Designing weakly and strongly solvating polymer electrolytes: Systematically boosting high-voltage lithium metal batteries

Tianyi Wang , Yimeng Zhang , Xueyan Huang , Peifeng Su , Min Xiao , Shuanjin Wang , Sheng Huang , Dongmei Han , Yuezhong Meng

SusMat ›› 2024, Vol. 4 ›› Issue (4) : e219

PDF
SusMat ›› 2024, Vol. 4 ›› Issue (4) : e219 DOI: 10.1002/sus2.219
RESEARCH ARTICLE

Designing weakly and strongly solvating polymer electrolytes: Systematically boosting high-voltage lithium metal batteries

Author information +
History +
PDF

Abstract

Practical high-voltage lithium metal batteries hold promise for high energy density applications, but face stability challenges in electrolytes for both 4 V-class cathodes and lithium anode. To address this, we delve into the positive impacts of two crucial moieties in electrolyte chemistry: fluorine atom (-F) and cyano group (-CN) on the electrochemical performance of polyether electrolytes and lithium metal batteries. Cyano-bearing polyether electrolytes possess strong solvation, accelerating Li+ desolvation with minimal SEI impact. Fluorinated polyether electrolytes possess weak solvation, and stabilize the lithium anode via preferential decomposition of F-segment, exhibiting nearly 6000-h stable cycling of lithium symmetric cell. Furthermore, the electron-withdrawing properties of -F and -CN groups significantly bolster the high-voltage tolerance of copolymer electrolyte, extending its operational range up to 5 V. This advancement enables the development of 4 V-class lithium metal batteries compatible with various cathodes, including 4.45 V LiCoO2, 4.5 V LiNi0.8Co0.1Mn0.1O2, and 4.2 V LiNi0.5Co0.2Mn0.3O2. These findings provide insights into design principles centered around polymer components for high-performance polymer electrolytes.

Keywords

cyano-bearing copolymer electrolyte / fluorinated copolymer electrolyte / high-voltage lithium metal battery / in situ polymerization / solvation

Cite this article

Download citation ▾
Tianyi Wang, Yimeng Zhang, Xueyan Huang, Peifeng Su, Min Xiao, Shuanjin Wang, Sheng Huang, Dongmei Han, Yuezhong Meng. Designing weakly and strongly solvating polymer electrolytes: Systematically boosting high-voltage lithium metal batteries. SusMat, 2024, 4(4): e219 DOI:10.1002/sus2.219

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cao Y, Li M, Lu J, Liu J, Amine K. Bridging the academic and industrial metrics for next-generation practical batteries. Nat Nanotechnol. 2019; 14: 200-207.

[2]

Liu J, Bao Z, Cui Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat Energy. 2019; 4: 180-186.

[3]

Duffner F, Kronemeyer N, Tübke J, Leker J, Winter M, Schmuch R. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nat Energy. 2021; 6: 123-134.

[4]

Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol. 2017; 12: 194-206.

[5]

Long L, Wang S, Xiao M, Meng Y. Polymer electrolytes for lithium polymer batteries. J Mater Chem A. 2016; 4: 10038-10069.

[6]

Lopez J, Mackanic DG, Cui Y, Bao Z. Designing polymers for advanced battery chemistries. Nat Rev Mater. 2019; 4: 312-330.

[7]

Xi G, Xiao M, Wang S, Han D, Li Y, Meng Y. Polymer-Based solid electrolytes: material selection, design, and application. Adv Funct Mater. 2020; 31: 2007598.

[8]

Su G, Zhang X, Xiao M, et al. Polymeric electrolytes for solid-state lithium ion batteries: Structure design, electrochemical properties and cell performances. ChemSusChem. 2023; 17: e202300293.

[9]

Mai W, Cao Q, Zheng M, et al. A fast ionic transport copolymeric network for stable quasi-solid lithium metal battery. J Energy Chem. 2023; 87: 491-500.

[10]

Su Y, Rong X, Gao A, et al. Rational design of a topological polymeric solid electrolyte for high-performance all-solid-state alkali metal batteries. Nat Commun. 2022; 13: 4181.

[11]

Ma M, Shao F, Wen P, et al. Designing weakly solvating solid main-chain fluoropolymer electrolytes: synergistically enhancing stability toward Li anodes and high-voltage cathodes. ACS Energy Lett. 2021; 6: 4255-4264.

[12]

Sun Y, Zhang X, Ma C, et al. Fluorine-containing triblock copolymers as solid-state polymer electrolytes for lithium metal batteries. J Power Sources. 2021; 516: 230686.

[13]

Jia M, Wen P, Wang Z, et al. Fluorinated bifunctional solid polymer electrolyte synthesized under visible light for stable lithium deposition and dendrite-free all-solid-state batteries. Adv Funct Mater. 2021; 31: 2101736.

[14]

Yang SJ, Yao N, Jiang FN, et al. Thermally stable polymer-rich solid electrolyte interphase for safe lithium metal pouch cells. Angew Chem Int Ed. 2022; 61: e202214545.

[15]

Lv Z, Zhou Q, Zhang S, et al. Cyano-reinforced in situ polymer electrolyte enabling long-life cycling for high-voltage lithium metal batteries. Energy Storage Mater. 2021; 37: 215-223.

[16]

Ji X, Cao M, Fu X, et al. Efficient room-temperature solid-state lithium ion conductors enabled by mixed-graft block copolymer architectures. Giant. 2020; 3: 100027.

[17]

Deng K, Qin J, Wang S, et al. Effective suppression of lithium dendrite growth using a flexible single-ion conducting polymer electrolyte. Small. 2018; 14(31): e1801420.

[18]

Deng K, Zeng Q, Wang D, et al. Single-ion conducting gel polymer electrolytes: design, preparation and application. J Mater Chem A. 2020; 8: 1557-1577.

[19]

Li S, Huang J, Cui Y, et al. A robust all-organic protective layer towards ultrahigh-rate and large-capacity Li metal anodes. Nat Nanotechnol. 2022; 17: 613-621.

[20]

Zhao J, Hong M, Ju Z, Yan X, Gai Y, Liang Z, Angew Chem Int Ed Engl. 2022; 61(52): e202214386.

[21]

Choudhury S, Tu Z, Nijamudheen A, et al. Stabilizing polymer electrolytes in high-voltage lithium batteries. Nat Commun. 2019; 10: 3091.

[22]

Schulze MW, McIntosh LD, Hillmyer MA, Lodge TP. High-modulus, high-conductivity nanostructure. polymer electrolyte membranes via polymerization-induced phase separation. Nano Lett. 2014; 14: 122-126.

[23]

Chopade SA, Au JG, Li Z, Schmidt PW, Hillmyer MA, Lodge TP. Robust polymer electrolyte membranes with high ambient-temperature lithium-ion conductivity via polymerization-induced microphase separation. ACS Appl Mater Interfaces. 2017; 9: 14561-14565.

[24]

Li Z, Wang T, Zhong L, et al. Ultrathin thiol-ene crosslinked polymeric electrolyte for solid-state and high-performance lithium metal batteries. Sci China Mater. 2022; 66: 1332-1340.

[25]

Jiang B, Wei Y, Wu J, et al. Recent progress of asymmetric solid-state electrolytes for lithium/sodium-metal batteries. EnergyChem. 2021; 3(5): 100058.

[26]

Arrese-Igor M, Martinez-Ibañez M, Pavlenko E, et al. Toward high-voltage solid-state li-metal batteries with double-layer polymer electrolytes. ACS Energy Lett. 2022; 7: 1473-1480.

[27]

Zhou W, Wang Z, Pu Y, et al. Double-layer polymer electrolyte for high-voltage all-solid-state rechargeable batteries. Adv Mater. 2019; 31: e1805574.

[28]

Wang T, Zhong L, Xiao M, et al. Block copolymer electrolytes for lithium metal batteries: strategies to boost both ionic conductivity and mechanical strength. Prog Polym Sci. 2023; 146: 101743.

[29]

Huang X, Huang S, Wang T, et al. Polyether-b-amide based solid electrolytes with well-adhered interface and fast kinetics for ultralow temperature solid-state lithium metal batteries. Adv Funct Mater. 2023; 33(27): 2300683.

[30]

Amanchukwu CV, Yu Z, Kong X, Qin J, Cui Y, Bao Z. A new class of ionically conducting fluorinated ether electrolytes with high electrochemical stability. J Am Chem Soc. 2020; 142: 7393-7403.

[31]

Yu Z, Wang H, Kong X, et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat Energy. 2020; 5: 526-533.

[32]

Yu Z, Rudnicki PE, Zhang Z, et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat Energy. 2022; 7: 94-106.

[33]

Hobold GM, Lopez J, Guo R, et al. Moving beyond 99.9% Coulombic efficiency for lithium anodes in liquid electrolytes. Nat Energy. 2021; 6: 951-960.

[34]

Xu K, Xu W, Zhang SS. Austen Angell’s legacy in electrolyte research. J Non-Cryst Solids: X 2022; 14:100088.

[35]

Cao X, Jia H, Xu W, Zhang J-G. Review—localized high-concentration electrolytes for lithium batteries. J Electrochem Soc. 2021; 168: 010522.

[36]

Yao YX, Chen X, Yan C, et al. Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte. Angew Chem Int Ed Engl. 2021; 60: 4090-4097.

[37]

Zhang H, Chen Y, Li C, Armand M. Electrolyte and anode-electrolyte interphase in solid-state lithium metal polymer batteries: a perspective. SusMat. 2021; 1: 24-37.

[38]

Tan J, Matz J, Dong P, Shen J, Ye M. A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv Energy Mater. 2021; 11(16): 2100046.

[39]

Kim MS, Zhang Z, Wang J, et al. Revealing the multifunctions of Li 3 N in the suspension electrolyte for lithium metal batteries. ACS Nano. 2023; 17: 3168-3180.

[40]

Ma Y, Wan J, Yang Y, et al. Scalable, ultrathin, and high-temperature-resistant solid polymer electrolytes for energy-dense lithium metal batteries. Adv Energy Mater. 2022; 12: 2103720.

[41]

Pokharel J, Cresce A, Pant B, et al. Manipulating the diffusion energy barrier at the lithium metal electrolyte interface for dendrite-free long-life batteries. Nat Commun. 2024; 15: 3085.

[42]

Cai T, Sun Q, Cao Z, et al. Electrolyte additive-controlled interfacial models enabling stable antimony anodes for lithium-ion batteries. J Phys Chem C. 2022; 126: 20302-20313.

[43]

Kim S, Park SO, Lee M-Y, et al. Stable electrode–electrolyte interfaces constructed by fluorine-and nitrogen-donating ionic additives for high-performance lithium metal batteries. Energy Storage Mater. 2022; 45: 1-13.

[44]

Lu D, Li R, Rahman MM, et al. Ligand-channel-enabled ultrafast Li-ion conduction. Nature. 2024; 627: 101-107.

[45]

Yamada Y, Furukawa K, Sodeyama K, et al. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. J Am Chem Soc. 2014; 136: 5039-5046.

[46]

Vijayakumar V, Anothumakkool B, Kurungot S, Winter M, Nair JR. In situ polymerization process: an essential design tool for lithium polymer batteries. Energy Environ Sci. 2021; 14: 2708-2788.

[47]

Xu P, Shuang Z-Y, Zhao C-Z. et al. A review of solid-state lithium metal batteries through in situ solidification. Sci China Chem. 2023; 67: 67-86.

[48]

Matsuoka R, Shibata M, Matsuo K, et al. Lithium local coordination structure in polyether-based electrolyte with cyanoethoxy sidechain: an experimental and theoretical approach. ECS Meeting Abstracts. 2020; MA2020-02: 705.

[49]

Jiang J, Ji H, Chen P, et al. The influence of electrolyte concentration and solvent on operational voltage of Li/CF primary batteries elucidated by Nernst Equation. J Power Sources. 2022; 527: 1-11.

[50]

del Olmo D, Pavelka M, Kosek J. Open-circuit voltage comes from non-equilibrium thermodynamics. J Non-Equil Thermody. 2020; 46: 91-108.

[51]

Kim SC, Kong X, Vila RA, et al. Potentiometric measurement to probe solvation energy and its correlation to lithium battery cyclability. J Am Chem Soc. 2021; 143: 10301-10308.

[52]

Zhang W, Koverga V, Liu S, et al. Single-phaselocal-high-concentration solid polymer electrolytes for lithium-metalbatteries. Nat Energy. 2024; 9: 386-400.

[53]

Wang Z, Qi F, Yin L, et al. An anion-tuned solid electrolyte interphase with fast ion transfer kinetics for stable lithium anodes. Adv Energy Mater. 2020; 10: 1903843.

[54]

Zhou Y, Su M, Yu X, et al. Real-time mass spectrometric characterization of the solid–electrolyte interphase of a lithium-ion battery. Nat Nanotechnol. 2020; 15: 224-230.

[55]

Yu W, Yu Z, Cui Y, Bao Z. Degradation and speciation of Li Salts during XPS analysis for battery research. ACS Energy Lett. 2022; 7: 3270-3275.

RIGHTS & PERMISSIONS

2024 The Author(s). SusMat published by Sichuan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

200

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/