. 2017; 56(32): 9312-9317.

[348]

Han X, Liu Q, Qian A, et al. Transition-metal single atom anchored on MoS2 for enhancing photocatalytic hydrogen production of g-C3N4 photocatalysts. ACS Appl Mater Interfaces. 2023; 15(22): 26670-26681.

[349]

Hu C, Hu J, Zhu Z, et al. Orthogonal charge transfer by precise positioning of silver single atoms and clusters on carbon nitride for efficient piezocatalytic pure water splitting. Angew Chem Int Ed. 2022; 61(43): 202212397.

[350]

Xu R, Xu B, You X, et al. Preparation of single-atom palladium catalysts with high photocatalytic hydrogen production performance by means of photochemical reactions conducted with frozen precursor solutions. J Mater Chem A. 2023; 11(21): 11202-11209.

[351]

Jiang X, Zhang L, Liu H, et al. Silver single atom in carbon nitride catalyst for highly efficient photocatalytic hydrogen evolution. Angew Chem Int Ed. 2020; 59(51): 23112-23116.

[352]

Jin X, Wang R, Zhang L, et al. Electron configuration modulation of nickel single atoms for elevated photocatalytic hydrogen evolution. Angew Chem Int Ed. 2020; 59(17): 6827-6831.

[353]

Xiao X, Lin S, Zhang L, et al. Constructing Pd–N interactions in Pd/g-C3N4 to improve the charge dynamics for efficient photocatalytic hydrogen evolution. Nano Res. 2021; 15(4): 2928-2934.

[354]

Li Y, Wang Y, Dong C, et al. Single-atom nickel terminating sp2 and sp3 nitride in polymeric carbon nitride for visible-light photocatalytic overall water splitting. Chem Sci. 2021; 12(10): 3633-3643.

[355]

Zhang L, Liao J, Li Y, Sun W, Ge C. Cu single atoms embedded on hollow g-C3N4 nanospheres with enhanced charge transfer and separation for efficient photocatalysis. Chin Chem Lett. 2024; 35(2): 108568.

[356]

Liu Y, Sun Y, Zhao E, et al. Atomically dispersed silver-cobalt dual-metal sites synergistically promoting photocatalytic hydrogen evolution. Adv Funct Mater. 2023; 33(33): 2301840.

[357]

Zhao D, Wang Y, Dong C, et al. Electron-deficient Zn–N6 configuration enabling polymeric carbon nitride for visible-light photocatalytic overall water splitting. Nano-Micro Lett. 2022; 14(1): 223.

[358]

Hu Y, Qu Y, Zhou Y, et al. Single Pt atom-anchored C3N4: a bridging Pt–N bond boosted electron transfer for highly efficient photocatalytic H2 generation. Chem Eng J. 2021; 412(15): 128749.

[359]

Wang K, Feng X, Shangguan Y, Wu X, Chen H. Selective CO2 photoreduction to CH4 mediated by dimension-matched 2D/2D Bi3NbO7/g-C3N4 S-scheme heterojunction. Chin J Catal. 2022; 43(2): 246-254.

[360]

He J, Wang X, Jin S, Liu Z-Q, Zhu M. 2D metal-free heterostructure of covalent triazine framework/g-C3N4 for enhanced photocatalytic CO2 reduction with high selectivity. Chin J Catal. 2022; 43(5): 1306-1315.

[361]

Wang L, Yang T, Feng B, et al. Constructing dual electron transfer channels to accelerate CO2 photoreduction guided by machine learning and first-principles calculation. Chin J Catal. 2023; 54: 265-277.

[362]

Yuan H, Mei J, Gong Y, Zhong D, Lu T. Cobalt-based heterogeneous catalysts for photocatalytic carbon dioxide reduction. Tungsten. 2024;6:410-421.

[363]

Liu R, Zhang X, Han X, Sun Y, Jin S, Liu RJ. Photocatalytic degradation of tetracycline with Fe3O4/g-C3N4/TiO2 catalyst under visible light. Carbon Lett. 2024; 34(1): 75-83.

[364]

Wang K, Hu Z, Yu P, et al. Understanding bridging sites and accelerating quantum efficiency for photocatalytic CO2 reduction. Nano-Micro Lett. 2024; 16(1): 5.

[365]

Sun J, Bian J, Li J, et al. Efficiently photocatalytic conversion of CO2 on ultrathin metal phthalocyanine/g-C3N4 heterojunctions by promoting charge transfer and CO2 activation. Appl Catal B. 2020; 277(15): 119199.

[366]

Ou H, Ning S, Zhu P, et al. Carbon nitride photocatalysts with integrated oxidation and reduction atomic active centers for improved CO2 conversion. Angew Chem Int Ed. 2022; 61(34): e202206579.

[367]

Cheng L, Zhang P, Wen Q, Fan J, Xiang Q. Copper and platinum dual-single-atoms supported on crystalline graphitic carbon nitride for enhanced photocatalytic CO2 reduction. Chin J Catal. 2022; 43(2): 451-460.

[368]

Qi R, Zhu B, Han Z, Gao Y. High-throughput screening of stable single-atom catalysts in CO2 reduction reactions. ACS Catal. 2022; 12(14): 8269-8278.

[369]

Ou H, Ning S, Zhu P, et al. Carbon nitride photocatalysts with integrated oxidation and reduction atomic active centers for improved CO2 conversion. Angew Chem Int Ed. 2022; 61(34): 202206579.

[370]

Ding C, Lu X, Tao B, et al. Interlayer spacing regulation by single-atom indiumδ+-N4 on carbon nitride for boosting CO2/CO photo-conversion. Adv Funct Mater. 2023; 33(35): 2302824.

[371]

Wu Q, Wu C. Mechanism insights on single-atom catalysts for CO2 conversion. J Mater Chem A. 2023; 11(10): 4876-4906.

[372]

Li Y, Li B, Zhang D, Cheng L, Xiang Q. Crystalline carbon nitride supported copper single atoms for photocatalytic CO2 reduction with nearly 100% CO selectivity. ACS Nano. 2020; 14(8): 10552-10561.

[373]

Chen P, Lei B, Dong X, et al. Rare-earth single-atom La–N charge-transfer bridge on carbon nitride for highly efficient and selective photocatalytic CO2 reduction. ACS Nano. 2020; 14(11): 15841-15852.

[374]

Cheng X, Wang J, Zhao K, Bi Y. Spatially confined iron single-atom and potassium ion in carbon nitride toward efficient CO2 reduction. Appl Catal B. 2022; 316(5): 121643.

[375]

Fattahimoghaddam H, Mahvelati-Shamsabadi T. Lee B. Efficient photodegradation of Rhodamine B and tetracycline over robust and green g-C3N4 nanostructures: supramolecular design. J Hazard Mater. 2021; 403(5): 123703.

[376]

Liu H, Fu Y, Chen S, et al. A layered g-C3N4 support single-atom Fe–N4 catalyst derived from hemin to activate PMS for selective degradation of electron-rich compounds via singlet oxygen species. Chem Eng J. 2023; 474(15): 145571.

[377]

Gu X, Chen T, Lei J, et al. Self-assembly synthesis of S-scheme g-C3N4/Bi8(CrO4)O11 for photocatalytic degradation of norfloxacin and bisphenol A. Chin J Catal. 2022; 43(10): 2569-2580.

[378]

Ning L, Chen X, Wang Z, Xu J. High-efficiency pollutant degradation, disinfection and H2O2 production activities of magnetically separable Co-imbedded N-doped carbonaceous framework/supramolecular perylene diimide photocatalyst. Appl Catal B. 2023; 324(5): 122282.

[379]

Wang B, Cheng C, Jin M, et al. A site distance effect induced by reactant molecule matchup in single-atom catalysts for Fenton-Like reactions. Angew Chem Int Ed. 2022; 61(33): 202207268.

[380]

Guo H, Yu T, Zhao L, et al. Performance study of g-C3N4/carbon black/BiOBr@Ti3C2/MoS2 photocatalytic fuel cell for the synergistic degradation of different types of pollutants. Carbon Lett. 2023; 33(3): 847-862.

[381]

Li X, Luo Q, Han L, Deng F, Yang Y, Dong F. Enhanced photocatalytic degradation and H2 evolution performance of N-CDs/S-C3N4 S-scheme heterojunction constructed by π–π conjugate self-assembly. J Mater Sci Technol. 2022; 114: 222-232.

[382]

Li D, Li H, Wen Q, Gao C, Song F, Zhou J. Investigation on photo-assisted Fenton-like mechanism of single-atom Mn–N–Fe–N–Ni charge transfer bridge across six-membered cavity of graphitic carbon nitride. Adv Funct Mater. 2024(21):2313631.

[383]

Zeng Z, Ye F, Deng S, et al. Accelerated organic pollutants mineralization in interlayer confined single Pt atom photocatalyst for hydrogen recovery. Chem Eng J. 2022; 444(15): 136561.

[384]

Qian M, Wu XL, Lu M, et al. Modulation of charge trapping by island-like single-atom cobalt catalyst for enhanced photo-Fenton-like reaction. Adv Funct Mater. 2023; 33(12): 2208688.

[385]

Liu Z, Tian J, Yu C, Fan Q, Liu X. Solvothermal fabrication of Bi2MoO6 nanocrystals with tunable oxygen vacancies and excellent photocatalytic oxidation performance in quinoline production and antibiotics degradation. Chin J Catal. 2022; 43(2): 472-484.

[386]

Seloglu M, Orhan R, Selen V, Dursun G. Analysis of photocatalytic degradation of phenol by zinc oxide using response surface methodology. Chemistryopen. 2024; 13(6): e202300238.

[387]

Mateen M, Cheong W, Zheng C, et al. Molybdenum atomic sites embedded 1D carbon nitride nanotubes as highly efficient bifunctional photocatalyst for tetracycline degradation and hydrogen evolution. Chem Eng J. 2023; 451(2): 138305.

[388]

Zhao G, Li W, Zhang H, Wang W, Ren Y. Single atom Fe-dispersed graphitic carbon nitride (g-C3N4) as a highly efficient peroxymonosulfate photocatalytic activator for sulfamethoxazole degradation. Chem Eng J. 2022; 430(15): 132937.

[389]

Yao C, Wang R, Wang Z, Lei H, Dong X, He C. Highly dispersive and stable Fe3+ active sites on 2D graphitic carbon nitride nanosheets for efficient visible-light photocatalytic nitrogen fixation. J Mater Chem A. 2019; 7(48): 27547-27559.

[390]

Smith C, Hill A, Torrente-Murciano L. Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape. Energy Environ Sci. 2020; 13(2): 331-344.

[391]

Zhang J, Pan Z, Yang Y, et al. Boosting the catalytic activity of a step-scheme In2O3/ZnIn2S4 hybrid system for the photofixation of nitrogen. Chin J Catal. 2022; 43(2): 265-275.

[392]

Shang S, Xiong W, Yang C, et al. Atomically dispersed iron metal site in a porphyrin-based metal-organic framework for photocatalytic nitrogen fixation. ACS Nano. 2021; 15(6): 9670-9678.

[393]

Wu S, Chen Z, Yue W, et al. Single-atom high-valent Fe(IV) for promoted photocatalytic nitrogen hydrogenation on porous TiO2–SiO2. ACS Catal. 2021; 11(7): 4362-4371.

[394]

Hui L, Xue Y, Yu H, et al. Highly efficient and selective generation of ammonia and hydrogen on a graphdiyne-based catalyst. J Am Chem Soc. 2019; 141(27): 10677-10683.

[395]

Hou T, Peng H, Xin Y, et al. Fe single-atom catalyst for visible-light-driven photofixation of nitrogen sensitized by triphenylphosphine and sodium iodide. ACS Catal. 2020; 10(10): 5502-5510.

[396]

Shen Z, Yu Y, Zhao Z, et al. O trans-coordinating silver single-atom catalyst for robust and efficient ammonia electrosynthesis from nitrate. Appl Catal B. 2023; 331(15): 122687.

[397]

Li J, Liu P, Tang Y, et al. Single-atom Pt–N3 sites on the stable covalent triazine framework nanosheets for photocatalytic N2 fixation. ACS Catal. 2020; 10(4): 2431-2442.

[398]

Singh A, Anand R, Zafari M, Ha M, Kim K. Progress in single/multi atoms and 2D-nanomaterials for electro/photocatalytic nitrogen reduction: experimental, computational and machine leaning developments. Adv Energy Mater. 2024:2304106.

[399]

Guo X, Chen S, Wang H, et al. Single-atom molybdenum immobilized on photoactive carbon nitride as efficient photocatalysts for ambient nitrogen fixation in pure water. J Mater Chem A. 2019; 7(34): 19831-19837.

[400]

Li K, Cai W, Zhang Z, Xie H, Zhong Q, Qu H. Boron doped C3N5 for photocatalytic nitrogen fixation to ammonia: the key role of boron in nitrogen activation and mechanism. Chem Eng J. 2022; 435(2): 135017.

[401]

Pan G, Zhang W, Liu T, et al. Atomically dispersed s-block metal calcium site modified mesoporous g-C3N4 for boosting photocatalytic N2 reduction. Catal Sci Technol. 2023; 13(1): 111-118.

[402]

Wu S, Yu H, Chen S, Quan X. Enhanced photocatalytic H2O2 production over carbon nitride by doping and defect engineering. ACS Catal. 2020; 10(24): 14380-14389.

[403]

Chen L, Yang Z, Chen B. Uniformly dispersed metal sulfide nanodots on g-C3N4 as bifunctional catalysts for high-efficiency photocatalytic H2 and H2O2 production under visible-light irradiation. Energy Fuels. 2021; 35(13): 10746-10755.

[404]

Yang Z, Wang J. Highly efficient photocatalytic H2O2 production over a Zn0.3Cd0.7S/MXene photocatalyst for degradation of emerging pollutants under visible-light irradiation. Langmuir. 2024; 40(6): 3168-3180.

[405]

Zhang X, Su H, Cui P, et al. Developing Ni single-atom sites in carbon nitride for efficient photocatalytic H2O2 production. Nat Commun. 2023; 14(1): 7115.

[406]

Bi Q, Song E, Chen J, et al. Nano gold coupled black titania composites with enhanced surface plasma properties for efficient photocatalytic alkyne reduction. Appl Catal B. 2022; 309(15): 121222.

[407]

Hu Y, Zhang S, Zhang Z, et al. Enhancing photocatalytic-transfer semi-hydrogenation of alkynes over Pd/C3N4 through dual regulation of nitrogen defects and the Mott–Schottky effect. Adv Mater. 2023; 35(41): e2304130.

[408]

Guo Y, Huang Y, Zeng B, et al. Photo-thermo semi-hydrogenation of acetylene on Pd1/TiO2 single-atom catalyst. Nat Commun. 2022; 13(1): 2648.

[409]

Jia T, Meng D, Duan R, et al. Single-atom nickel on carbon nitride photocatalyst achieves semihydrogenation of alkynes with water protons via monovalent nickel. Angew Chem Int Ed. 2023; 135(9): e202216511.

RIGHTS & PERMISSIONS

2024 The Author(s). SusMat published by Sichuan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

348

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/