Sulfone-functionalized stable molecular single crystals for photocatalytic hydrogen evolution

Xunliang Hu , Xiaoju Yang , Bingyi Song , Zhen Zhan , Ruixue Sun , Yantong Guo , Li-Ming Yang , Xuan Yang , Chun Zhang , Irshad Hussain , Xiaoyan Wang , Bien Tan

SusMat ›› 2024, Vol. 4 ›› Issue (3) : e220

PDF
SusMat ›› 2024, Vol. 4 ›› Issue (3) : e220 DOI: 10.1002/sus2.220
RESEARCH ARTICLE

Sulfone-functionalized stable molecular single crystals for photocatalytic hydrogen evolution

Author information +
History +
PDF

Abstract

Highly crystalline organic semiconductors are ideal materials for photocatalytic hydrogen evolution in water splitting. However, the instability and complex synthesis processes of most reported organic molecule-based photocatalysts restrict their applications. In this study, we introduce benzo [1,2-b:4,5-bʹ] bis [1] benzothiophene-3,9-dicarboxylic acid, 5,5,11,11-tetraoxide (FSOCA), a highly crystalline, stable molecular crystal that is easy to synthesize and serves as an efficient photocatalyst for the hydrogen evolution reaction. FSOCA exhibits high efficiency in sacrificial hydrogen evolution reaction (760 µmol h−1, 76 mmol g−1 h−1 at 330 mW cm−2; 570 µmol h−1, 57 mmol g−1 h−1 at 250 mW cm−2), and FSOCA remains stable during photocatalysis for up to 400 h. Experiments and theoretical studies confirmed the presence of hydrogen bonds between the sulfone group and the sacrificial agent (ascorbic acid). This interaction significantly improved the oxidation reaction kinetics and boosted the photocatalytic performance. This study presents a scalable and convenient approach to synthesize highly crystalline, active, and stable organic photocatalysts with potential applications in large-scale photocatalysis.

Keywords

exceptional durability / molecular single crystals / photocatalytic water splitting

Cite this article

Download citation ▾
Xunliang Hu, Xiaoju Yang, Bingyi Song, Zhen Zhan, Ruixue Sun, Yantong Guo, Li-Ming Yang, Xuan Yang, Chun Zhang, Irshad Hussain, Xiaoyan Wang, Bien Tan. Sulfone-functionalized stable molecular single crystals for photocatalytic hydrogen evolution. SusMat, 2024, 4(3): e220 DOI:10.1002/sus2.220

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhao D, Wang Y, Dong C-L, et al. Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting. Nat Energy. 2021;6(4):388-397.

[2]

Nishiyama H, Yamada T, Nakabayashi M, et al. Photocatalytic solar hydrogen production from water on a 100-m2 scale. Nature. 2021;598(7880):304-307.

[3]

Guo Y, Qixin ZS, Nan J, Shi W, Cui F, Zhu Y. Perylenetetracarboxylic acid nanosheets with internal electric fields and anisotropic charge migration for photocatalytic hydrogen evolution. Nat Commun. 2022;13(1):2067.

[4]

Li C, Liu J, Li H, Wu K, Wang J, Yang Q. Covalent organic frameworks with high quantum efficiency in sacrificial photocatalytic hydrogen evolution. Nat Commun. 2022;13(1):2357.

[5]

Lan Z, Zhang G, Chen X, et al. Reducing the exciton binding energy of donor-acceptor-based conjugated polymers to promote charge-induced reactions. Angew Chem Int Ed. 2019;58(30):10236-10240.

[6]

Habibi-Yangjeh A, Pournemati K. A review on emerging homojunction photocatalysts with impressive performances for wastewater detoxification. Crit Rev Environ Sci Tech. 2024;54(4):290-320.

[7]

Seifikar F, Habibi-Yangjeh A. Floating photocatalysts as promising materials for environmental detoxification and energy production: a review. Chemosphere. 2024;355:141686.

[8]

Zhao C, Chen Z, Shi R, Yang X, Zhang T. Recent advances in conjugated polymers for visible-light-driven water splitting. Adv Mater. 2020;32(28):1907296.

[9]

Wang X, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater. 2009;8(1):76-80.

[10]

Hemmati-Eslamlu P, Habibi-Yangjeh A. A review on impressive Z- and S-scheme photocatalysts composed of g-C3N4 for detoxification of antibiotics. FlatChem. 2024;43:100597.

[11]

Lv Y, Ma D, Song K, et al. Graphitic carbon nitride decorated with C-N compounds broken by s-triazine unit as homojunction for photocatalytic H2 evolution. J Mater Chem A. 2023;11(2):800-808.

[12]

Ma D, Zhang Z, Zou Y, Chen J, Shi J. The progress of g-C3N4 in photocatalytic H2 evolution: from fabrication to modification. Coordin Chem Rev. 2024;500:215489.

[13]

Yu H, Shi R, Zhao Y, et al. Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution. Adv Mater. 2017;29(16):1605148.

[14]

Yanagida S, Kabumoto A, Mizumoto K, Pac C, Yoshino K. Poly(p-phenylene)-catalysed photoreduction of water to hydrogen. Chem Commun. 1985;8(8):474-475.

[15]

Sachs M, Sprick RS, Pearce D, et al. Understanding structure-activity relationships in linear polymer photocatalysts for hydrogen evolution. Nat Commun. 2018;9(1):4968.

[16]

Sprick RS, Jiang J-X, Bonillio B, et al. Tunable organic photocatalysts for visible-light-driven hydrogen evolution. J Am Chem Soc. 2015;137(9):3265-3270.

[17]

Yang C, Ma BC, Zhang L, et al. Molecular engineering of conjugated polybenzothiadiazoles for enhanced hydrogen production by photosynthesis. Angew Chem Int Ed. 2016;55(32):9202-9206.

[18]

Li L, Cai Z, Wu Q, et al. Rational design of porous conjugated polymers and roles of residual palladium for photocatalytic hydrogen production. J Am Chem Soc. 2016;138(24):7681-7686.

[19]

Wang X, Chen L, Chong SY, et al. Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. Nat Chem. 2018;10(12):1180-1189.

[20]

Wang H, Wang H, Wang Z, et al. Covalent organic framework photocatalysts: structures and applications. Chem Soc Rev. 2020;49(12):4135-4165.

[21]

Wang H, Zeng Z, Xu P, et al. Recent progress in covalent organic framework thin films: fabrications, applications and perspectives. Chem Soc Rev. 2019;48(2):488-516.

[22]

Hu X, Zhan Z, Zhang J, Hussain I, Tan B. Immobilized covalent triazine frameworks films as effective photocatalysts for hydrogen evolution reaction. Nat Commun. 2021;12(1):6596.

[23]

Liu M, Huang Q, Wang S, et al. Crystalline covalent triazine frameworks by in situ oxidation of alcohols to aldehyde monomers. Angew Chem Int Ed. 2018;57(37):11968-11972.

[24]

Wang K, Yang L, Wang X, et al. Covalent triazine frameworks via a low-temperature polycondensation approach. Angew Chem Int Ed. 2017;56(45):14149-14153.

[25]

Sun T, Liang Y, Xu Y. Rapid, ordered polymerization of crystalline semiconducting covalent triazine frameworks. Angew Chem Int Ed. 2022;61(4):e202113926.

[26]

Lin L, Lin Z, Zhang J, Cai X. Molecular-level insights on the reactive facet of carbon nitride single crystals photocatalysing overall water splitting. Nat Catal. 2020;3(8):649-655.

[27]

Algara-Siller G, Severin N, Chong SY, et al. Triazine-based graphitic carbon nitride: a two-dimensional semiconductor. Angew Chem Int Ed. 2014;53(29):7450-7455.

[28]

Lin L, Wang C, Ren W, Ou H, Zhang Y, Wang X. Photocatalytic overall water splitting by conjugated semiconductors with crystalline poly(triazine imide) frameworks. Chem Sci. 2017;8(8):5506-5511.

[29]

Aitchison CM, Kane CM, McMahon DP, et al. Photocatalytic proton reduction by a computationally identified, molecular hydrogen-bonded framework. J Mater Chem A. 2020;8(15):7158-7170.

[30]

Zhu Y, Zhang Z, Si W, et al. Organic photovoltaic catalyst with extended exciton diffusion for high-performance solar hydrogen evolution. J Am Chem Soc. 2022;144(28):12747-12755.

[31]

Zhang Z, Si W, Wu B, et al. Two-dimensional polycyclic photovoltaic molecule with low trap density for high-performance photocatalytic hydrogen evolution. Angew Chem Int Ed. 2022;61(10):e202114234.

[32]

Weingarten AS, Kazantsev RV, Palmer LC, et al. Self-assembling hydrogel scaffolds for photocatalytic hydrogen production. Nat Chem. 2014;6(11):964-970.

[33]

Dannenhoffer A, Sai H, Harutyunyan B, et al. Growth of extra-large chromophore supramolecular polymers for enhanced hydrogen production. Nano Lett. 2021;21(9):3745-3752.

[34]

Weingarten A, Dannenhoffer A, Kazantsev R, Sai H, Huang D, Stupp S. Chromophore dipole directs morphology and photocatalytic hydrogen generation. J Am Chem Soc. 2018;140(15):4965-4968.

[35]

Kong K, Zhang S, Chu Y, et al. A self-assembled perylene diimide nanobelt for efficient visible-light-driven photocatalytic H2 evolution. Chem Commun. 2019;55(56):8090-8093.

[36]

Jing J, Yang J, Zhang Z, Zhu Y. Supramolecular zinc porphyrin photocatalyst with strong reduction ability and robust built-in electric field for highly efficient hydrogen production. Adv Energy Mater. 2021;11(29):2101392.

[37]

Zhang N, Wang L, Wang H, et al. Self-assembled one-dimensional porphyrin nanostructures with enhanced photocatalytic hydrogen generation. Nano Lett. 2018;18(1):560-566.

[38]

Zhang Z, Zhu Y, Chen X, Zhang H, Wang J. A full-spectrum metal-free porphyrin supramolecular photocatalyst for dual functions of highly efficient hydrogen and oxygen evolution. Adv Mater. 2019;31(7):1806626.

[39]

Zhang G, Yang X, Li Y, Zhang P, Mi H. Donor-acceptor cyanocarbazole-based supramolecular photocatalysts for visible-light-driven H2 production. ChemSusChem. 2019;12(23):5070-5074.

[40]

Yang H, Li C, Liu T, et al. Packing-induced selectivity switching in molecular nanoparticle photocatalysts for hydrogen and hydrogen peroxide production. Nat Nanotechnol. 2023;18(3):307-315.

[41]

Eberhart MS, Wang D, Sampaio RN, et al. Water photo-oxidation initiated by surface-bound organic chromophores. J Am Chem Soc. 2017;139(45):16248-16255.

[42]

Clarke T, Durrant J. Charge photogeneration in organic solar cells. Chem Rev. 2010;110(11):6736-6767.

[43]

Ma Y, Fang H, Chen R, et al. 2D-MOF/2D-MOF heterojunctions with strong hetero-interface interaction for enhanced photocatalytic hydrogen evolution. Rare Met. 2023;42(12):3993-4004.

[44]

Hillman SAJ, Sprick RS, Pearce D, et al. Why do sulfone-containing polymer photocatalysts work so well for sacrificial hydrogen evolution from water? J Am Chem Soc. 2022;144(42):19382-19395.

[45]

Kosco J, Gonzalez-Carrero S, Howells CT, et al. Generation of long-lived charges in organic semiconductor heterojunction nanoparticles for efficient photocatalytic hydrogen evolution. Nat Energy. 2022;7(4):340-s351.

[46]

Yang X, Nash J, Oliveira N, Yan Y, Xu B. Understanding the pH dependence of underpotential deposited hydrogen on platinum. Angew Chem Int Ed. 2019;58(49):17718-17723.

RIGHTS & PERMISSIONS

2024 The Author(s). SusMat published by Sichuan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

288

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/