V2O3/VN electrocatalysts with coherent heterogeneous interfaces for selecting low-energy nitrogen reduction pathways

Tae-Yong An , Chengkai Xia , Minyeong Je , Hyunjung Lee , Seulgi Ji , Min-Cheol Kim , Subramani Surendran , Mi-Kyung Han , Jaehyoung Lim , Dong-Kyu Lee , Joon Young Kim , Tae-Hoon Kim , Heechae Choi , Jung Kyu Kim , Uk Sim

SusMat ›› 2024, Vol. 4 ›› Issue (4) : e226

PDF
SusMat ›› 2024, Vol. 4 ›› Issue (4) : e226 DOI: 10.1002/sus2.226
RESEARCH ARTICLE

V2O3/VN electrocatalysts with coherent heterogeneous interfaces for selecting low-energy nitrogen reduction pathways

Author information +
History +
PDF

Abstract

Electrochemical nitrogen reduction reaction (NRR) is a sustainable alternative to the Haber–Bosch process for ammonia (NH3) production. However, the significant uphill energy in the multistep NRR pathway is a bottleneck for favorable serial reactions. To overcome this challenge, we designed a vanadium oxide/nitride (V2O3/VN) hybrid electrocatalyst in which V2O3 and VN coexist coherently at the heterogeneous interface. Since single-phase V2O3 and VN exhibit different surface catalytic kinetics for NRR, the V2O3/VN hybrid electrocatalyst can provide alternating reaction pathways, selecting a lower energy pathway for each material in the serial NRR pathway. As a result, the ammonia yield of the V2O3/VN hybrid electrocatalyst was 219.6 µg h–1 cm–2, and the Faradaic efficiency was 18.9%, which is much higher than that of single-phase VN, V2O3, and VNxOy solid solution catalysts without heterointerfaces. Density functional theory calculations confirmed that the composition of these hybrid electrocatalysts allows NRR to proceed from a multistep reduction reaction to a low-energy reaction pathway through the migration and adsorption of intermediate species. Therefore, the design of metal oxide/nitride hybrids with coherent heterointerfaces provides a novel strategy for synthesizing highly efficient electrochemical catalysts that induce steps favorable for the efficient low-energy progression of NRR.

Keywords

coherent heterogeneous interfaces / green ammonia synthesis / hybrid electrocatalyst / lowenergy progression / nitrogen reduction reaction (NRR) / vanadium oxide/nitride (V2O3/VN)

Cite this article

Download citation ▾
Tae-Yong An, Chengkai Xia, Minyeong Je, Hyunjung Lee, Seulgi Ji, Min-Cheol Kim, Subramani Surendran, Mi-Kyung Han, Jaehyoung Lim, Dong-Kyu Lee, Joon Young Kim, Tae-Hoon Kim, Heechae Choi, Jung Kyu Kim, Uk Sim. V2O3/VN electrocatalysts with coherent heterogeneous interfaces for selecting low-energy nitrogen reduction pathways. SusMat, 2024, 4(4): e226 DOI:10.1002/sus2.226

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wetzel M, Gils HC, Bertsch V. Green energy carriers and energy sovereignty in a climate neutral European energy system. Renew Energy. 2023; 210: 591-603.

[2]

Muhammed NS, Gbadamosi AO, Epelle EI, et al. Hydrogen production, transportation, utilization, and storage: recent advances towards sustainable energy. J Energy Storage. 2023; 73: 109207.

[3]

Lin Y-X, Zhang S-N, Xue Z-H. et al. Boosting selective nitrogen reduction to ammonia on electron-deficient copper nanoparticles. Nat Commun. 2019; 10(1): 4380.

[4]

Mohan NG, Ramanujam K. Electrocatalysts for ammonia synthesis: how close are we to the Haber–Bosch process? Curr Opin Electrochem. 2024; 45: 101520.

[5]

Kong J, Choi J, Park HS. Advantages and limitations of different electrochemical NH3 production methods under ambient conditions: a review. Curr Opin Electrochem. 2023; 39: 101292.

[6]

Tian F, Zhou N, Chen W, Zhan J, Tang L, Wu M. Progress in green ammonia synthesis technology: catalytic behavior of ammonia synthesis catalysts. Adv Sustainable Syst. 2024:2300618.

[7]

Yu S, Xiang T, Alharbi NS, Al-Aidaroos BA. Chen C. Recent development of catalytic strategies for sustainable ammonia production. Chin J Chem Eng. 2023; 62: 65-113.

[8]

Wan Y, Xu J, Lv R. Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions. Mater Today. 2019; 27: 69-90.

[9]

Wang Lu, Xia M, Wang H, et al. Greening ammonia toward the solar ammonia refinery. Joule. 2018; 2(6): 1055-1074.

[10]

Mu J, Gao X-W, Yu T, et al. Ambient electrochemical ammonia synthesis: from theoretical guidance to catalyst design. Adv Sci. 2024; 11(15): 2308979.

[11]

Yu Yu, Li Y, Fang Yu, Wen L, Tu B, Huang Yi. Recent advances of ammonia synthesis under ambient conditions over metal-organic framework based electrocatalysts. Appl Catal B. 2024; 340: 123161.

[12]

Cao R, Xia J, Wu Q. Tuning transition metal atoms embedded in N6 cavity structure toward efficient electrocatalytic ammonia synthesis. Int J Hydrogen Energy. 2024; 54: 1047-1055.

[13]

Shipman MA, Symes MD. Recent progress towards the electrosynthesis of ammonia from sustainable resources. Catal Today. 2017; 286: 57-68.

[14]

Guo C, Ran J, Vasileff A, Qiang S-K. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ Sci. 2018; 11(1): 45-56.

[15]

Yan D, Li H, Chen C, Zou Y, Wang S. Defect engineering strategies for nitrogen reduction reactions under ambient conditions. Small Methods. 2019; 3(6): 1800331.

[16]

Chen X, Ren G, Wang Y, Li Z, Zhang Z, Meng X. Introduction of element Bi in the P-block promotes N2 activation for efficient electrocatalytic nitrogen reduction to produce ammonia. Appl Catal B: Environ Energy. 2024; 355: 124173.

[17]

Li Q, Kucukosman OK, Ma Q, et al. Enhancement of electrochemical nitrogen reduction activity and suppression of hydrogen evolution reaction for transition metal oxide catalysts: the role of proton intercalation and heteroatom doping. ACS Catal. 2024; 14(11): 8899-8912.

[18]

Wang H, Mao Q, Yu H, et al. Enhanced electrocatalytic performance of mesoporous Au–Rh bimetallic films for ammonia synthesis. Chem Eng J. 2021; 418: 129493.

[19]

Tan Y, Yan L, Huang C, et al. Fabrication of an Au25-Cys-Mo electrocatalyst for efficient nitrogen reduction to ammonia under ambient conditions. Small. 2021; 17(21): 2100372.

[20]

Liu S, Xu Y, Jiao S, et al. Rational construction of Au3Cu@Cu nanocages with porous core–shell heterostructured walls for enhanced electrocatalytic N2 fixation. J Mater Chem A. 2021; 9(13): 8372-8377.

[21]

Liu Y, Huang L, Zhu X, Fang Y, Dong S. Coupling Cu with Au for enhanced electrocatalytic activity of nitrogen reduction reaction. Nanoscale. 2020; 12(3): 1811-1816.

[22]

Shi M-M, Bao Di, Wulan B-R, et al. Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions. Adv Mater. 2017; 29(17): 1606550.

[23]

Li S-J, Bao Di, Shi M-M, Wulan B-R. Yan J-M, Jiang Q. Amorphizing of Au nanoparticles by CeOx–RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions. Adv Mater. 2017; 29(33): 1700001.

[24]

Bao D, Zhang Q, Meng F-L, et al. Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Adv Mater. 2017; 29(3): 1604799.

[25]

Liu H-M, Han S-H, Zhao Y, et al. Surfactant-free atomically ultrathin rhodium nanosheet nanoassemblies for efficient nitrogen electroreduction. J Mater Chem A. 2018; 6(7): 3211-3217.

[26]

Nazemi M, Panikkanvalappil SR, El-Sayed MA. Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages. Nano Energy. 2018; 49: 316-323.

[27]

Zhang R, Guo H, Yang Li, et al. Electrocatalytic N2 fixation over hollow VO2 microspheres at ambient conditions. ChemElectroChem. 2019; 6(4): 1014-1018.

[28]

Tian Y, Chang B, Wang G, et al. Magnetron sputtering tuned “π back-donation” sites over metal oxides for enhanced electrocatalytic nitrogen reduction. J Mater Chem A. 2022; 10(6): 2800-2806.

[29]

Wei X, Chen C, Fu X-Z, Wang S. Oxygen vacancies-rich metal oxide for electrocatalytic nitrogen cycle. Adv Energy Mater. 2024; 14(1): 2303027.

[30]

Wu Q, Zhu W, Ma D, Liang C, Wang Z, Liang H. Screening of transition metal oxides for electrocatalytic nitrate reduction to ammonia at large currents. Nano Res. 2024; 17(5): 3902-3910.

[31]

Xie M, Dai F, Guo H, et al. Improving electrocatalytic nitrogen reduction selectivity and yield by suppressing hydrogen evolution reaction via electronic metal–support interaction. Adv Energy Mater. 2023; 13(21): 2203032.

[32]

Chhetri A, Biswas A, Podder S, Dey RS, Mitra J. Strategic design of VO2 encased in N-doped carbon as an efficient electrocatalyst for the nitrogen reduction reaction in neutral and acidic media. Nanoscale. 2024; 16(19): 9426-9435.

[33]

Cao Na, Chen Z, Zang K, Zheng G. Doping strain induced Bi–Ti3+ pairs for efficient N2 activation and electrocatalytic fixation. Nat Commun. 2019; 10(1): 2877.

[34]

Wu T, Han M, Zhu X, et al. Experimental and theoretical understanding on electrochemical activation and inactivation processes of Nb3O7(OH) for ambient electrosynthesis of NH3. J Mater Chem A. 2019; 7(28): 16969-16978.

[35]

Liu Y, Deng P, Wu R, Zhang X, Sun C, Li H. Oxygen vacancies for promoting the electrochemical nitrogen reduction reaction. J Mater Chem A. 2021; 9(11): 6694-6709.

[36]

Tong Y, Guo H, Liu D, et al. Vacancy engineering of iron-doped W18O49 nanoreactors for low-barrier electrochemical nitrogen reduction. Angew Chem Int Ed. 2020; 59(19): 7356-7361.

[37]

Yang C, Zhu Y, Liu J, et al. Defect engineering for electrochemical nitrogen reduction reaction to ammonia. Nano Energy. 2020; 77: 105126.

[38]

Chang B, Deng L, Wang S, et al. A vanadium–nickel oxynitride layer for enhanced electrocatalytic nitrogen fixation in neutral media. J Mater Chem A. 2020; 8(1): 91-96.

[39]

Tan H, Ji Q, Wang C, et al. Asymmetrical π back-donation of hetero-dicationic Mo4+–Mo6+ pairs for enhanced electrochemical nitrogen reduction. Nano Res. 2022; 15(4): 3010-3016.

[40]

Xiao L, Zhu S, Liang Y, et al. Nanoporous nickel–molybdenum oxide with an oxygen vacancy for electrocatalytic nitrogen fixation under ambient conditions. ACS Appl Mater Interfaces. 2021; 13(26): 30722-30730.

[41]

Yang X, Nash J, Anibal J, et al. Mechanistic insights into electrochemical nitrogen reduction reaction on vanadium nitride nanoparticles. J Am Chem Soc. 2018; 140(41): 13387-13391.

[42]

Liu A, Yang Y, Kong D, et al. DFT study of the defective carbon materials with vacancy and heteroatom as catalyst for NRR. Appl Surf Sci. 2021; 536: 147851.

[43]

Hanifpour F, Canales CP, Fridriksson EG, et al. Operando quantification of ammonia produced from computationally-derived transition metal nitride electro-catalysts. J Catal. 2022; 413: 956-967.

[44]

Abghoui Y, Garden AL, Howalt JG, Vegge T, Skúlason E. Electroreduction of N2 to ammonia at ambient conditions on mononitrides of Zr, Nb, Cr, and V: a DFT guide for experiments. ACS Catal. 2016; 6(2): 635-646.

[45]

Young SD, Ceballos BM, Banerjee A, Mukundan R, Pilania G, Goldsmith BR. Metal oxynitrides for the electrocatalytic reduction of nitrogen to ammonia. J Phys Chem C. 2022; 126(31): 12980-12993.

[46]

Zhang X, Kong R-M, Du H, Xia L, Qu F. Highly efficient electrochemical ammonia synthesis via nitrogen reduction reactions on a VN nanowire array under ambient conditions. Chem Commun. 2018; 54(42): 5323-5325.

[47]

Du H-L, Gengenbach TR, Hodgetts R, Macfarlane DR, Simonov AN. Critical assessment of the electrocatalytic activity of vanadium and niobium nitrides toward dinitrogen reduction to ammonia. ACS Sustain Chem Eng. 2019; 7(7): 6839-6850.

[48]

He C, Wu Z-Y, Zhao L, et al. Identification of FeN4 as an efficient active site for electrochemical N2 reduction. ACS Catal. 2019; 9(8): 7311-7317.

[49]

Kim JK, Shi X, Jeong MJ, et al. Enhancing Mo:BiVO4 solar water splitting with patterned au nanospheres by plasmon-induced energy transfer. Adv Energy Mater. 2018; 8(5): 1701765.

[50]

Liu H-H, Zhang H-L, Xu H-B. Lou T-P, Sui Z-T. Zhang Yi. In situ self-sacrificed template synthesis of vanadium nitride/nitrogen-doped graphene nanocomposites for electrochemical capacitors. Nanoscale. 2018; 10(11): 5246-5253.

[51]

Andersen SZ, Čolić V, Yang S, et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature. 2019; 570(7762): 504-508.

[52]

Choi C, Back S, Kim N-Y, Lim J, Kim Y-H, Jung Y. Suppression of hydrogen evolution reaction in electrochemical N2 reduction using single-atom catalysts: a computational guideline. ACS Catal. 2018; 8(8): 7517-7525.

[53]

Yang X, Kattel S, Nash J, et al. Quantification of active sites and elucidation of the reaction mechanism of the electrochemical nitrogen reduction reaction on vanadium nitride. Angew Chem Int Ed. 2019; 58(39): 13768-13772.

[54]

Tan H, Liu Z, Chao D, et al. Partial nitridation-induced electrochemistry enhancement of ternary oxide nanosheets for fiber energy storage device. Adv Energy Mater. 2018; 8(21): 1800685.

[55]

Shen Y. Carbothermal synthesis of metal-functionalized nanostructures for energy and environmental applications. J Mater Chem A. 2015; 3(25): 13114-13188.

[56]

Ruiz Puigdollers A, Schlexer P, Tosoni S, Pacchioni G. Increasing oxide reducibility: the role of metal/oxide interfaces in the formation of oxygen vacancies. ACS Catal. 2017; 7(10): 6493-6513.

[57]

Tan Y, Liu Y, Tang Z, et al. Concise N-doped carbon nanosheets/vanadium nitride nanoparticles materials via intercalative polymerization for supercapacitors. Sci Rep. 2018; 8(1): 2915.

[58]

Wang L, Sun J, Song R, Yang S, Song H. Hybrid 2D–0D graphene–VN quantum dots for superior lithium and sodium storage. Adv Energy Mater. 2016; 6(6): 1502067.

[59]

Suryanto BHR, Du H-L, Wang D, Chen J, Simonov AN, Macfarlane DR. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat Catal. 2019; 2(4): 290-296.

[60]

Tang C, Qiao S-Z. How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully. Chem Soc Rev. 2019; 48(12): 3166-3180.

[61]

Greenlee LF, Renner JN, Foster SL. The use of controls for consistent and accurate measurements of electrocatalytic ammonia synthesis from dinitrogen. ACS Catal. 2018; 8(9): 7820-7827.

[62]

Wilder LM, Wyatt K, Skangos CA, et al. Membranes matter: preventing ammonia crossover during electrochemical ammonia synthesis. ACS Appl Energy Mater. 2024; 7(2): 536-545.

[63]

Fu X, Niemann VA, Zhou Y, et al. Calcium-mediated nitrogen reduction for electrochemical ammonia synthesis. Nat Mater. 2024; 23(1): 101-107.

[64]

Choi J, Suryanto BHR, Wang D, et al. Identification and elimination of false positives in electrochemical nitrogen reduction studies. Nat Commun. 2020; 11(1): 5546.

[65]

Pang F, Wang F, Yang L, Wang Z, Zhang W. Hierarchical nanoporous Pd1Ag1 alloy enables efficient electrocatalytic nitrogen reduction under ambient conditions. Chem Commun. 2019; 55(68): 10108-10111.

[66]

Xu B, Xia L, Zhou F, Zhao R. Enhancing electrocatalytic N2 reduction to NH3 by CeO2 nanorod with oxygen vacancies. ACS Sustain Chem Eng. 2019; 7(3): 2889-2893.

[67]

Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci. 1996; 6(1): 15-50.

[68]

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996; 77(18): 3865-3868.

[69]

Tinte S, Stachiotti MG, Rodriguez CO, Novikov DL, Christensen NE. Applications of the generalized gradient approximation to ferroelectric perovskites. Phys Rev B. 1998; 58(18): 11959-11963.

[70]

Han H, Kim KM, Choi H, et al. Parallelized reaction pathway and stronger internal band bending by partial oxidation of metal sulfide–graphene composites: important factors of synergistic oxygen evolution reaction enhancement. ACS Catal. 2018; 8(5): 4091-4102.

[71]

Han H, Choi H, Mhin S, et al. Advantageous crystalline–amorphous phase boundary for enhanced electrochemical water oxidation. Energy Environ Sci. 2019; 12(8): 2443-2454.

[72]

Han H, Hong Y-R, Woo J, et al. Electronically double-layered metal boride hollow nanoprism as an excellent and robust water oxidation electrocatalysts. Adv Energy Mater. 2019; 9(13): 1803799.

[73]

Hong Y-R, Mhin S, Kim K-M, et al. Electrochemically activated cobalt nickel sulfide for an efficient oxygen evolution reaction: partial amorphization and phase control. J Mater Chem A. 2019; 7(8): 3592-3602.

[74]

Duan Y, Zhang X-L, Gao F-Y. et al. Interfacial engineering of Ni/V2O3 heterostructure catalyst for boosting hydrogen oxidation reaction in alkaline electrolytes. Angew Chem Int Ed. 2023; 62(10): e202217275.

[75]

Yao Y, Zhu S, Wang H, Li H, Shao M. A spectroscopic study on the nitrogen electrochemical reduction reaction on gold and platinum surfaces. J Am Chem Soc. 2018; 140(4): 1496-1501.

[76]

Han S, Li H, Li T, et al. Ultralow overpotential nitrate reduction to ammonia via a three-step relay mechanism. Nat Catal. 2023; 6(5): 402-414.

[77]

Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996; 54(16): 11169-11186.

[78]

Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B. 1976; 13(12): 5188-5192.

RIGHTS & PERMISSIONS

2024 The Author(s). SusMat published by Sichuan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

365

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/