Construction of an intranasal drug delivery system with hypothalamus-targeting nanoparticles

Qianru Rao , Yujie Xu , Xiaorong Wang , Hang Luo , Haoqi Li , Jingyuan Xiong , Huile Gao , Guo Cheng

SusMat ›› 2024, Vol. 4 ›› Issue (4) : e222

PDF
SusMat ›› 2024, Vol. 4 ›› Issue (4) : e222 DOI: 10.1002/sus2.222
RESEARCH ARTICLE

Construction of an intranasal drug delivery system with hypothalamus-targeting nanoparticles

Author information +
History +
PDF

Abstract

Dysfunction of the hypothalamus is associated with endocrine imbalances, growth abnormalities, and reproductive disorders. However, there is a lack of targeted treatment strategies focused on the hypothalamus. In this study, we constructed a multifunctional nanocarrier system (S@ANP) to directly target the hypothalamic neurokinin receptor 3 (NK3R) via an intranasal delivery strategy. This system could overcome the primary obstacles in drug delivery for hypothalamus-related diseases. Under the guidance of a modified (Trp7, β-Ala8)-neurokinin A (4-10) peptide with cysteine, nanoparticles encapsulated with SB222200, an NK3R inhibitor, were found to readily penetrate hypothalamic cells with substantial loading capacity, encapsulation efficiency, and sustained release in vitro. Moreover, intranasal delivery represents an optimal delivery strategy that allows for a significant reduction in oral dosage and enables nanoparticles to bypass the blood–brain barrier and target relevant parts of the brain. The mucolytic agent N-acetyl-L-cysteine (NAC) was loaded into the nanoparticles (S@ANP + NAC) to increase mucosal solubility and intranasal delivery efficiency. In vivo evaluations showed that S@ANP + NAC could effectively target the hypothalamus and modulate NK3R-regulated hypothalamic functions in mice. Due to its high hypothalamic targeting efficiency and low toxicity, this intranasal nanoparticle drug delivery system may serve as a potential strategy for precision therapy of hypothalamic disorders.

Keywords

hypothalamus / intranasal delivery / nanoparticles / neurokinin receptor 3

Cite this article

Download citation ▾
Qianru Rao, Yujie Xu, Xiaorong Wang, Hang Luo, Haoqi Li, Jingyuan Xiong, Huile Gao, Guo Cheng. Construction of an intranasal drug delivery system with hypothalamus-targeting nanoparticles. SusMat, 2024, 4(4): e222 DOI:10.1002/sus2.222

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Romanov RA, Alpar A, Hokfelt T, Harkany T. Unified classification of molecular, network, and endocrine features of hypothalamic neurons. Annu Rev Neurosci. 2019; 42: 1-26.

[2]

Tauber M, Hoybye C. Endocrine disorders in Prader–Willi syndrome: a model to understand and treat hypothalamic dysfunction. Lancet Diab Endocrinol. 2021; 9(4): 235-246.

[3]

De Boer AG, Gaillard PJ. Drug targeting to the brain. Annu Rev Pharmacol. 2007; 47(1): 323-355.

[4]

Wu D, Chen Q, Chen X, Han F, Chen Z, Wang Y. The blood–brain barrier: structure, regulation, and drug delivery. Signal Transduct Target Ther. 2023; 8(1): 217.

[5]

Terstappen GC, Meyer AH, Bell RD, Zhang W. Strategies for delivering therapeutics across the blood–brain barrier. Nat Rev Drug Discov. 2021; 20(5): 362-383.

[6]

Li CH, Chen X, Landis RF, et al. Phytochemical-based nanocomposites for the treatment of bacterial biofilms. ACS Infect Dis. 2019; 5(9): 1590-1596.

[7]

Saraiva C, Praca C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle-mediated brain drug delivery: overcoming blood–brain barrier to treat neurodegenerative diseases. J Control Release. 2016; 235: 34-47.

[8]

Ruan S, Zhou Y, Jiang X, Gao H. Rethinking CRITID procedure of brain targeting drug delivery: circulation, blood–brain barrier recognition, intracellular transport, diseased cell targeting, internalization, and drug release. Adv Sci (Weinh). 2021; 8(9): 2004025.

[9]

Wei Y, Xia X, Li H, Gao H. Influence factors on and potential strategies to amplify receptor-mediated nanodrug delivery across the blood–brain barrier. Expert Opin Drug Deliv. 2023; 20(12): 1713-1730.

[10]

Peng J, Chen J, Xie F, et al. Herceptin-conjugated paclitaxel loaded PCL–PEG worm-like nanocrystal micelles for the combinatorial treatment of HER2-positive breast cancer. Biomaterials. 2019; 222: 119420.

[11]

Wang Z, Pan J, Yuan R, Chen M, Guo X, Zhou S. Shell-sheddable polymeric micelles alleviate oxidative stress and inflammation for enhanced ischemic stroke therapy. Nano Lett. 2023; 23(14): 6544-6552.

[12]

He X, Wang X, Yang L, et al. Intelligent lesion blood–brain barrier targeting nano-missiles for Alzheimer’s disease treatment by anti-neuroinflammation and neuroprotection. Acta Pharm Sin B. 2022; 12(4): 1987-1999.

[13]

Marianecci C, Rinaldi F, Hanieh PN, Di Marzio L, Paolino D, Carafa M. Drug delivery in overcoming the blood–brain barrier: role of nasal mucosal grafting. Drug Des Devel Ther. 2017; 11: 325-335.

[14]

Oishi S, Fujii N. Neuropeptide derivatives to regulate the reproductive axis: kisspeptin receptor (KISS1R) ligands and neurokinin-3 receptor (NK3R) ligands. Biopolymers. 2016; 106(4): 588-597.

[15]

Rance NE, Dacks PA, Mittelman-Smith MA. Romanovsky AA, Krajewski-Hall SJ. Modulation of body temperature and LH secretion by hypothalamic KNDy (kisspeptin, neurokinin B and dynorphin) neurons: a novel hypothesis on the mechanism of hot flushes. Front Neuroendocrinol. 2013; 34(3): 211-227.

[16]

Fraser GL, Obermayer-Pietsch B. Laven J, et al. Randomized controlled trial of Neurokinin 3 receptor antagonist Fezolinetant for treatment of polycystic ovary syndrome. J Clin Endocrinol Metab. 2021; 106(9): e3519-e3532.

[17]

Elder S, Santoro N. NK3R antagonists: a novel approach for menopause symptoms. Nat Rev Endocrinol. 2023; 19(11): 617-618.

[18]

Clarkson J, Han SY, Piet R, et al. Definition of the hypothalamic GnRH pulse generator in mice. Proc Natl Acad Sci U S A. 2017; 114(47): E10216-E10223.

[19]

Conklin M, Santoro N. Neurokinin receptor antagonists as potential non-hormonal treatments for vasomotor symptoms of menopause. Ther Adv Reprod Health. 2023; 17: 26334941231177611.

[20]

Sarau HM, Griswold DE, Bush B, et al. Nonpeptide tachykinin receptor antagonists. II. Pharmacological and pharmacokinetic profile of SB-222200, a central nervous system penetrant, potent and selective NK-3 receptor antagonist. J Pharmacol Exp Ther. 2000; 295(1): 373-381.

[21]

Hether S, Misono K, Lessard A. The neurokinin-3 receptor (NK3R) antagonist SB222200 prevents the apomorphine-evoked surface but not nuclear NK3R redistribution in dopaminergic neurons of the rat ventral tegmental area. Neuroscience. 2013; 247: 12-24.

[22]

Zhang L, Fernando T, Liu Y, et al. Neurokinin 3 receptor antagonist-induced adipocyte activation improves obesity and metabolism in PCOS-like mice. Life Sci. 2022; 310: 121078.

[23]

Liu M, Ishida Y, Ebina Y, et al. An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets. Nature. 2015; 517(7532): 68-72.

[24]

Sano K, Igarashi N, Arazoe YO, et al. Internal structure and mechanical property of an anisotropic hydrogel with electrostatic repulsion between nanosheets. Polymer. 2019; 177: 43-48.

[25]

Xiao W, Gao H. The impact of protein corona on the behavior and targeting capability of nanoparticle-based delivery system. Int J Pharm. 2018; 552(1-2): 328-339.

[26]

Zarschler K, Prapainop K, Mahon E, et al. Diagnostic nanoparticle targeting of the EGF-receptor in complex biological conditions using single-domain antibodies. Nanoscale. 2014; 6(11): 6046-6056.

[27]

Ju Y, Dai Q, Cui J, et al. Improving targeting of metal-phenolic capsules by the presence of protein coronas. ACS Appl Mater Interfaces. 2016; 8(35): 22914-22922.

[28]

Dai Q, Yan Y, Ang CS, et al. Monoclonal antibody-functionalized multilayered particles: targeting cancer cells in the presence of protein coronas. ACS Nano. 2015; 9(3): 2876-2885.

[29]

Guo X, Deng G, Liu J, et al. Thrombin-responsive, brain-targeting nanoparticle. for improved stroke therapy. ACS Nano. 2018; 12(8): 8723-8732.

[30]

Tang Y, Gao J, Wang T, et al. The effect of drug loading and multiple administration on the protein corona formation and brain delivery property of PEG–PLA nanoparticles. Acta Pharm Sin B. 2022; 12(4): 2043-2056.

[31]

Zhang L, Du SY, Lu Y, et al. Puerarin transport across a Calu-3 cell monolayer—an in vitro model of nasal mucosa permeability and the influence of paeoniflorin and menthol. Drug Des Devel Ther. 2016; 10: 2227-2237.

[32]

Inoue D, Furubayashi T, Tanaka A, Sakane T, Sugano K. Quantitative estimation of drug permeation through nasal mucosa using in vitro membrane permeability across Calu-3 cell layers for predicting in vivo bioavailability after intranasal administration to rats. Eur J Pharm Biopharm. 2020; 149: 145-153.

[33]

He X, Xie J, Zhang J, et al. Acid-responsive dual-targeted nanoparticles encapsulated Aspirin rescue the immune activation and phenotype in autism spectrum disorder. Adv Sci. 2022; 9(14): e2104286.

[34]

Hurst GA, Shaw PB, LeMaistre CA. Laboratory and clinical evaluation of the mucolytic properties of acetylcysteine. Am Rev Respir Dis. 1967; 96(5): 962-970. doi:10.1164/arrd.1967.96.5.962

[35]

Zhang Y, Sun N, Zhang M, et al. Effects of Fuyou formula on GnRH secretion and related gene expression in treating precocious puberty. Front Pharmacol. 2022; 13: 852550.

[36]

Mellon PL, Windle JJ, Goldsmith PC, Padula CA, Roberts JL, Weiner RI. Immortalization of hypothalamic GnRH neurons by genetically targeted tumorigenesis. Neuron. 1990; 5(1): 1-10.

[37]

Belsham DD, Evangelou A, Roy D, Duc VL, Brown TJ. Regulation of gonadotropin-releasing hormone (GnRH) gene expression by 5alpha-dihydrotestosterone in GnRH-secreting GT1-7 hypothalamic neurons. Endocrinology. 1998; 139(3): 1108-1114.

[38]

Loikkanen J, Naarala J, Vähäkangas KH, Savolainen KM. Glutamate increases toxicity of inorganic lead in GT1-7 neurons: partial protection induced by flunarizine. Arch Toxicol. 2003; 77(12): 663-671.

[39]

Moon HS, Chamberland JP, Mantzoros CS. Amylin and leptin activate overlapping signalling pathways in an additive manner in mouse GT1-7 hypothalamic, C2C12 muscle and AML12 liver cell lines. Diabetologia. 2012; 55(1): 215-225.

[40]

Garcia JP, Guerriero KA, Keen KL, Kenealy BP, Seminara SB, Terasawa E. Kisspeptin and neurokinin B signaling network underlies the pubertal increase in GnRH release in female rhesus monkeys. Endocrinology. 2017; 158(10): 3269-3280.

[41]

Porter KL, Hileman SM, Hardy SL, Nestor CC, Lehman MN, Goodman RL. Neurokinin-3 receptor activation in the retrochiasmatic area is essential for the full pre-ovulatory luteinising hormone surge in ewes. J Neuroendocrinol. 2014; 26(11): 776-784.

[42]

Li SY, Li XF, Hu MH, et al. Neurokinin B receptor antagonism decreases luteinising hormone pulse frequency and amplitude and delays puberty onset in the female rat. J Neuroendocrinol. 2014; 26(8): 521-527.

[43]

Navarro VM, Tena-Sempere M. Neuroendocrine control by kisspeptins: role in metabolic regulation of fertility. Nat Rev Endocrinol. 2011; 8(1): 40-53.

[44]

de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Article. PNAS. 2003; 100(19): 10972-10976.

[45]

Pinilla L, Aguilar E, Dieguez C, Millar RP, Tena-Sempere M. Kisspeptins and reproduction: physiological roles and regulatory mechanisms. Physiol Rev. 2012; 92(3): 1235-1316.

[46]

Millar RP. GnRHs and GnRH receptors. Anim Reprod Sci. 2005; 88(1-2): 5-28.

[47]

Xiong J, Tian Y, Ma G, Wang X, Shan S, Cheng G. Impact of physiologically relevant Genistein exposure at different time windows on puberty onset and neuroendocrine function in female rats. Mol Nutr Food Res. 2022; 66(24): e2200486.

[48]

Navarro VM, Gottsch ML, Chavkin C, Okamura H, Clifton DK, Steiner RA. Regulation of gonadotropin-releasing hormone secretion by kisspeptin/dynorphin/neurokinin B neurons in the arcuate nucleus of the mouse. J Neurosci. 2009; 29(38): 11859-11866.

[49]

Wakabayashi Y, Okamura H, Yamamura T. Local administration of Neurokinin B in the arcuate nucleus accelerates the neural activity of the GnRH pulse generator in goats. J Reprod Dev. 2021; 67(6): 352-358.

[50]

Amstalden M, Coolen LM, Hemmerle AM, et al. Neurokinin 3 receptor immunoreactivity in the septal region, preoptic area and hypothalamus of the female sheep: colocalisation in neurokinin B cells of the arcuate nucleus but not in gonadotrophin-releasing hormone neurones. J Neuroendocrinol. 2010; 22(1): 1-12.

[51]

Hanson LR, Frey WH. Intranasal delivery bypasses the blood–brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neurosci. 2008; 9(suppl 3):S5.

[52]

Asa SL, Ezzat S, Kelly DF, et al. Hypothalamic vasopressin-producing tumors: often inappropriate diuresis but occasionally Cushing disease. Am J Surg Pathol. 2019; 43(2): 251-260.

[53]

Fouladi M, Wallace D, Langston JW, et al. Survival and functional outcome of children with hypothalamic/chiasmatic tumors. Cancer. 2003; 97(4): 1084-1092.

[54]

Dimopoulou I, Tsagarakis S. Hypothalamic–pituitary dysfunction in critically ill patients with traumatic and nontraumatic brain injury. Intensive Care Med. 2005; 31(8): 1020-1028.

[55]

Papadopoulos AS, Cleare AJ. Hypothalamic–pituitary–adrenal axis dysfunction in chronic fatigue syndrome. Nat Rev Endocrinol. 2011; 8(1): 22-32.

[56]

Tomkins M, Lawless S, Martin-Grace J. Sherlock M, Thompson CJ. Diagnosis and management of central diabetes insipidus in adults. J Clin Endocrinol Metab. 2022; 107(10): 2701-2715.

[57]

Malerba F, Paoletti F, Capsoni S, Cattaneo A. Intranasal delivery of therapeutic proteins for neurological diseases. Expert Opin Drug Deliv. 2011; 8(10): 1277-1296.

[58]

Picard P, Regoli D, Couture R. Cardiovascular and behavioral-effects of centrally administered Tachykinins in the rat—characterization of receptors with selective antagonists. Br J Pharmacol. 1994; 112(1): 240-249.

[59]

Yang X, Yang W, Xia X, et al. Intranasal delivery of BACE1 siRNA and Rapamycin by dual targets modified nanoparticles for Alzheimer’s disease therapy. Small. 2022; 18(30): e2203182.

[60]

Yang X, Chen X, Lei T, et al. The construction of in vitro nasal cavity-mimic M-cell model, design of M cell-targeting nanoparticles and evaluation of mucosal vaccination by nasal administration. Acta Pharm Sin B. 2020; 10(6): 1094-1105.

RIGHTS & PERMISSIONS

2024 The Author(s). SusMat published by Sichuan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

203

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/