Emerging high-entropy material electrodes for metal-ion batteries

Jianyu Shen , Zhen Zeng , Weihua Tang

SusMat ›› 2024, Vol. 4 ›› Issue (4) : e215

PDF
SusMat ›› 2024, Vol. 4 ›› Issue (4) : e215 DOI: 10.1002/sus2.215
REVIEW

Emerging high-entropy material electrodes for metal-ion batteries

Author information +
History +
PDF

Abstract

High-entropy materials (HEMs) have recently attracted extensive research interest. Featuring unique structural characteristics and excellent mechanical/chemical properties, HEMs (especially high-entropy alloys and oxides) emerge as promising electrode materials for electrochemical energy storage. We herein present a critical review to update the recent progress in developing new HEMs electrodes for various metal-ion batteries. Their design principle is discussed along with the preparation, characterization, and electrochemical performance as electrode materials. The current state-of-the-art HEM electrodes is presented, covering good capacity, rate capacity, and long-term cycle stability in ion batteries. By addressing both the success and challenges associated with HEM development, this review contributes to the recent research efforts toward achieving higher capacity and more stable ion batteries.

Keywords

high-entropy electrodes / metal-ion battery / energy storage

Cite this article

Download citation ▾
Jianyu Shen, Zhen Zeng, Weihua Tang. Emerging high-entropy material electrodes for metal-ion batteries. SusMat, 2024, 4(4): e215 DOI:10.1002/sus2.215

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wasalathilake KC, Li H, Xu L, Yan C. Recent advances in graphene based materials as anode materials in sodium-ion batteries. J Energy Chem. 2020; 42: 91-107.

[2]

Sun Y, Wu Q, Shi G. Graphene based new energy materials. Energy Environ Sci. 2011; 4(4): 1113-1132.

[3]

Prajapati AK, Bhatnagar A. A review on anode materials for lithium/sodium-ion batteries. J Energy Chem. 2023; 83: 509-540.

[4]

Man Y, Jaumaux P, Xu Y, et al. Research development on electrolytes for magnesium-ion batteries. Sci Bull. 2023; 68(16): 1819-1842.

[5]

Du Y, Zhang Z, Xu Y, Bao J, Zhou X. Metal sulfide-based potassium-ion battery anodes: storage mechanisms and synthesis strategies. Acta Phys Chim Sin. 2022; 38(11):2205017.

[6]

Fei Y, Wang H, Xu Y, et al. Bimetallic sulfide CoNi2S4 hollow nanospheres as a high-performance cathode material for Mg-ion batteries. Chem Eng J. 2024; 480: 148255.

[7]

Wang J, Jin D, Liu H, et al. All-manganese-based Li-ion batteries with high rate capability and ultralong cycle life. Nano Energy. 2016; 22: 524-532.

[8]

Hou J, Qu S, Yang M, Zhang J. Materials and electrode engineering of high capacity anodes in lithium ion batteries. J Power Sources. 2020; 450: 227697.

[9]

Zhao H, Yuan W, Liu G. Hierarchical electrode design of high-capacity alloy nanomaterials for lithium-ion batteries. Nano Today. 2015; 10(2): 193-212.

[10]

Baskoro F, Lubis AL, Wong HQ, Liou G, Yen H. Redox-active polynaphthalimides as versatile electrode materials for high-voltage, high-rate an. long-cycle-life organic Li-ion batteries. J Mater Chem A. 2023; 11(21): 11210-11221.

[11]

George EP, Raabe D, Ritchie RO. High-entropy alloys. Nat Rev Mater. 2019; 4(8): 515-534.

[12]

Sarkar A, Wang Q, Schiele A, et al. High-entropy oxides: fundamental aspects and electrochemical properties. Adv Mater. 2019; 31(26): 1806236.

[13]

Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004; 6(5): 299-303.

[14]

Rost CM, Sachet E, Borman T, et al. Entropy-stabilized oxides. Nat Commun. 2015; 6(1): 8485.

[15]

Sarkar A, Velasco L, Wang D, et al. High entropy oxides for reversible energy storage. Nat Commun. 2018; 9(1): 3400.

[16]

Yan J, Wang D, Zhang X, et al. A high-entropy perovskite titanate lithium-ion battery anode. J Mater Sci. 2020; 55(16): 6942-6951.

[17]

Wang Q, Sarkar A, Wang D, et al. Multi-anionic and -cationic compounds: new high entropy materials for advanced Li-ion batteries. Energy Environ Sci. 2019; 12(8): 2433-2442.

[18]

Zhao C, Ding F, Lu Y, Chen L, Hu YS. High-entropy layered oxide cathodes for sodium-ion batteries. Angew Chem Int Ed. 2020; 59(1): 264-269.

[19]

Gu ZY, Guo JZ, Cao JM, et al. An advanced high-entropy fluorophosphate cathode for sodium-ion batteries with increased working voltage and energy density. Adv Mater. 2022; 34(14): 2110108.

[20]

Tomboc GM, Kwon T, Joo J, Lee K. High entropy alloy electrocatalysts: a critical assessment of fabrication and performance. J Mater Chem A. 2020; 8(30): 14844-14862.

[21]

Cantor B, Chang ITH, Knight P, Vincent AJB. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A. 2004; 375-377: 213-218.

[22]

Jiang B, Yu Y, Cui J, et al. High-entropy-stabilized chalcogenides with high thermoelectric performance. Science. 2021; 371(6531): 830-834.

[23]

Chen Y, Fu H, Huang Y, et al. Opportunities for high-entropy materials in rechargeable batteries. ACS Mater Lett. 2021; 3(2): 160-170.

[24]

Nemani SK, Torkamanzadeh M, Wyatt BC, Presser V, Anasori B. Functional two-dimensional high-entropy materials. Commun Mater. 2023; 4(1): 16.

[25]

Yao Y, Huang Z, Hughes LA, et al. Extreme mixing in nanoscale transition metal alloys. Matter. 2021; 4(7): 2340-2353.

[26]

Yao Y, Dong Q, Brozena A, et al. High-entropy nanoparticles: synthesis–structure–property relationships and data-driven discovery. Science. 2022; 376(6589): eabn3103.

[27]

Schweidler S, Botros M, Strauss F, et al. High-entropy materials for energy and electronic applications. Nat Rev Mater. 2024; 9(4): 266-281.

[28]

Gild J, Samiee M, Braun JL, et al. High-entropy fluorite oxides. J Eur Ceram Soc. 2018; 38(10): 3578-3584.

[29]

Liu X, Li X, Li Y, et al. High-entropy oxide: a future anode contender for lithium-ion battery. EcoMat. 2022; 4(6): e12261.

[30]

Qiu N, Chen H, Yang Z, Sun S, Wang Y, Cui Y. A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O) with superior lithium storage performance. J Alloy Compd. 2019; 777: 767-774.

[31]

Wang T, Chen H, Yang Z, Liang J, Dai S. High-entropy perovskite fluorides: a new platform for oxygen evolution catalysis. J Am Chem Soc. 2020; 142(10): 4550-4554.

[32]

Sun Z, Zhao Y, Sun C, Ni Q, Wang C, Jin H. High entropy spinel-structure oxide for electrochemical application. Chem Eng J. 2022; 431(Pt 4):133448.

[33]

Nguyen TX, Patra J, Chang J, Ting J. High entropy spinel oxide nanoparticles for superior lithiation–delithiation performance. J Mater Chem A. 2020; 8(36): 18963-18973.

[34]

Xiao B, Wu G, Wang T, et al. High-entropy oxides as advanced anode materials for long-life lithium-ion batteries. Nano Energy. 2022; 95: 106962.

[35]

Stygar M, Dqbrowa J, Moździerz M, et al. Formation and properties of high entropy oxides in Co–Cr–Fe–Mg–Mn–Ni–O system: novel (Cr, Fe, Mg, Mn, Ni)3O4 and (Co, Cr, Fe, Mg, Mn)3O4 high entropy spinels. J Eur Ceram Soc. 2020; 40(4): 1644-1650.

[36]

Ma Y, Ma Y, Wang Q, et al. High-entropy energy materials: challenges and new opportunities. Energy Environ Sci. 2021; 14(5): 2883-2905.

[37]

Wang Z, Fang Q, Li J, Liu B, Liu Y. Effect of lattice distortion on solid solution strengthening of BCC high-entropy alloys. J Mater Sci Technol. 2018; 34(2): 349-354.

[38]

Wang H, He Q, Gao X, et al. Multifunctional high entropy alloys enabled by severe lattice distortion. Adv Mater. 2024; 36(17): 2305453.

[39]

Amiri A, Shahbazian-Yassar R. Recent progress of high-entropy materials for energy storage and conversion. J Mater Chem A. 2021; 9(2): 782-823.

[40]

Yao HL, Yu YX, Sha JB. Microstructural evolution at grain boundary and deformation mechanism of Nb0.5TiZrV0.5 refractory high entropy alloy doped with Ce at room temperature. J Mater Sci Technol. 2024; 196: 25-39.

[41]

Wang Q, Liu X, He D, Wang D. Fundamental comprehension, synthetic procedures and catalytic applications of high entropy oxide nanomaterials. Mater Today. 2023; 70: 218-236.

[42]

Cheng CY, Yang YC, Zhong YZ, Chen YY, Hsu T, Yeh JW. Physical metallurgy of concentrated solid solutions from low-entropy to high-entropy alloys. Curr Opin Solid State Mater Sci. 2017; 21(6): 299-311.

[43]

Wang L, Zhang L, Lu X, et al. Surprising cocktail effect in high entropy alloys on catalyzing magnesium hydride for solid-state hydrogen storage. Chem Eng J. 2023; 465: 142766.

[44]

Wang K, Hua W, Huang X, et al. Synergy of cations in high entropy oxide lithium ion battery anode. Nat Commun. 2023; 14(1): 1487.

[45]

Ma J, Huang C. High entropy energy storage materials: synthesis and application. J Energy Storage. 2023; 66: 107419.

[46]

Li M, Chen Q, Cui X, Peng X, Huang G. Evaluation of corrosion resistance of the single-phase light refractory high entropy alloy TiCrVNb0.5Al0.5 in chloride environment. J Alloy Compd. 2021; 857: 158278.

[47]

Xian X, Zhong Z, Zhang B, et al. A high-entropy V35Ti35Fe15Cr10Zr5 alloy with excellent high-temperature strength. Mater Des. 2017; 121: 229-236.

[48]

Wasekar NP, Hebalkar N, Jyothirmayi A, Lavakumar B, Ramakrishna M, Sundararajan G. Influence of pulse parameters on the mechanical properties and electrochemical corrosion behavior of electrodeposited Ni–W alloy coatings with high tungsten content. Corros Sci. 2020; 165: 108409.

[49]

Glasscott MW, Pendergast AD, Goines S, et al. Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis. Nat Commun. 2019; 10(1): 2650.

[50]

Chang SQ, Cheng CC, Cheng PY, Huang CL, Lu SY. Pulse electrodeposited FeCoNiMnW high entropy alloys as efficient and stable bifunctional electrocatalysts for acidic water splitting. Chem Eng J. 2022; 446(7):137452.

[51]

Arif ZU, Khalid MY, Rashid AA, Rehman E, Atif M. Laser deposition of high-entropy alloys: a comprehensive review. Opt Laser Technol. 2022; 145: 107447.

[52]

Cui Z, Qin Z, Dong P, Mi Y, Gong D, Li W. Microstructure and corrosion properties of FeCoNiCrMn high entropy alloy coatings prepared by high speed laser cladding and ultrasonic surface mechanical rolling treatment. Mater Lett. 2020; 259: 126769.

[53]

Chen P, Li S, Zhou Y, Yan M, Attallah MM. Fabricating CoCrFeMnNi high entropy alloy via selective laser melting in-situ alloying. J Mater Sci Technol. 2020; 43: 40-43.

[54]

Ma Y, Li L, Qian J, et al. Materials and structure engineering by magnetron sputtering for advanced lithium batteries. Energy Storage Mater. 2021; 39: 203-224.

[55]

Yang P, Shi Y, Xia T, et al. Novel self-supporting thin film electrodes of FeCoNiCrMn high entropy alloy for excellent oxygen evolution reaction. J Alloy Compd. 2023; 938: 168582.

[56]

Meng Z, Gong X, Xu J, et al. A general strategy for preparing hollow spherical multilayer structures of oxygen-rich vacancy transition metal oxides, especially high entropy perovskite oxides. Chem Eng J. 2023; 457: 141242.

[57]

Fu W, Li B, Wang P, Lin Z, Zhu K. A high-entropy carbon-coated Na3V1.9(Mg, Cr, Al, Mo, Nb)0.1(PO4)2F3 cathode for superior performance sodium-ion batteries. Ceram Int. 2024; 50(9): 16166-16171.

[58]

Yuan L, Xu C, Zhang S, et al. Role of oxygen vacancy in spinel (FeCoNiCrMn)3O4 high entropy oxides prepared via two different methods for the selective C–H bond oxidation of p-chlorotoluene. J Colloid Interf Sci. 2023; 640: 359-371.

[59]

Li F, Sun S, Chen Y, et al. Bottom–up synthesis of 2D layered high-entropy transition metal hydroxides. Nanoscale Adv. 2022; 4(11): 2468-2478.

[60]

Zhao G, Shao X, Zhang Q, et al. Porous bio-high entropy alloy scaffolds fabricated by direct ink writing. J Mater Sci Technol. 2023; 157: 21-29.

[61]

Kim M, Oh I, Choi H, et al. A solution-based route to compositionally complex metal oxide structures using high-entropy layered double hydroxides. Cell Rep Phys Sci. 2022; 3(1): 100702.

[62]

Lin C, Liu H, Kang J, et al. In-situ X-ray studies of high-entropy layered oxide cathode for sodium-ion batteries. Energy Storage Mater. 2022; 51: 159-171.

[63]

Ghigna P, Airoldi L, Fracchia M, et al. Lithiation mechanism in high-entropy oxides as anode materials for Li-ion batteries: an Operando XAS study. ACS Appl Mater Interfaces. 2020; 12(45): 50344-50354.

[64]

Fang S, Bresser D, Passerini S. Transition metal oxide anodes for electrochemical energy storage in lithium-and sodium-ion batteries. Adv Energy Mater. 2020; 10(1): 1902485.

[65]

Cheng H, Shapter JG, Li Y, Gao G. Recent progress of advanced anode materials of lithium-ion batteries. J Energy Chem. 2021; 57: 451-468.

[66]

Bérardan D, Franger S, Meena AK, Dragoe N. Room temperature lithium superionic conductivity in high entropy oxides. J Mater Chem A. 2016; 4(24): 9536-9541.

[67]

Sun L, Xie Y, Wang H, et al. Insight into Ca-substitution effects on O3-type NaNi1/3Fe1/3Mn1/3O2 cathode materials for sodium-ion batteries application. Small. 2018; 14(21): 1704523.

[68]

Wang S, Chen T, Kuo C, et al. Operando synchrotron transmission X-ray microscopy study on (Mg, Co, Ni, Cu, Zn)O high-entropy oxide anodes for lithium-ion batteries. Mater Chem Phys. 2021; 274: 125105.

[69]

Lökçü E, Toparli Ç, Anik M. Electrochemical performance of (MgCoNiZn)1–xLixO high-entropy oxides in lithium-ion batteries. ACS Appl Mater Interfaces. 2020; 12(21): 23860-23866.

[70]

Xiao B, Wu G, Wang T, et al. High entropy oxides (FeNiCrMnX)3O4 (X = Zn, Mg) as anode materials for lithium ion batteries. Ceram Int. 2021; 47(24): 33972-33977.

[71]

Yazhou K, Zhiren Y. Synthesis, structure and electrochemical properties of Al doped high entropy perovskite Lix(LiLaCaSrBa)Ti1–xAlxO3. Ceram Int. 2022; 48(4): 5035-5039.

[72]

Lun Z, Ouyang B, Kwon D, et al. Cation-disordered rocksalt-type high-entropy cathodes for Li-ion batteries. Nat Mater. 2021; 20(2): 214-221.

[73]

Zhang R, Wang C, Zou P, et al. Compositionally complex doping for zero-strain zero-cobalt layered cathodes. Nature. 2022; 610(7930): 67-73.

[74]

Zheng Q, Ren Z, Zhang Y, et al. Surface-stabilized high-entropy layered oxyfluoride cathode for lithium-ion batteries. J Phys Chem Lett. 2023; 14(24): 5553-5559.

[75]

Nitta N, Wu F, Lee JT, Yushin G. Li-ion battery materials: present and future. Mater Today. 2015; 18(5): 252-264.

[76]

Cavallaro KA, Sandoval SE, Yoon SG, Thenuwara AC, McDowell MT. Low-temperature behavior of alloy anodes for lithium-ion batteries. Adv Energy Mater. 2022; 12(43): 2201584.

[77]

Sun Y, Liu N, Cui Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat Energy. 2016; 1(7): 16071.

[78]

Pavlyuk V, Balińska A, Rożdżyńska-Kiełbik B, et al. New maximally disordered—high entropy intermetallic phases (MD-HEIP) of the Gd1–xLaxSn2–ySbyMz (M = Li, Na, Mg): synthesis, structure and some properties. J Alloys Compd. 2020; 838: 155643.

[79]

Wei Y, Liu X, Yao R, et al. Embedding the high entropy alloy nanoparticles into carbon matrix toward high performance Li-ion batteries. J Alloys Compd. 2023; 938: 168610.

[80]

Lei X, Wang Y, Wang J, et al. Si-based high-entropy anode for lithium-ion batteries. Small Methods. 2024; 8(1): 2300754.

[81]

Deng H, Liu L, Shi Z. Effect of copper substitution on the electrochemical properties of high entropy layered oxides cathode materials for sodium-ion batteries. Mater Lett. 2023; 340: 134113.

[82]

Guo H, Avdeev M, Sun K, et al. Pentanary transition-metals Na-ion layered oxide cathode with highly reversible O3–P3 phase transition. Chem Eng J. 2021; 412: 128704.

[83]

Zhang J, Wang W, Wang W, Wang S, Li B. Comprehensive review of P2-type Na2/3Ni1/3Mn2/3O2, a potential cathode for practical application of Na-ion batteries. ACS Appl Mater Interfaces. 2019; 11(25): 22051.

[84]

Yao L, Zou P, Wang C, et al. High-entropy and superstructure-stabilized layered oxide cathodes for sodium-ion batteries. Adv Energy Mater. 2022; 12(41): 2201989.

[85]

Walczak K, Plewa A, Ghica C, et al. NaMn0.2Fe0.2Co0.2Ni0.2Ti0.2O2 high-entropy layered oxide—experimental and theoretical evidence of high electrochemical performance in sodium batteries. Energy Storage Mater. 2022; 47: 500-514.

[86]

Yang L, Chen C, Xiong S, et al. Multiprincipal component P2-Na0.6(Ti0.2Mn0.2Co0.2Ni0.2Ru0.2)O2 as a high-rate cathode for sodium-ion batteries. JACS Au. 2021; 1(1): 98-107.

[87]

Zhou P, Che Z, Liu J, et al. High-entropy P2/O3 biphasic cathode materials for wide-temperature rechargeable sodium-ion batteries. Energy Storage Mater. 2023; 57: 618-627.

[88]

Mu J, Cai T, Dong W, Zhou C, Han Z, Huang F. Biphasic high-entropy layered oxide as a stable and high-rate cathode for sodium-ion batteries. Chem Eng J. 2023; 471: 144403.

[89]

Anang DA, Park J, Bhange DS, et al. O3-type layer-structured Na0.8[Ni1/5Fe1/5Co1/5Mn1/5Ti1/5]O2 as long life and high power cathode material for sodium-ion batteries. Ceram Int. 2019; 45(17): 23164-23171.

[90]

Wang H, Gao X, Zhang S, et al. High-entropy Na-deficient layered oxides for sodium-ion batteries. ACS Nano. 2023; 17(13): 12530-12543.

[91]

Ge X, Li H, Li J, et al. High-entropy doping boosts ion/electronic transport of Na4Fe3(PO4)2(P2O7)/C cathode for superior performance sodium-ion batteries. Small. 2023; 19(37): 2302609.

[92]

Li M, Sun C, Ni Q, et al. High entropy enabling the reversible redox reaction of V4+/V5+ couple in NASICON-type sodium ion cathode. Adv Energy Mater. 2023; 13(12): 2203971.

[93]

Garcia NG, Gonçalves JM, Real C, Freitas B, Ruiz-Montoya JG. Zanin H. Medium-and high-entropy materials as positive electrodes for sodium-ion batteries: quo vadis? Energy Storage Mater. 2024; 67: 103213.

[94]

Huang Y, Zhang X, Ji L, et al. Boosting the sodium storage performance of Prussian blue analogs by single-crystal and high-entropy approach. Energy Storage Mater. 2023; 58: 1-8.

[95]

Li H, Lai J, Li Z, Wang L. Multi-sites electrocatalysis in high-entropy alloys. Adv Funct Mater. 2021; 31(47): 2106715.

[96]

Lu D, Fu X, Guo D, et al. Challenges and opportunities in 2D high-entropy alloy electrocatalysts for sustainable energy conversion. SusMat. 2023; 3(6): 730-748.

[97]

Tian J, Rao Y, Shi W, et al. Sabatier relations in electrocatalysts based on high-entropy alloys with wide-distributed d-band centers for Li–O2 batteries. Angew Chem Int Ed. 2023; 62(44): e202310894.

[98]

Gonçalves JM, Santos ÉA, Martins PR, Silva CG, Zanin H. Emerging medium-and high-entropy materials as catalysts for lithium-sulfur batteries. Energy Storage Mater. 2023; 63: 102999.

[99]

Xu H, Hu R, Zhang Y, et al. Nano high-entropy alloy with strong affinity driving fast polysulfide conversion towards stable lithium sulfur batteries. Energy Storage Mater. 2021; 43: 212-220.

[100]

Gao MC, Miracle DB, Maurice D, Yan X, Zhang Y, Hawk JA. High-entropy functional materials. J Mater Res. 2018; 33(19): 3138-3155.

[101]

Wei M, Liu Y, Xing X, Zhang Z, Liu T. TiVZrNb83Cr17 high-entropy alloy as catalyst for hydrogen storage in MgH2. Chem Eng J. 2023; 476(38):146639.

[102]

Sun Y, Dai S. High-entropy materials for catalysis: a new frontier. Sci Adv. 2021; 7(20): eabg1600.

[103]

Shi W, Liu H, Li Z, et al. High-entropy alloy stabilized and activated Pt clusters for highly efficient electrocatalysis. SusMat. 2022; 2(2): 186-196.

[104]

Zhang Y, Wang D, Wang S. High-entropy alloys for electrocatalysis: design, characterization, and applications. Small. 2022; 18(7): 2104339.

[105]

Wang K, Huang J, Chen H, et al. Recent progress in high entropy alloys for electrocatalysts. Electrochem Energy Rev. 2022; 5(S1): 17.

[106]

Akrami S, Murakami Y, Watanabe M, et al. Defective high-entropy oxide photocatalyst with high activity for CO2 conversion. Appl Catal B. 2022; 303: 120896.

[107]

Chen H, Lin W, Zhang Z, et al. Mechanochemical synthesis of high entropy oxide materials under ambient conditions: dispersion of catalysts via entropy maximization. ACS Mater Lett. 2019; 1(1): 83-88.

[108]

Oses C, Toher C, Curtarolo S. High-entropy ceramics. Nat Rev Mater. 2020; 5(4): 295-309.

[109]

Hussain I, Lamiel C, Ahmad M, et al. High entropy alloys as electrode material for supercapacitors: a review. J Energy Storage. 2021; 44: 103405.

[110]

Talluri B, Aparna ML, Sreenivasulu N, Bhattacharya SS, Thomas T. High entropy spinel metal oxide (CoCrFeMnNi)3O4 nanoparticles as a high-performance supercapacitor electrode material. J Energy Storage. 2021; 42: 103004.

[111]

Qi H, Chen L, Deng S, Chen J. High-entropy ferroelectric materials. Nat Rev Mater. 2023; 8(6): 355-356.

[112]

Bresser D, Passerini S, Scrosati B. Leveraging valuable synergies by combining alloying and conversion for lithium-ion anodes. Energy Environ Sci. 2016; 9(11): 3348-3367.

[113]

Zhen Q, Ren Z, Zhang Y, et al. Surface phase conversion in a high-entropy layered oxide cathode material. ACS Appl Mater Interfaces. 2023; 15(3): 4643-4651.

[114]

Oumellal Y, Rougier A, Nazri GA, Tarascon JM, Aymard L. Metal hydrides for lithium-ion batteries. Nat Mater. 2008; 7(11): 916-921.

[115]

Ma Y, Ma Y, Giuli G, et al. Introducing highly redox-active atomic centers into insertion-type electrodes for lithium-ion batteries. Adv Energy Mater. 2020; 10(25): 2000783.

[116]

Ma Y, Ma Y, Ulissi U, et al. Influence of the doping ratio and the carbon coating content on the electrochemical performance of Co-doped SnO2 for lithium-ion anodes. Electrochim Acta. 2018; 277: 100-109.

[117]

Ma Y, Ma Y, Geiger D, et al. ZnO/ZnFe2O4/N-doped C micro-polyhedrons with hierarchical hollow structure as high-performance anodes for lithium-ion batteries. Nano Energy. 2017; 42: 341-352.

[118]

Li XL, Bao J, Li YF, et al. Boosting reversibility of Mn-based tunnel-structured cathode materials for sodium-ion batteries by magnesium substitution. Adv Sci. 2021; 8(9):2004448.

[119]

Zhao C, Avdeev M, Chen L, Hu Y. An O3-type oxide with low sodium content as the phase-transition-free anode for sodium-ion batteries. Angew Chem Int Ed. 2018; 57(24): 7056-7060.

[120]

Chae MS, Chakraborty A, Kunnikuruvan S, et al. Vacancy-driven high rate capabilities in calcium-doped Na0.4MnO2 cathodes for aqueous sodium-ion batteries. Adv Energy Mater. 2020; 10(37): 2002077.

[121]

Wang PF, Yao HR, Liu XY, et al. Ti-substituted NaNi0.5Mn0.5–xTixO2 cathodes with reversible O3–P3 phase transition for high-performance sodium-ion batteries. Adv Mater. 2017; 29(19): 1700210.

[122]

Sathiya M, Jacquet Q, Doublet ML, Karakulina OM, Hadermann J, Tarascon JM. A chemical approach to raise cell voltage and suppress phase transition in O3 sodium layered oxide electrodes. Adv Energy Mater. 2018; 8(11): 1702599.

[123]

Yuan D, Liang X, Wu L, et al. A Honeycomb-layered Na3Ni2SbO6: a high-rate and cycle-stable cathode for sodium-ion batteries. Adv Mater. 2014; 26(36): 6301-6306.

[124]

Mu L, Xu S, Li Y, et al. Prototype sodium-ion batteries using an air-stable and Co/Ni-free O3-layered metal oxide cathode. Adv Mater. 2015; 27(43): 6928-6933.

[125]

Ouyang B, Zeng Y. The rise of high-entropy battery materials. Nat Commun. 2024; 15(1): 973.

[126]

Yao Y, Huang Z, Li T, et al. High-throughput, combinatorial synthesis of multimetallic nanoclusters. Proc Natl Acad Sci USA. 2020; 117(12): 6316.

[127]

Yao Y, Liu Z, Xie P, et al. Computationally aided, entropy-driven synthesi. of highly efficient and durable multi-elemental alloy catalysts. Sci Adv. 2020; 6(11): eaaz0510.

[128]

Zeng Y, Ouyang B, Liu J, et al. High-entropy mechanism to boost ionic conductivity. Science. 2022; 378(6626): 1320-1324.

[129]

Long L, Wang S, Xiao M, Meng Y. Polymer electrolytes for lithium polymer batteries. J Mater Chem A. 2016; 4(26): 10038-10069.

RIGHTS & PERMISSIONS

2024 The Author(s). SusMat published by Sichuan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

174

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/