Air-stable Li3.12P0.94Bi0.06S3.91I0.18 solid-state electrolyte with high ionic conductivity and lithium anode compatibility toward high-performance all-solid-state lithium metal batteries

Daokuan Jin , Haodong Shi , Yuxin Ma , Yangyang Liu , Yang Wang , Yanfeng Dong , Mingbo Wu , Zhong-Shuai Wu

SusMat ›› 2024, Vol. 4 ›› Issue (4) : e218

PDF
SusMat ›› 2024, Vol. 4 ›› Issue (4) : e218 DOI: 10.1002/sus2.218
RESEARCH ARTICLE

Air-stable Li3.12P0.94Bi0.06S3.91I0.18 solid-state electrolyte with high ionic conductivity and lithium anode compatibility toward high-performance all-solid-state lithium metal batteries

Author information +
History +
PDF

Abstract

Sulfide solid-state electrolytes (SSEs) with superior ionic conductivity and processability are highly promising candidates for constructing all-solid-state lithium metal batteries (ASSLMBs). However, their practical applications are limited by their intrinsic air instability and serious interfacial incompatibility. Herein, a novel glass-ceramic electrolyte Li3.12P0.94Bi0.06S3.91I0.18 was synthesized by co-doping Li3PS4 with Bi and I for high-performance ASSLMBs. Owing to the strong Bi–S bonds that are thermodynamically stable to water, increased unit cell volume and Li+ concentration caused by P5+ substitution with Bi3+, and the in situ formed robust solid electrolyte interphase layer LiI at lithium surface, the as-prepared Li3.12P0.94Bi0.06S3.91I0.18 SSE achieved excellent air stability with a H2S concentration of only 0.205 cm3 g–1 (after 300 min of air exposure), outperforming Li3PS4 (0.632 cm3 g–1) and the most reported sulfide SSEs, together with high ionic conductivity of 4.05 mS cm–1. Furthermore, the Li3.12P0.94Bi0.06S3.91I0.18 effectively improved lithium metal stability. With this SSE, an ultralong cyclability of 700 h at 0.1 mA cm–2 was realized in a lithium symmetrical cell. Moreover, the Li3.12P0.94Bi0.06S3.91I0.18-based ASSLMBs with LiNi0.8Mn0.1Co0.1O2 cathode achieved ultrastable capacity retention rate of 95.8% after 300 cycles at 0.1 C. This work provides reliable strategy for designing advanced sulfide SSEs for commercial applications in ASSLMBs.

Keywords

air stability / all-solid-state lithium metal battery / glass-ceramic / lithium metal compatibility / sulfide solid-state electrolyte

Cite this article

Download citation ▾
Daokuan Jin, Haodong Shi, Yuxin Ma, Yangyang Liu, Yang Wang, Yanfeng Dong, Mingbo Wu, Zhong-Shuai Wu. Air-stable Li3.12P0.94Bi0.06S3.91I0.18 solid-state electrolyte with high ionic conductivity and lithium anode compatibility toward high-performance all-solid-state lithium metal batteries. SusMat, 2024, 4(4): e218 DOI:10.1002/sus2.218

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen R, Li Q, Yu X, Chen L, Li H. Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chem Rev. 2020; 120(14): 6820-6877.

[2]

Xia W, Zhao Y, Zhao F, et al. Antiperovskite electrolytes for solid-state batteries. Chem Rev. 2022; 122(3): 3763-3819.

[3]

Zhao Q, Liu X, Stalin S, Khan K, Archer LA. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat Energy. 2019; 4(5): 365-373.

[4]

Zhao B-S, Chen P, Gao X-P. Bulk and interface-strengthened Li7P2.9Sb0.1S10.65O0.15I0.2 electrolyte via dual-source doping for all-solid-state lithium-sulfur batteries. Sci China Mater. 2022; 66(2): 513-521.

[5]

Lee YG, Fujiki S, Jung C, et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nat Energy. 2020; 5(4): 299-308.

[6]

Xu R, Han F, Ji X, Fan X, Tu J, Wang C. Interface engineering of sulfide electrolytes for all-solid-state lithium batteries. Nano Energy. 2018; 53: 958-966.

[7]

Su Y, Zhang X, Du C, et al. An all-solid-state battery based on sulfide and PEO composite electrolyte. Small. 2022; 18(29): 2202069.

[8]

Gil-González E, Ye L, Wang Y, et al. Synergistic effects of chlorine substitution in sulfide electrolyte solid state batteries. Energy Storage Mater. 2022; 45: 484-493.

[9]

Zhou X, Zhang Y, Shen M, et al. A highly stable Li-organic all-solid-state battery based on sulfide electrolytes. Adv Energy Mater. 2022; 12(14): 2103932.

[10]

Yang Z, Wang F, Hu Z, et al. Room-temperature all-solid-state lithium–organic batteries based on sulfide electrolytes and organodisulfide cathodes. Adv Energy Mater. 2021; 11(48): 2102962.

[11]

Li X, Liang J, Li X, et al. High-performance all-solid-state Li–Se batteries induced by sulfide electrolytes. Energy Environ Sci. 2018; 11(10): 2828-2832.

[12]

Otoyama M, Sakuda A, Tatsumisago M, Hayashi A. Sulfide electrolyte suppressing side reactions in composite positive electrodes for all-solid-state lithium batteries. ACS Appl Mater Interfaces. 2020; 12(26): 29228-29234.

[13]

Zeng D, Yao J, Zhang L, et al. Promoting favorable interfacial properties in lithium-based batteries using chlorine-rich sulfide inorganic solid-state electrolytes. Nat Commun. 2022; 13(1): 1909.

[14]

Kato Y, Hori S, Saito T, et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat Energy. 2016; 1(4): 16030.

[15]

Ni Y, Huang C, Liu H, Liang Y, Fan LZ. A high air-stability and Li-metal-compatible Li3+2xP1–xBixS4–1.5xO1.5x sulfide electrolyte for all-solid-state Li–metal batteries. Adv Funct Mater. 2022; 32(41): 2205998.

[16]

Lee JE, Park KH, Kim JC, et al. Universal solution synthesis of sulfide solid electrolytes using alkahest for all-solid-state batteries. Adv Mater. 2022; 34(16): 2200083.

[17]

Zuo TT, Walther F, Ahmed S, et al. Formation of an artificial cathode–electrolyte interphase to suppress interfacial degradation of Ni-rich cathode active material with sulfide electrolytes for solid-state batteries. ACS Energy Lett. 2023; 8(3): 1322-1329.

[18]

Jung SK, Gwon H, Lee SS, et al. Understanding the effects of chemical reactions at the cathode–electrolyte interface in sulfide based all-solid-state batteries. J Mater Chem A. 2019; 7(40): 22967-22976.

[19]

Oh P, Yun J, Choi JH, et al. Development of high-energy anodes for all-solid-state lithium batteries based on sulfide electrolytes. Angew Chem Int Ed. 2022; 61(25): 202201249.

[20]

Yan W, Mu Z, Wang Z, et al. Hard-carbon-stabilized Li–Si anodes for high-performance all-solid-state Li-ion batteries. Nat Energy. 2023; 8(8): 800-813.

[21]

Ma Y, Wang L, Fu S, et al. Situ formation of a Li–Sn alloy protected layer for inducing lateral growth of dendrites. J Mater Chem A. 2020; 8(44): 23574-23579.

[22]

Kang J, Deng N, Liu Y, et al. Recent advances of anode protection in solid-state lithium metal batteries. Energy Storage Mater. 2022; 52: 130-160.

[23]

Li Y, Arnold W, Thapa A, et al. Stable and flexible sulfide composite electrolyte for high-performance solid-state lithium batteries. ACS Appl Mater Interfaces. 2020; 12(38): 42653-42659.

[24]

Lu P, Wu D, Chen L, Li H, Wu F. Air stability of solid-state sulfide batteries and electrolytes. Electrochem Energy Rev. 2022; 5(3).

[25]

Liu H, Liang Y, Wang C, et al. Priority and prospect of sulfide-based solid-electrolyte membrane. Adv Mater. 2023; 35(50): 2206013.

[26]

Rajagopal R, Cho JU, Subramanian Y, et al. Preparation of highly conductive metal doped/substituted Li7P2S8Br1–xIx type lithium superionic conductor for all-solid-state lithium battery applications. Chem Eng J. 2022; 428: 13215.

[27]

Liu G, Xie D, Wang X, et al. High air-stability and superior lithium ion conduction of Li3+3xP1–xZnxS4–xOx by aliovalent substitution of ZnO for all-solid-state lithium batteries. Energy Storage Mater. 2019; 17: 266-274.

[28]

Jiang Z, Liu Y, Peng H, et al. Enhanced air stability and interfacial compatibility of Li-argyrodite sulfide electrolyte triggered by CuBr co-substitution for all-solid-state lithium batteries. Energy Storage Mater. 2023; 56: 300-309.

[29]

Ahmad N, Zhou L, Faheem M, et al. Enhanced air stability and high Li-ion conductivity of Li6.988P2.994Nb0.2S10.934O0.6 glass-ceramic electrolyte for all-solid-state lithium–sulfur batteries. ACS Appl Mater Interfaces. 2020; 12(19): 21548-21558.

[30]

Lu P, Liu L, Wang S, et al. Superior all-solid-state batteries enabled by a gas-phase-synthesized sulfide electrolyte with ultrahigh moisture stability and ionic conductivity. Adv Mater. 2021; 33(32): 2100921.

[31]

Rui X, Ren D, Liu X, et al. Distinct thermal runaway mechanisms of sulfide-based all-solid-state batteries. Energy Environ Sci. 2023; 16(8): 3552-3563.

[32]

Ma T, Wang Z, Wu D, et al. High-areal-capacity and long-cycle-life all-solid-state battery enabled by freeze drying technology. Energy Environ Sci. 2023; 16(5): 2142-2152.

[33]

Crapse J, Pappireddi N, Gupta M, Shvartsman SY, Wieschaus E, Wuhr M. Evaluating the Arrhenius equation for developmental processes. Mol Syst Biol. 2021; 17(8): 9895.

[34]

Lu P, Xia Y, Huang Y, et al. Wide-temperature, long-cycling, and high-loadin. pyrite all-solid-state batteries enabled by argyrodite thioarsenate superionic conductor. Adv Funct Mater. 2022; 33(8): 2211211.

[35]

Hong M, Dong Q, Xie H, et al. Ultrafast sintering of solid-state electrolytes with volatile fillers. ACS Energy Lett. 2021; 6(11): 3753-3760.

[36]

Kim MJ, Choi IH, Jo SC, et al. A novel strategy to overcome the hurdle for commercial all-solid-state batteries via low-cost synthesis of sulfide solid electrolytes. Small Methods. 2021; 5(11): 2100793.

[37]

Yi S, Su Z, Zhang W, et al. An ion-released MgI2-doped separator inducing a LiI-containing solid electrolyte interphase for dendrite-free Li metal anodes. J Energy Chem. 2022; 75: 83-94.

[38]

Zhao BS, Wang L, Chen P, et al. Congener substitution reinforced Li7P2.9Sb0.1S10.75O0.25 glass-ceramic electrolytes for all-solid-state lithium-sulfur batteries. ACS Appl Mater Interfaces. 2021; 13(29): 34477-34485.

[39]

Zhou L, Tufail MK, Ahmad N, Song T, Chen R, Yang W. Strong interfacial adhesion between the Li2S cathode and a functional Li7P2.9Ce0.2S10.9Cl0.3 solid-state electrolyte endowed long-term cycle stability to all-solid-state lithium–sulfur batteries. ACS Appl Mater Interfaces. 2021; 13(24): 28270-28280.

[40]

Kanazawa K, Yubuchi S, Hotehama C, et al. Mechanochemical synthesis and characterization of metastable hexagonal Li(4)SnS(4) solid electrolyte. Inorg Chem. 2018; 57(16): 9925-9930.

[41]

Taklu BW, Su WN, Nikodimos Y, et al. Dual CuCl doped argyrodite superconductor to boost the interfacial compatibility and air stability for all solid-state lithium metal batteries. Nano Energy. 2021; 90: 106542.

[42]

Zhang H, Yu Z, Cheng J, Chen H, Huang X, Tian B. Halide/sulfide composite solid-state electrolyte for Li-anode based all-solid-state batteries. Chin Chem Lett. 2023; 34(11): 108228.

[43]

Liu H, Zhu Q, Liang Y, et al. Versatility of Sb-doping enabling argyrodite electrolyte with superior moisture stability and Li metal compatibility towards practical all-solid-state Li metal batteries. Chem Eng J. 2023; 462: 142183.

[44]

Liu H, Zhu Q, Wang C, et al. High air stability and excellent Li metal compatibility of argyrodite-based electrolyte enabling superior all-solid-state Li metal batteries. Adv Funct Mater. 2022; 32(32): 2203858.

[45]

Wei C, Liu X, Yu C, et al. Revealing performance of 78Li2S–22P2S5 glass ceramic based solid-state batteries at different operating temperatures. Chin Chem Lett. 2023; 34(7): 107859.

[46]

Lu Y, Zhao CZ, Huang JQ, Zhang Q. The timescale identification decoupling complicated kinetic processes in lithium batteries. Joule. 2022; 6(6): 1172-1198.

RIGHTS & PERMISSIONS

2024 The Author(s). SusMat published by Sichuan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

222

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/