Innovations in spider silk-inspired artificial gel fibers: Methods, properties, strengthening, functionality, and challenges

Abdul Qadeer Khan , Wenjin Guo , Sitong Li , Yutian Zhu , Jie Bai , Zunfeng Liu , Weiqiang Zhao , Xiang Zhou

SusMat ›› 2024, Vol. 4 ›› Issue (3) : e205

PDF
SusMat ›› 2024, Vol. 4 ›› Issue (3) : e205 DOI: 10.1002/sus2.205
REVIEW

Innovations in spider silk-inspired artificial gel fibers: Methods, properties, strengthening, functionality, and challenges

Author information +
History +
PDF

Abstract

Spider silk, possessing exceptional combination properties, is classified as a bio-gel fiber. Thereby, it serves as a valuable origin of inspiration for the advancement of various artificial gel fiber materials with distinct functionalities. Gel fibers exhibit promising potential for utilization in diverse fields, including smart textiles, artificial muscle, tissue engineering, and strain sensing. However, there are still numerous challenges in improving the performance and functionalizing applications of spider silk-inspired artificial gel fibers. Thus, to gain a penetrating insight into bioinspired artificial gel fibers, this review provided a comprehensive overview encompassing three key aspects: the fundamental design concepts and implementing strategies of gel fibers, the properties and strengthening strategies of gel fibers, and the functionalities and application prospects of gel fibers. In particular, multiple strengthening and toughening mechanisms were introduced at micro, nano, and molecular-level structures of gel fibers. Additionally, the existing challenges of gel fibers are summarized. This review aims to offer significant guidance for the development and application of artificial gel fibers and inspire further research in the field of high-performance gel fibers.

Keywords

artificial gel fibers / biomimetic / functionality / spider silk / strengthening

Cite this article

Download citation ▾
Abdul Qadeer Khan, Wenjin Guo, Sitong Li, Yutian Zhu, Jie Bai, Zunfeng Liu, Weiqiang Zhao, Xiang Zhou. Innovations in spider silk-inspired artificial gel fibers: Methods, properties, strengthening, functionality, and challenges. SusMat, 2024, 4(3): e205 DOI:10.1002/sus2.205

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sun F, Jiang H, Wang H, et al. Soft fiber electronics based on semiconducting polymer. Chem Rev. 2023;123(8):4693-4763.

[2]

Xu Z, Wu M, Ye Q, Chen D, Liu K, Bai H. Spinning from nature: engineered preparation and application of high-performance bio-based fibers. Engineering. 2022;14:100-112.

[3]

Nepal D, Kang S, Adstedt KM, et al. Hierarchically structured bioinspired nanocomposites. Nat Mater. 2023;22(1):18-35.

[4]

Rising A, Harrington MJ. Biological materials processing: time-tested tricks for sustainable fiber fabrication. Chem Rev. 2023;123(5):2155-2199.

[5]

Li C, Wu J, Shi H, et al. Fiber-based biopolymer processing as a route toward sustainability. Adv Mater. 2022;34(1):2105196.

[6]

Strassburg S, Zainuddin S, Scheibel T. The power of silk technology for energy applications. Adv Energy Mater. 2021;11(43):2100519.

[7]

Yazawa K, Malay AD, Masunaga H, Norma-Rashid Y, Numata K. Simultaneous effect of strain rate and humidity on the structure and mechanical behavior of spider silk. Commun Mater. 2020;1(1):10.

[8]

Bergmann F, Stadlmayr S, Millesi F, Zeitlinger M, Naghilou A, Radtke C. The properties of native Trichonephila dragline silk and its biomedical applications. Biomater Adv. 2022;140:213089.

[9]

Hu W, Jia A, Ma S, et al. A molecular atlas reveals the tri-sectional spinning mechanism of spider dragline silk. Nat Commun. 2023;14(1):837.

[10]

Hou W, Wang J, Lv J-a. Bioinspired liquid crystalline spinning enables scalable fabrication of high-performing fibrous artificial muscles. Adv Mater. 2023;35(16):2211800.

[11]

Bittencourt DMdC, Oliveira P, Michalczechen-Lacerda VA, Rosinha GMS, Jones JA, Rech EL. Bioengineering of spider silks for the production of biomedical materials. Front Bioeng Biotech. 2022;10:958486.

[12]

Kim Y, Chang H, Yoon T, Park W, Choi H, Na S. Nano-fishnet formation of silk controlled by Arginine density. Acta Biomater. 2021;128:201-208.

[13]

Qin D, Li J, Li H, Zhang H, Liu K. Engineered spidroin-derived high-performance fibers for diverse applications. Nano Res. 2024;17(2):492-502.

[14]

Wang Q, McArdle P, Wang SL, et al. Protein secondary structure in spider silk nanofibrils. Nat Commun. 2022;13(1):4329.

[15]

Li Z, Ji X, Xie H, Tang BZ. Aggregation-induced emission-active gels: fabrications, functions, and applications. Adv Mater. 2021;33(33):2100021.

[16]

Huang H, Dong Z, Ren X, et al. High-strength hydrogels: fabrication, reinforcement mechanisms, and applications. Nano Res. 2023;16(2):3475-3515.

[17]

Zhao Q, Du X, Wang M. Electrospinning and cell fibers in biomedical applications. Adv Biol. 2023;7(10):2300092.

[18]

Wang B, Qiu S, Chen Z, et al. Assembling nanocelluloses into fibrous materials and their emerging applications. Carbohydr Polym. 2023;299:120008.

[19]

Xie R, Liang Z, Ai Y, et al. Composable microfluidic spinning platforms for facile production of biomimetic perfusable hydrogel microtubes. Nat Protoc. 2021;16(2):937-964.

[20]

Park S, Yuk H, Zhao R, et al. Adaptive and multifunctional hydrogel hybrid probes for long-term sensing and modulation of neural activity. Nat Commun. 2021;12(1):3435.

[21]

Fan L, Li J-L, Cai Z, Wang X. Bioactive hierarchical silk fibers created by bioinspired self-assembly. Nat Commun. 2021;12(1):2375.

[22]

Gao Z, Xiao X, Carlo AD, et al. Advances in wearable strain sensors based on electrospun fibers. Adv Funct Mater. 2023;33(18):2214265.

[23]

Ma Z-C, Fan J, Wang H, Chen W, Yang G-Z, Han B. Microfluidic approaches for microactuators: from fabrication, actuation, to functionalization. Small. 2023;19(22):2300469.

[24]

Weigel N, Li Y, Thiele J, Fery A. From microfluidics to hierarchical hydrogel materials. Curr Opin Colloid Interface Sci. 2023;64:101673.

[25]

Chen Y, Zhang Q, Zhong Y, et al. Super-strong and super-stiff chitosan filaments with highly ordered hierarchical structure. Adv Funct Mater. 2021;31(38):2104368.

[26]

Wang M-Y, Zhang J-P, Chen S-L, et al. Dry-spinning of artificial spider silk ribbons from regenerated natural spidroin in an organic medium. Macromol Rapid Commun. 2023;44(12):2300024.

[27]

Sun J, Guo W, Mei G, et al. Artificial spider silk with buckled sheath by nano-pulley combing. Adv Mater. 2023;35(32):2212112.

[28]

Zhang M, Wang S, Zhu Y, Zhu Z, Si T, Xu RX. Programmable dynamic interfacial spinning of bioinspired microfibers with volumetric encoding. Mater Horiz. 2021;8(6):1756-1768.

[29]

Lin X, Saed MO, Terentjev EM. Continuous spinning aligned liquid crystal elastomer fibers with a 3D printer setup. Soft Matter. 2021;17(21):5436-5443.

[30]

Yu L, Gao T, Mi R, et al. 3D-printed mechanically strong and extreme environment adaptable boron nitride/cellulose nanofluidic macrofibers. Nano Res. 2023;16(5):7609-7617.

[31]

Wang Q, Tian X, Zhang D, Zhou Y, Yan W, Li D. Programmable spatial deformation by controllable off-center freestanding 4D printing of continuous fiber reinforced liquid crystal elastomer composites. Nat Commun. 2023;14(1):3869.

[32]

Shi Y, Wu B, Sun S, Wu P. Aqueous spinning of robust, self-healable, and crack-resistant hydrogel microfibers enabled by hydrogen bond nanoconfinement. Nat Commun. 2023;14(1):1370.

[33]

Li J, Wang H, Liu B, Chen J, Gu J, Lin S. Photoinduced contraction fibers and photoswitchable adhesives generated by stretchable supramolecular gel. Adv Funct Mater. 2022;32(30):2201851.

[34]

Wu Y, Shah DU, Wang B, et al. Biomimetic supramolecular fibers exhibit water-induced supercontraction. Adv Mater. 2018;30(27):1707169.

[35]

Wu Y, Shah DU, Liu C, et al. Bioinspired supramolecular fibers drawn from a multiphase self-assembled hydrogel. Proc Natl Acad Sci USA. 2017;114(31):8163-8168.

[36]

Cruz MV, Shah DU, Warner NC, McCune JA, Scherman OA. Facile, energy-efficient microscale fibrillation of polyacrylamides under ambient conditions. Adv Mater. 2022;34(23):2201577.

[37]

Chu CK, Joseph AJ, Limjoco MD, et al. Chemical tuning of fibers drawn from extensible hyaluronic acid networks. J Am Chem Soc. 2020;142(46):19715-19721.

[38]

Dou Y, Wang Z-P, He W, et al. Artificial spider silk from ion-doped and twisted core-sheath hydrogel fibres. Nat Commun. 2019;10(1):5293.

[39]

He W, Qian D, Wang Y, et al. A protein-like nanogel for spinning hierarchically structured artificial spider silk. Adv Mater. 2022;34(27):2201843.

[40]

Zhao X, Chen F, Li Y, Lu H, Zhang N, Ma M. Bioinspired ultra-stretchable and anti-freezing conductive hydrogel fibers with ordered and reversible polymer chain alignment. Nat Commun. 2018;9(1):3579.

[41]

Ju M, Wu B, Sun S, Wu P. Redox-active iron-citrate complex regulated robust coating-free hydrogel microfiber net with high environmental tolerance and sensitivity. Adv Funct Mater. 2020;30(14):1910387.

[42]

He X, Li Z, Li J, et al. Ultrastretchable, adhesive, and antibacterial hydrogel with robust spinnability for manufacturing strong hydrogel micro/nanofibers. Small. 2021;17(49):2103521.

[43]

Ma C, Li B, Shao B, et al. Anisotropic protein organofibers encoded with extraordinary mechanical behavior for cellular mechanobiology applications. Angew Chem Int Ed. 2020;59(48):21481-21487.

[44]

Ling S, Qin Z, Li C, Huang W, Kaplan DL, Buehler MJ. Polymorphic regenerated silk fibers assembled through bioinspired spinning. Nat Commun. 2017;8(1):1387.

[45]

Gu L, Jiang Y, Hu J. Artificial spider silk: scalable spider-silk-like supertough fibers using a pseudoprotein polymer. Adv Mater. 2019;31(48):1970341.

[46]

Liao S, Bai X, Song J, et al. Draw-spinning of kilometer-long and highly stretchable polymer submicrometer fibers. Adv Sci. 2017;4(9):1600480.

[47]

Yang H-S, Cho S, Eom Y, et al. Preparation of self-healable and spinnable hydrogel by dynamic boronate ester bond from hyperbranched polyglycerol and boronic acid-containing polymer. Macromol Res. 2021;29(2):140-148.

[48]

Li Y, Li J, Sun J, et al. Bioinspired and mechanically strong fibers based on engineered non-spider chimeric proteins. Angew Chem Int Ed. 2020;59(21):8148-8152.

[49]

Kim H, Jang Y, Lee DY, et al. Bio-inspired stretchable and contractible tough fiber by the hybridization of GO/MWNT/polyurethane. ACS Appl Mater Interfaces. 2019;11(34):31162-31168.

[50]

Fang B, Yan J, Chang D, et al. Scalable production of ultrafine polyaniline fibres for tactile organic electrochemical transistors. Nat Commun. 2022;13(1):2101.

[51]

Lang C, Lloyd EC, Matuszewski KE, et al. Nanostructured block copolymer muscles. Nat Nanotechnol. 2022;17(7):752-758.

[52]

Wang X-Q, Chan KH, Lu W, et al. Macromolecule conformational shaping for extreme mechanical programming of polymorphic hydrogel fibers. Nat Commun. 2022;13(1):3369.

[53]

Song J, Chen S, Sun L, et al. Mechanically and electronically robust transparent organohydrogel fibers. Adv Mater. 2020;32(8):1906994.

[54]

Shuai L, Guo ZH, Zhang P, Wan J, Pu X, Wang ZL. Stretchable, self-healing, conductive hydrogel fibers for strain sensing and triboelectric energy-harvesting smart textiles. Nano Energy. 2020;78:105389.

[55]

Guan Q-F, Han Z-M, Zhu Y, et al. Bio-inspired lotus-fiber-like spiral hydrogel bacterial cellulose fibers. Nano Lett. 2021;21(2):952-958.

[56]

Kang E, Jeong GS, Choi YY, Lee KH, Khademhosseini A, Lee S-H. Digitally tunable physicochemical coding of material composition and topography in continuous microfibres. Nat Mater. 2011;10(11):877-883.

[57]

Ding T, Chan KH, Zhou Y, et al. Scalable thermoelectric fibers for multifunctional textile-electronics. Nat Commun. 2020;11(1):6006.

[58]

Duan X, Yu J, Zhu Y, et al. Large-scale spinning approach to engineering knittable hydrogel fiber for soft robots. ACS Nano. 2020;14(11):14929-14938.

[59]

Wang C, Wu B, Sun S, Wu P. Interface deformable, thermally sensitive hydrogel-elastomer hybrid fiber for versatile underwater sensing. Adv Mater Technol. 2020;5(12):2000515.

[60]

Yang C, Cheng S, Yao X, Nian G, Liu Q, Suo Z. Ionotronic luminescent fibers, fabrics, and other configurations. Adv Mater. 2020;32(47):2005545.

[61]

Lee Y, Song WJ, Jung Y, et al. Ionic spiderwebs. Sci Robot. 2020;5(44):eaaz5405.

[62]

Yao M, Wu B, Feng X, Sun S, Wu P. A highly robust ionotronic fiber with unprecedented mechanomodulation of ionic conduction. Adv Mater. 2021;33(42):2103755.

[63]

Su J, Liu B, He H, et al. Engineering high strength and super-toughness of unfolded structural proteins and their extraordinary anti-adhesion performance for abdominal hernia repair. Adv Mater. 2022;34(19):2200842.

[64]

Zhang P, Sun J, Li J, Zhang H, Liu K. Biosynthesis, assembly, and biomedical applications of high-performance engineered proteins. ACS Chem Biol. 2023;18(7):1460-1472.

[65]

Zhang X, Cui M, Wang S, et al. Extensible and self-recoverable proteinaceous materials derived from scallop byssal thread. Nat Commun. 2022;13(1):2731.

[66]

Ulmefors H, Yang Nilsson T, Eriksson V, Eriksson G, Evenäs L, Andersson Trojer M. Solution-spinning of a collection of micro- and nanocarrier-functionalized polysaccharide fibers. Macromol Mater Eng. 2022;307(8):2200110.

[67]

Jin Q, Pan F, Hu C-F, Lee SY, Xia X-X, Qian Z-G. Secretory production of spider silk proteins in metabolically engineered Corynebacterium glutamicum for spinning into tough fibers. Metab Eng. 2022;70:102-114.

[68]

Saric M, Scheibel T. Two-in-one spider silk protein with combined mechanical features in all-aqueous spun fibers. Biomacromolecules. 2023;24(4):1744-1750.

[69]

Saric M, Eisoldt L, Döring V, Scheibel T. Interplay of different major ampullate spidroins during assembly and implications for fiber mechanics. Adv Mater. 2021;33(9):2006499.

[70]

Li X, Qi X, Cai Y-m, et al. Customized flagelliform spidroins form spider silk-like fibers at pH 8.0 with outstanding tensile strength. ACS Biomater Sci Eng. 2022;8(1):119-127.

[71]

Hu C-F, Qian Z-G, Peng Q, Zhang Y, Xia X-X. Unconventional spidroin assemblies in aqueous dope for spinning into tough synthetic fibers. ACS Biomater Sci Eng. 2021;7(8):3608-3617.

[72]

Bowen CH, Dai B, Sargent CJ, et al. Recombinant spidroins fully replicate primary mechanical properties of natural spider silk. Biomacromolecules. 2018;19(9):3853-3860.

[73]

Li J, Zhu Y, Yu H, Dai B, Jun Y-S, Zhang F. Microbially synthesized polymeric amyloid fiber promotes β-nanocrystal formation and displays gigapascal tensile strength. ACS Nano. 2021;15(7):11843-11853.

[74]

Bowen CH, Sargent CJ, Wang A, et al. Microbial production of megadalton titin yields fibers with advantageous mechanical properties. Nat Commun. 2021;12(1):5182.

[75]

Burns JR. Introducing bacteria and synthetic biomolecules along engineered DNA fibers. Small. 2021;17(25):2100136.

[76]

Zhang Y, Yang D, Wang P, Ke Y. Building large DNA bundles via controlled hierarchical assembly of DNA tubes. ACS Nano. 2023;17(11):10486-10495.

[77]

Schmuck B, Greco G, Barth A, Pugno NM, Johansson J, Rising A. High-yield production of a super-soluble miniature spidroin for biomimetic high-performance materials. Mater. 2021;50:16-23.

[78]

Greco G, Mirbaha H, Schmuck B, Rising A, Pugno NM. Artificial and natural silk materials have high mechanical property variability regardless of sample size. Sci Rep. 2022;12(1):3507.

[79]

Fan T, Qin R, Zhang Y, et al. Critical role of minor eggcase silk component in promoting spidroin chain alignment and strong fiber formation. Proc Natl Acad Sci USA. 2021;118(38):e2100496118.

[80]

Johari N, Khodaei A, Samadikuchaksaraei A, Reis RL, Kundu SC, Moroni L. Ancient fibrous biomaterials from silkworm protein fibroin and spider silk blends: biomechanical patterns. Acta Biomater. 2022;153:38-67.

[81]

Arndt T, Greco G, Schmuck B, et al. Engineered spider silk proteins for biomimetic spinning of fibers with toughness equal to dragline silks. Adv Funct Mater. 2022;32(23):2200986.

[82]

Sun J, Li B, Wang F, et al. Proteinaceous fibers with outstanding mechanical properties manipulated by supramolecular interactions. CCS Chem. 2020;3(6):1669-1677.

[83]

Li J, Jiang B, Chang X, Yu H, Han Y, Zhang F. Bi-terminal fusion of intrinsically-disordered mussel foot protein fragments boosts mechanical strength for protein fibers. Nat Commun. 2023;14(1):2127.

[84]

Zhang P, Li J, Sun J, et al. Bioengineered protein fibers with anti-freezing mechanical behaviors. Adv Funct Mater. 2022;32(48):2209006.

[85]

Zhao L, Li J, Zhang L, et al. Biosynthetic protein and nanocellulose composite fibers with extraordinary mechanical performance. Nano Today. 2022;44:101485.

[86]

Cheng J, Hu C-F, Gan C-Y, Xia X-X, Qian Z-G. Functionalization and reinforcement of recombinant spider dragline silk fibers by confined nanoparticle formation. ACS Biomater Sci Eng. 2022;8(8):3299-3309.

[87]

Zhang L, Ma N, Jia X, et al. Ultra-strong regenerated wool keratin fibers regulating via keratin conformational transition. Adv Funct Mater. 2023;33(44):2301447.

[88]

Ziv Sharabani S, Edelstein-Pardo N, Molco M, et al. Messy or ordered? Multiscale mechanics dictates shape-morphing of 2D networks hierarchically assembled of responsive microfibers. Adv Funct Mater. 2022;32(19):2111471.

[89]

Hoskin CEG, Schild VR, Vinals J, Bayley H. Parallel transmission in a synthetic nerve. Nat Chem. 2022;14(6):650-657.

[90]

Zhang C, Xiao P, Zhang D, et al. Wet-spinning knittable hygroscopic organogel fibers toward moisture-capture-enabled multifunctional devices. Adv Fiber Mater. 2023;5(2):588-602.

[91]

Zhang Y, Zhang Y, Zhou J, et al. Stretchable composite conductive fibers for wearables. Adv Mater Technol. 2023;8(6):2201442.

[92]

Zhang Y, Ye S, Cao L, et al. Natural silk spinning-inspired meso-assembly-processing engineering strategy for fabricating soft tissue-mimicking biomaterials. Adv Funct Mater. 2022;32(27):2200267.

[93]

Li Y, Wang J, Wang Y, Cui W. Advanced electrospun hydrogel fibers for wound healing. Composites Part B: Eng. 2021;223:109101.

[94]

Liu J, Cui T, Xu X, et al. Robust alcohol soluble polyurethane/chitosan/silk sericin (APU/CS/SS) nanofiber scaffolds toward artificial skin extracellular matrices via microfluidic blow-spinning. Adv Fiber Mater. 2023;5(1):349-361.

[95]

Zhou H, Zhu H, Shi X, Wang L, He H, Wang S. Design of amphoteric bionic fibers by imitating spider silk for rapid and complete removal of low-level multiple heavy metal ions. Chem Eng J. 2021;412:128670.

[96]

Xue F, Quan Z, Lei X, et al. A biomimetic porous fibre bundle adsorbent for the rapid and complete removal of multiple low-level heavy metal ions. Chem Eng J. 2023;455:140740.

[97]

Rostamitabar M, Abdelgawad AM, Jockenhoevel S, Ghazanfari S. Drug-eluting medical textiles: from fiber production and textile fabrication to drug loading and delivery. Macromol Biosci. 2021;21(7):2100021.

[98]

Zhang Y, Li T-T, Wang Z, Shiu B-C, Lin J-H, Lou C-W. Coaxial microfluidic spinning design produced high strength alginate membranes for antibacterial activity and drug release. Int J Biol Macromol. 2023;243:124956.

[99]

He C, Sun S, Wu P. Intrinsically stretchable sheath-core ionic sensory fibers with well-regulated conformal and reprogrammable buckling. Mater Horiz. 2021;8(7):2088-2096.

[100]

Zhang H, Tang N, Yu X, Li M-H, Hu J. Strong and tough physical eutectogels regulated by the spatiotemporal expression of non-covalent interactions. Adv Funct Mater. 2022;32(41):2206305.

[101]

Xu T, Yang D, Zhang S, Zhao T, Zhang M, Yu Z-Z. Antifreezing and stretchable all-gel-state supercapacitor with enhanced capacitances established by graphene/PEDOT-polyvinyl alcohol hydrogel fibers with dual networks. Carbon. 2021;171:201-210.

[102]

Liu B, Xu Z, Gao H, et al. Stiffness self-tuned shape memory hydrogels for embolization of aneurysms. Adv Funct Mater. 2020;30(22):1910197.

[103]

Zhu P, Chen R, Zhou C, Aizenberg M, Aizenberg J, Wang L. Bioinspired soft microactuators. Adv Mater. 2021;33(21):2008558.

[104]

Sun J, Zhang J, Zhao L, et al. Contribution of hydrogen-bond nanoarchitectonics to switchable photothermal-mechanical properties of bioinorganic fibers. CCS Chem. 2022;5(5):1242-1250.

[105]

Wu J, Wu B, Xiong J, Sun S, Wu P. Entropy-mediated polymer-cluster interactions enable dramatic thermal stiffening hydrogels for mechanoadaptive smart fabrics. Angew Chem Int Ed. 2022;61(34):e202204960.

[106]

Yang C, Yu Y, Wang X, Zu Y, Zhao Y, Shang L. Bioinspired stimuli-responsive spindle-knotted fibers for droplet manipulation. Chem Eng J. 2023;451:138669.

[107]

Chen C, Xi P, Zhang L, et al. A strategy to fabricate tough and strong bioinspired fiber with asymmetric structure and water-driven performance. Compos Sci Technol. 2022;224:109464.

[108]

Liu H, Wang Y, Yin W, Yuan H, Guo T, Meng T. Highly efficient water harvesting of bioinspired spindle-knotted microfibers with continuous hollow channels. J Mater Chem A. 2022;10(13):7130-7137.

[109]

Ha N, Lee SJ. Enhanced fog collection of hydrogel-coated wires inspired by water film-trapping characteristics of Tillandsia. Chem Eng J. 2023;466:143185.

[110]

Zhang M, Zheng Z, Zhu Y, Zhu Z, Si T, Xu RX. Combinational biomimetic microfibers for high-efficiency water collection. Chem Eng J. 2022;433:134495.

[111]

Wang S, Zhu L, Yu D, et al. Bioinspired robust helical-groove spindle-knot microfibers for large-scale water collection. Adv Funct Mater. 2023;33(48):2305244.

[112]

Yu Z, Zhang J, Li S, et al. Bio-inspired copper kirigami motifs leading to a 2D-3D switchable structure for programmable fog harvesting and water retention. Adv Funct Mater. 2023;33(5):2210730.

[113]

Pan S, Wang P, Liu P, et al. Stable cellulose/graphene inks mediated by an inorganic base for the fabrication of conductive fibers. J Mater Chem C. 2021;9(17):5779-5788.

[114]

Kim D, Jo A, Imani KBC, Kim D, Chung J-W, Yoon J. Microfluidic fabrication of multistimuli-responsive tubular hydrogels for cellular scaffolds. Langmuir. 2018;34(14):4351-4359.

[115]

Bai Z, Wang X, Zheng M, et al. Mechanically robust and transparent organohydrogel-based E-skin nanoengineered from natural skin. Adv Funct Mater. 2023;33(15):2212856.

[116]

Chen Y, Hao Y, Mensah A, Lv P, Wei Q. Bio-inspired hydrogels with fibrous structure: a review on design and biomedical applications. Biomater Adv. 2022;136:212799.

[117]

Gohari DP, Jafari SH, Khanmohammadi M, Bagher Z. Fabrication of cell-enclosed polyvinyl alcohol/gelatin derivative microfiber through flow focusing microfluidic system. Process Biochem. 2022;121:504-513.

[118]

Kostag M, Jedvert K, El Seoud OA. Engineering of sustainable biomaterial composites from cellulose and silk fibroin: fundamentals and applications. Int J Biol Macromol. 2021;167:687-718.

[119]

Patil NA, Kandasubramanian B. Functionalized polylysine biomaterials for advanced medical applications: a review. Eur Polym J. 2021;146:110248.

[120]

Yang Y, Chen D, Cheng Y, et al. Eco-friendly and sustainable approach of assembling sugars into biobased carbon fibers. Green Chem. 2022;24(13):5097-5106.

[121]

Li J, Ma C, Zhang H, Liu K. Engineering mechanical strong biomaterials inspired by structural building blocks in nature. Chem Res Chin Univ. 2023;39(1):92-106.

[122]

Song J, Chen Z, Liu Z, et al. Controllable release of vascular endothelial growth factor (VEGF) by wheel spinning alginate/silk fibroin fibers for wound healing. Mater Design. 2021;212:110231.

[123]

Ju J, Yang J, Zhang W, Wei Y, Yuan H, Tan Y. Seaweed polysaccharide fibers: solution properties, processing and applications. J Mater Sci Technol. 2023;140:1-18.

[124]

Zhao T, Li X, Gong Y, Guo Y, Quan F, Shi Q. Study on polysaccharide polyelectrolyte complex and fabrication of alginate/chitosan derivative composite fibers. Int J Biol Macromol. 2021;184:181-187.

[125]

Chen W, Miao H, Meng G, et al. Polydopamine-induced multilevel engineering of regenerated silk fibroin fiber for photothermal conversion. Small. 2022;18(11):2107196.

[126]

Zhang M, Chen S, Sheng N, et al. Spinning continuous high-strength bacterial cellulose hydrogel fibers for multifunctional bioelectronic interfaces. J Mater Chem A. 2021;9(21):12574-12583.

[127]

Dong L, Zhang W, Ren M, et al. Moisture-adaptive contractile biopolymer-derived fibers for wound healing promotion. Small. 2023;19(27):2300589.

[128]

Greco G, Arndt T, Schmuck B, et al. Tyrosine residues mediate supercontraction in biomimetic spider silk. Commun Mater. 2021;2(1):43.

[129]

Chen W-C, Wang R-C, Yu S-K, et al. Self-healable spider dragline silk materials. Adv Funct Mater. 2023;33(44):2303571.

[130]

Wang C, Liu Y, Qu X, et al. Ultra-stretchable and fast self-healing ionic hydrogel in cryogenic environments for artificial nerve fiber. Adv Mater. 2022;34(16):2105416.

[131]

Zhang Y, Zhou J, Zhang Y, Zhang D, Yong KT, Xiong J. Elastic fibers/fabrics for wearables and bioelectronics. Adv Sci. 2022;9(35):2203808.

[132]

Chen M, Wang Z, Li K, Wang X, Wei L. Elastic and stretchable functional fibers: a review of materials, fabrication methods, and applications. Adv Fiber Mater. 2021;3(1):1-13.

[133]

Wang Z, Luo H, Martin HJ, et al. Controlling the elasticity of polyacrylonitrile fibers via ionic liquids containing cyano-based anions. RSC Adv. 2022;12(14):8656-8660.

[134]

Zhu C, Wu J, Yan J, Liu X. Advanced fiber materials for wearable electronics. Adv Fiber Mater. 2023;5(1):12-35.

[135]

Chen F, Huang Q, Zheng Z. Permeable conductors for wearable and on-skin electronics. Small Struct. 2022;3(1):2100135.

[136]

Cao X, Ye C, Cao L, Shan Y, Ren J, Ling S. Biomimetic spun silk ionotronic fibers for intelligent discrimination of motions and tactile stimuli. Adv Mater. 2023;35(36):2300447.

[137]

Fitria G, Yoon J. Mechanically tough dry-free ionic hydrogel microfibers swollen in aqueous electrolyte prepared by microfluidic devices. J Polym Sci. 2022;60(11):1758-1766.

[138]

Kim SG, Heo SJ, Kim S, et al. Ultrahigh strength and modulus of polyimide-carbon nanotube based carbon and graphitic fibers with superior electrical and thermal conductivities for advanced composite applications. Composites Part B: Eng. 2022;247:110342.

[139]

Kim SG, Heo SJ, Kim J-G, et al. Ultrastrong hybrid fibers with tunable macromolecular interfaces of graphene oxide and carbon nanotube for multifunctional applications. Adv Sci. 2022;9(29):2203008.

[140]

Zhang W, Miao J, Tian M, Zhang X, Fan T, Qu L. Hierarchically interlocked helical conductive yarn enables ultra-stretchable electronics and smart fabrics. Chem Eng J. 2023;462:142279.

[141]

Yin T, Wu L, Wu T, et al. Ultrastretchable and conductive core/sheath hydrogel fibers with multifunctionality. J Polym Sci Polym Phys. 2019;57(5):272-280.

[142]

He C, Cheng J, Wu C, Wang B. Bifunctional shared fibers for high-efficiency self-powered fiber-shaped photocapacitors. Adv Fiber Mater. 2023;5(1):130-137.

[143]

Xie X, Xu Z, Yu X, Jiang H, Li H, Feng W. Liquid-in-liquid printing of 3D and mechanically tunable conductive hydrogels. Nat Commun. 2023;14(1):4289.

[144]

Jo YJ, Kim SY, Hyun JH, et al. Fibrillary gelation and dedoping of PEDOT:pSS fibers for interdigitated organic electrochemical transistors and circuits. npj Flex Electron. 2022;6(1):31.

[145]

Wu J, Sang M, Zhang J, et al. Ultra-stretchable spiral hybrid conductive fiber with 500%-strain electric stability and deformation-independent linear temperature response. Small. 2023;19(19):2207454.

[146]

Feng Q, Wan K, Zhu T, Fan X, Zhang C, Liu T. Stretchable, environment-stable, and knittable ionic conducting fibers based on metallogels for wearable wide-range and durable strain sensors. ACS Appl Mater Interfaces. 2022;14(3):4542-4551.

[147]

Chen T, Wei P, Chen G, et al. Heterogeneous structured tough conductive gel fibres for stable and high-performance wearable strain sensors. J Mater Chem A. 2021;9(20):12265-12275.

[148]

Zhang Y, Zhang D, Chen Y, et al. Liquid metal enabled elastic conductive fibers for self-powered wearable sensors. Adv Mater Technol. 2023;8(10):2202030.

[149]

Yao B, Wang H, Zhou Q, et al. Ultrahigh-conductivity polymer hydrogels with arbitrary structures. Adv Mater. 2017;29(28):1700974.

[150]

Zhou Q, Teng W, Jin Y, et al. Highly-conductive PEDOT:pSS hydrogel framework based hybrid fiber with high volumetric capacitance and excellent rate capability. Electrochim Acta. 2020;334:135530.

[151]

Shi W, Wang Z, Song H, et al. High-sensitivity and extreme environment-resistant sensors based on PEDOT:pSS@PVA hydrogel fibers for physiological monitoring. ACS Appl Mater Interfaces. 2022;14(30):35114-35125.

[152]

Li M, Chen X, Li X, Dong J, Zhao X, Zhang Q. Wearable and robust polyimide hydrogel fiber textiles for strain sensors. ACS Appl Mater Interfaces. 2021;13(36):43323-43332.

[153]

Geng L, Cai Y, Lu L, et al. Highly strong and conductive carbon fibers originated from bioinspired lignin/nanocellulose precursors obtained by flow-assisted alignment and in situ interfacial complexation. ACS Sustainable Chem Eng. 2021;9(6):2591-2599.

[154]

Xu Y, Feng Q, Zhang C, Liu T. Wet-spinning of ionic liquid@elastomer coaxial fibers with high stretchability and wide temperature resistance for strain sensors. Compos Commun. 2021;25:100693.

[155]

Zhou B, Zou J, Lin Z, et al. Aligned regenerated cellulose-based nanofluidic fibers with ultrahigh ionic conductivity and underwater stability for osmotic energy harvesting. Chem Eng J. 2023;457:141167.

[156]

Wang Y, Gao C, Zhao C, et al. Engineering PEDOT:pSS/PEG fibers with a textured surface toward comprehensive personal thermal management. ACS Appl Mater Interfaces. 2023;15(13):17175-17187.

[157]

Niu B, Yang S, Yang Y, Hua T. Highly conductive fiber with design of dual conductive Ag/CB layers for ultrasensitive and wide-range strain sensing. SmartMat. 2023;4(6):e1178.

[158]

Wu Y-Y, Chen H, Zhang F, Guo P, Qin H, Cong H-P. Stretchable and self-healing conductive fibers from hierarchical silver nanowires-assembled network. Nano Res. 2024;17(2):763-770.

[159]

Zhang S, Zhou Y, Libanori A, et al. Biomimetic spinning of soft functional fibres via spontaneous phase separation. Nat Electron. 2023;6(5):338-348.

[160]

McDowall D, Walker M, Vassalli M, et al. Controlling the formation and alignment of low molecular weight gel ‘noodles’. Chem Commun. 2021;57(70):8782-8785.

[161]

Schmuck B, Greco G, Bäcklund FG, Pugno NM, Johansson J, Rising A. Impact of physio-chemical spinning conditions on the mechanical properties of biomimetic spider silk fibers. Commun Mater. 2022;3(1):83.

[162]

Liu C, Hua J, Ng PF, Wang Y, Fei B, Shao Z. Bioinspired photo-cross-linking of stretched solid silks for enhanced strength. ACS Biomater Sci Eng. 2022;8(2):484-492.

[163]

Chen T, Qiao X, Wei P, et al. Tough gel-fibers as strain sensors based on strain-optics conversion induced by anisotropic structural evolution. Chem Mater. 2020;32(22):9675-9687.

[164]

Xiao Y, Yang C, Zhai X, et al. Bioinspired tough and strong fibers with hierarchical core-shell structure. Adv Mater Interfaces. 2023;10(2):2201962.

[165]

Xiao Y, Yang C, Guo B, et al. Bioinspired strong and tough organic-inorganic hybrid fibers. Small Struct. 2023;4(10):2300080.

[166]

Zhao L, Xu T, Wang B, Mao Z, Sui X, Feng X. Continuous fabrication of robust ionogel fibers for ultrastable sensors via dynamic reactive spinning. Chem Eng J. 2023;455:140796.

[167]

Peng Z, Hu W, Li X, Zhao P, Xia Q. Bending–spinning produces silkworm and spider silk with enhanced mechanical properties. Macromolecules. 2023;56(3):1199-1212.

[168]

Zhu J, Ma N, Li S, et al. Reinforced wool keratin fibers via dithiol chain re-bonding. Adv Funct Mater. 2023;33(14):2213644.

[169]

Chen L, Deng B, Li X, Wang Z. Structural evolution of UHMWPE gel fibers as high degree plasticized system during stretching: an in-situ wide and small angle X-ray scattering study. Polym J. 2022;255:125149.

[170]

Diao H, Song G, Wu J, Zheng X, Zhang J. Stretch-induced crystallization of cellulose spun from ionic liquid solution. Biomacromolecules. 2022;23(6):2264-2271.

[171]

Wei J, Wang B, Yuan H, Kang Z, Gao H, Nie Y. Effects of glucose and coagulant on the structure and properties of regenerated cellulose fibers. Biomacromolecules. 2023;24(4):1810-1818.

[172]

Chen J, Tsuchiya K, Masunaga H, Malay AD, Numata K. A silk composite fiber reinforced by telechelic-type polyalanine and its strengthening mechanism. Polym Chem. 2022;13(13):1869-1879.

[173]

Li D, Li J, Wang K, et al. Dry-jet wet spinning and encapsulating for preparing multifunctional fibers based on anti-Rayleigh-plateau-instability solution. Colloids Surf A. 2022;638:128240.

[174]

Luo J, Wen Y, Jia X, et al. Fabricating strong and tough aramid fibers by small addition of carbon nanotubes. Nat Commun. 2023;14(1):3019.

[175]

Wang J, Fan T, Li X, et al. Artificial superstrong silkworm silk surpasses natural spider silks. Matter. 2022;5(12):4396-4406.

[176]

Hu S, Han J, Shi Z, et al. Biodegradable, super-strong, and conductive cellulose macrofibers for fabric-based triboelectric nanogenerator. Nano-Micro Lett. 2022;14(1):115.

[177]

Xi P, Quan F, Sun Y, Jiang Y. Cellulose nanofibers reinforced nanocomposites with high strength and toughness by tunable wet-drawing and ionic cross-linking method. Composites Part B: Eng. 2022;242:110078.

[178]

Leng X, Mei G, Zhang G, Liu Z, Zhou X. Tethering of twisted-fiber artificial muscles. Chem Soc Rev. 2023;52(7):2377-2390.

[179]

Zhu Z, Di J, Liu X, Qin J, Cheng P. Coiled polymer fibers for artificial muscle and more applications. Matter. 2022;5(4):1092-1103.

[180]

Wang Y, Sun J, Liao W, Yang Z. Liquid crystal elastomer twist fibers toward rotating microengines. Adv Mater. 2022;34(9):2107840.

[181]

Fu C, Tang W, Miao Y, et al. Large-scalable fabrication of liquid metal-based double helix core-spun yarns for capacitive sensing, energy harvesting, and thermal management. Nano Energy. 2023;106:108078.

[182]

Li D, Zhu Z, Zhao Z, et al. Fabrication of helix-fiber composites with mechanically coupled core-wrapping for programmable properties. Commun Mater. 2023;4(1):28.

[183]

Wang Y, Liu F, Wang N, et al. Bioinspired stretchable helical nanofiber yarn scaffold for locomotive tissue dynamic regeneration. Matter. 2022;5(12):4480-4501.

[184]

Wang F, Chen J, Cui X, Liu X, Chang X, Zhu Y. Wearable ionogel-based fibers for strain sensors with ultrawide linear response and temperature sensors insensitive to strain. ACS Appl Mater Interfaces. 2022;14(26):30268-30278.

[185]

Feng Q, Wan K, Zhu T, Zhang C, Liu T. Thermo-spun reaction encapsulation fabrication of environment-stable and knittable fibrous ionic conductors with large elasticity and high fatigue resistance. Chem Eng J. 2022;435:134826.

[186]

Li S, Chandra Biswas M, Ford E. Dual roles of sodium polyacrylate in alginate fiber wet-spinning: modify the solution rheology and strengthen the fiber. Carbohydr Polym. 2022;297:120001.

[187]

Kong Z, Hou Y, Gu J, et al. Biomimetic ultratough, strong, and ductile artificial polymer fiber based on immovable and slidable cross-links. Nano Lett. 2023;23(13):6216-6225.

[188]

Wang B-X, Xu W, Yang Z, Wu Y, Pi F. An overview on recent progress of the hydrogels: from material resources, properties, to functional applications. Macromol Rapid Commun. 2022;43(6):2100785.

[189]

Xu Y, Guo J, Guan F, Yang Q, Yin J, Ji X. An acid-catalyzed polyol in situ crosslinked alginate ester/Antarctic krill protein composite fiber with improved strength and water resistance. New J Chem. 2022;46(36):17167-17174.

[190]

Wan S, Cheng W, Li J, et al. Biological composite fibers with extraordinary mechanical strength and toughness mediated by multiple intermolecular interacting networks. Nano Res. 2022;15(10):9192-9198.

[191]

Gao T, Yan G, Yang X, et al. Wet spinning of fiber-shaped flexible Zn-ion batteries toward wearable energy storage. J Energy Chem. 2022;71:192-200.

[192]

Wang S, Chen Y, Pei D, et al. Rifled microtubes with helical and conductive ribs for endurable sensing device. Chem Eng J. 2023;465:142939.

[193]

Tan S, Wang J, Jin W, et al. Multifunctional flexible conductive filament for human motion detection and electrothermal. Compos Commun. 2023;37:101446.

[194]

Li F, Zhao H, Sun X, Yue Y, Wang Z, Guo L. Super-strong graphene oxide-based fibers reinforced by a crystalline-amorphous superstructure. Matter. 2022;5(12):4437-4449.

[195]

Zhang S, Zhou M, Liu M, et al. Ambient-conditions spinning of functional soft fibers via engineering molecular chain networks and phase separation. Nat Commun. 2023;14(1):3245.

[196]

Wan F, Ping H, Wang W, et al. Hydroxyapatite-reinforced alginate fibers with bioinspired dually aligned architectures. Carbohydr Polym. 2021;267:118167.

[197]

Guo X, Dong X, Zou G, Gao H, Zhai W. Strong and tough fibrous hydrogels reinforced by multiscale hierarchical structures with multimechanisms. Sci Adv. 2023;9(2):eadf7075.

[198]

Lu X, Jiao H, Shi Y, et al. Fabrication of bio-inspired anisotropic structures from biopolymers for biomedical applications: a review. Carbohydr Polym. 2023;308:120669.

[199]

Khuu N, Kheiri S, Kumacheva E. Structurally anisotropic hydrogels for tissue engineering. Trends Chem. 2021;3(12):1002-1026.

[200]

Zhou T, Yu Y, He B, et al. Ultra-compact MXene fibers by continuous and controllable synergy of interfacial interactions and thermal drawing-induced stresses. Nat Commun. 2022;13(1):4564.

[201]

Wu X, Yu X, Zhang Z, et al. Anisotropic ZnS nanoclusters/ordered macro-microporous carbon superstructure for fibrous supercapacitor toward commercial-level energy density. Adv Funct Mater. 2023;33(41):2300329.

[202]

Liu F, Wang Q, Zhai G, et al. Continuously processing waste lignin into high-value carbon nanotube fibers. Nat Commun. 2022;13(1):5755.

[203]

Li Y, Zhang X. Electrically conductive, optically responsive, and highly orientated Ti3C2Tx MXene aerogel fibers. Adv Funct Mater. 2022;32(4):2107767.

[204]

Zhu C, Xue T, Ma Z, Fan W, Liu T. Mechanically strong and thermally insulating polyimide aerogel fibers reinforced by prefabricated long polyimide fibers. ACS Appl Mater Interfaces. 2023;15(9):12443-12452.

[205]

Liu Y, Liu P, Jiang Q, et al. Organic/inorganic hybrid for flexible thermoelectric fibers. Chem Eng J. 2021;405:126510.

[206]

Yang J, Jia Y, Liu Y, et al. PEDOT:pSS/PVA/Te ternary composite fibers toward flexible thermoelectric generator. Compos Commun. 2021;27:100855.

[207]

Liu Z, Lyu J, Ding Y, et al. Nanoscale kevlar liquid crystal aerogel fibers. ACS Nano. 2022;16(9):15237-15248.

[208]

Liu X, Shi L, Wan X, et al. A spider-silk-inspired wet adhesive with supercold tolerance. Adv Mater. 2021;33(14):2007301.

[209]

Feng Q, Wan K, Zhang C, Liu T. Cryo-spun encapsulation of polyaniline-based conducting hydrogels with high sensitivity, wide-range linearity, and environmental stability for fibrous strain sensors. J Polym Sci. 2022;60(18):2710-2719.

[210]

Wang X, Wang X, Pi M, Ran R. High-strength, highly conductive and woven organic hydrogel fibers for flexible electronics. Chem Eng J. 2022;428:131172.

[211]

Zhao L, Wang B, Mao Z, Sui X, Feng X. Nonvolatile, stretchable and adhesive ionogel fiber sensor designed for extreme environments. Chem Eng J. 2022;433:133500.

[212]

Du X, Zhang K. Recent progress in fibrous high-entropy energy harvesting devices for wearable applications. Nano Energy. 2022;101:107600.

[213]

Liu C, Lao Y, Yang F, et al. High-performance fiber-shaped Li-ion battery enabled by a surface-reinforced self-supporting electrode. Chem Commun. 2023;59(40):6064-6067.

[214]

Zuo X, Zhang X, Qu L, Miao J. Smart fibers and textiles for personal thermal management in emerging wearable applications. Adv Mater Technol. 2023;8(6):2201137.

[215]

Chen C, Feng J, Li J, Guo Y, Shi X, Peng H. Functional fiber materials to smart fiber devices. Chem Rev. 2023;123(2):613-662.

[216]

Wang H, Zhang Y, Liang X, Zhang Y. Smart fibers and textiles for personal health management. ACS Nano. 2021;15(8):12497-12508.

[217]

Libanori A, Chen G, Zhao X, Zhou Y, Chen J. Smart textiles for personalized healthcare. Nat Electron. 2022;5(3):142-156.

[218]

Gulati R, Sharma S, Sharma RK. Antimicrobial textile: recent developments and functional perspective. Polym Bull. 2022;79(8):5747-5771.

[219]

Padmanabhan NT, John H. Titanium dioxide based self-cleaning smart surfaces: a short review. J Environ Chem Eng. 2020;8(5):104211.

[220]

Lazar ST, Kolibaba TJ, Grunlan JC. Flame-retardant surface treatments. Nat Rev Mater. 2020;5(4):259-275.

[221]

Faruk MO, Ahmed A, Jalil MA, et al. Functional textiles and composite based wearable thermal devices for Joule heating: progress and perspectives. Appl Mater Today. 2021;23:101025.

[222]

Bai X, Sun Q, Cui H, et al. Controlled covalent self-assembly of a homopolymer for multiscale materials engineering. Adv Mater. 2022;34(39):2109701.

[223]

Xi P, Quan F, Yao J, Xia Y, Fang K, Jiang Y. Strategy to fabricate a strong and supertough bio-inspired fiber with organic–inorganic networks in a green and scalable way. ACS Nano. 2021;15(10):16478-16487.

[224]

Sahasrabudhe A, Rupprecht LE, Orguc S, et al. Multifunctional microelectronic fibers enable wireless modulation of gut and brain neural circuits. Nat Biotechnol. 2023.

[225]

Kong B, Liu R, Guo J, Lu L, Zhou Q, Zhao Y. Tailoring micro/nano-fibers for biomedical applications. Bioact Mater. 2023;19:328-347.

[226]

Wei L, Wang S, Shan M, et al. Conductive fibers for biomedical applications. Bioact Mater. 2023;22:343-364.

[227]

Li X, Yuan L, Liu R, et al. Engineering textile electrode and bacterial cellulose nanofiber reinforced hydrogel electrolyte to enable high-performance flexible all-solid-state supercapacitors. Adv Energy Mater. 2021;11(12):2003010.

[228]

Wang X, Chen G, Cai L, Ra Li, He M. Weavable transparent conductive fibers with harsh environment tolerance. ACS Appl Mater Interfaces. 2021;13(7):8952-8959.

[229]

Zhuge W, Liu H, Wang W, Wang J. Microfluidic bioscaffolds for regenerative engineering. Eng Regen. 2022;3(1):110-120.

[230]

Chen Z, Song J, Xia Y, et al. High strength and strain alginate fibers by a novel wheel spinning technique for knitting stretchable and biocompatible wound-care materials. Mater Sci Eng C. 2021;127:112204.

[231]

Yu D, Qian Q, Wei L, et al. Emergence of fiber supercapacitors. Chem Soc Rev. 2015;44(3):647-662.

[232]

Senthilkumar ST, Wang Y, Huang H. Advances and prospects of fiber supercapacitors. J Mater Chem A. 2015;3(42):20863-20879.

[233]

Liao M, Ye L, Zhang Y, Chen T, Peng H. The recent advance in fiber-shaped energy storage devices. Adv Electron Mater. 2019;5(1):1800456.

[234]

Chen D, Jiang K, Huang T, Shen G. Recent advances in fiber supercapacitors: materials, device configurations, and applications. Adv Mater. 2020;32(5):1901806.

[235]

Lestari Handayani P, Kim T, Hwa Song Y, Seo Park J, Jae Yang S, Hyeok Choi U. Tailoring molecular interaction in heteronetwork polymer electrolytes for stretchable, high-voltage fiber supercapacitors. Chem Eng J. 2023;452:139432.

[236]

Zhang J, Seyedin S, Qin S, et al. Highly conductive Ti3C2Tx MXene hybrid fibers for flexible and elastic fiber-shaped supercapacitors. Small. 2019;15(8):1804732.

[237]

Levitt A, Zhang J, Dion G, Gogotsi Y, Razal JM. MXene-based fibers, yarns, and fabrics for wearable energy storage devices. Adv Funct Mater. 2020;30(47):2000739.

[238]

Cao W, Zhao X, Lu B, Cui D, Chen F. Assembly of nanowires into macroscopic one-dimensional fibers in liquid state. Adv Fiber Mater. 2023;5(3):928-954.

[239]

Qiu H, Qu X, Zhang Y, Chen S, Shen Y. Robust PANI@MXene/GQDs based fibre fabric electrodes via microfluidic wet-fusing spinning chemistry. Adv Mater. 2023;35(38):2302326.

[240]

Li P, Jin Z, Peng L, et al. Stretchable all-gel-state fiber-shaped supercapacitors enabled by macromolecularly interconnected 3D graphene/nanostructured conductive polymer hydrogels. Adv Mater. 2018;30(18):1800124.

[241]

Teng W, Zhou Q, Wang X, et al. Hierarchically interconnected conducting polymer hybrid fiber with high specific capacitance for flexible fiber-shaped supercapacitor. Chem Eng J. 2020;390:124569.

[242]

Shi H, Chen S, Shi W, et al. High performance fiber-shaped supercapacitors based on core-shell fiber electrodes with adjustable surface wrinkles and robust interfaces. J Mater Chem A. 2021;9(31):16852-16859.

[243]

Wang H, Wang Y, Chang J, et al. Nacre-inspired strong MXene/cellulose fiber with superior supercapacitive performance via synergizing the interfacial bonding and interlayer spacing. Nano Lett. 2023;23(12):5663-5672.

[244]

Zhou Z, Li P, Man Z, et al. Multiscale dot-wire-sheet heterostructured nitrogen-doped carbon dots-Ti3C2Tx/silk nanofibers for high-performance fiber-shaped supercapacitors. Angew Chem Int Ed. 2023;62(20):e202301618.

[245]

Wang M, Chen Z, Dong L, et al. Conductance-stable and integrated helical fiber electrodes toward stretchy energy storage and self-powered sensing utilization. Chem Eng J. 2023;457:141164.

[246]

Liang R, Yu H, Wang L, Shen D. Light-guided dynamic liquid crystalline elastomer actuators enabled by mussel adhesive protein chemistry. Adv Funct Mater. 2023;33(9):2211914.

[247]

Razzaq W, Serra CA, Chan-Seng D. Microfluidic Janus fibers with dual thermoresponsive behavior for thermoactuation. Eur Polym J. 2022;174:111321.

[248]

Yu X, Cheng Y, Zhang H, et al. Dorsoventral gradient hydrogel fiber actuators visualized by AIEgen-conjugated nanoparticles. Nano Today. 2022;44:101502.

[249]

Hu Z, Li Y, Lv J-a. Phototunable self-oscillating system driven by a self-winding fiber actuator. Nat Commun. 2021;12(1):3211.

[250]

Yu Y, Wang J, Han X, Yang S, An G, Lu C. Fiber-shaped soft actuators: fabrication, actuation mechanism and application. Adv Fiber Mater. 2023;5(3):868-895.

[251]

Wu R, Bae J, Jeon H, Kim T. Spider-inspired regenerated silk fibroin fiber actuator via microfluidic spinning. Chem Eng J. 2022;444:136556.

[252]

Wang M, Huang X, Yang H. Photothermal-responsive crosslinked liquid crystal polymers. Macromol Mater Eng. 2023;308(9):2300061.

[253]

Hu Z, Li Y, Zhao T, Lv J-a. Self-winding liquid crystal elastomer fiber actuators with high degree of freedom and tunable actuation. Appl Mater Today. 2022;27:101449.

[254]

Wu D, Zhang Y, Yang H, et al. Scalable functionalized liquid crystal elastomer fiber soft actuators with multi-stimulus responses and photoelectric conversion. Mater Horiz. 2023;10(7):2587-2598.

[255]

You C, Qin W, Yan Z, et al. Highly improved water tolerance of hydrogel fibers with a carbon nanotube sheath for rotational, contractile and elongational actuation. J Mater Chem A. 2021;9(16):10240-10250.

[256]

Tachibana D, Murakami K, Kozaki T, et al. Ultrafast and highly deformable electromagnetic hydrogel actuators assembled from liquid metal gel fiber. J Intell Syst. 2022;4(5):2100212.

[257]

Du J, Ma Q, Wang B, Sun L, Liu L. Hydrogel fibers for wearable sensors and soft actuators. iScience. 2023;26(6):106796.

[258]

Jiang Y, Wang C, Zhang S, Tan L, Hu J. One stone, two birds: spidroin-inspired nanogels for high-performance fibers and photothermal actuators. Adv Funct Mater. 2023;33(35):2303387.

[259]

Liu H, Luo H, Huang J, Chen Z, Yu Z, Lai Y. Programmable water/light dual-responsive hollow hydrogel fiber actuator for efficient desalination with anti-salt accumulation. Adv Funct Mater. 2023;33(33):2302038.

[260]

Liu Y, Zhao K, Ren Y, et al. Highly plasticized lanthanide luminescence for information storage and encryption applications. Adv Sci. 2022;9(7):2105108.

[261]

Lu L, Fan S, Geng L, Yao X, Zhang Y. Low-loss light-guiding, strong silk generated by a bioinspired microfluidic chip. Chem Eng J. 2021;405:126793.

[262]

Pearson S, Feng J, del Campo A. Lighting the path: light delivery strategies to activate photoresponsive biomaterials in vivo. Adv Funct Mater. 2021;31(50):2105989.

[263]

Sadeque MSB, Chowdhury HK, Rafique M, et al. Hydrogel-integrated optical fiber sensors and their applications: a comprehensive review. J Mater Chem C. 2023;11(28):9383-9424.

[264]

Guo J, Liu X, Jiang N, et al. Highly stretchable, strain sensing hydrogel optical fibers. Adv Mater. 2016;28(46):10244-10249.

[265]

Zhenglan B, Yue Q, Liang X, Anduo H, Hui Y, Fenghong C. Glucose biosensing based on a hydrogel optical fiber immobilized with glucose oxidase. Optik. 2022;255:168655.

[266]

Fenghong C, Shi F, Zhenglan B, Chunpeng Z, Liang X, Anduo H. Study of dissolved oxygen sensing characteristics of hydrogel optical fiber based on fluorescence quenching method. Optik. 2021;247:168014.

[267]

Rezapour Sarabi M, Jiang N, Ozturk E, Yetisen AK, Tasoglu S. Biomedical optical fibers. Lab Chip. 2021;21(4):627-640.

[268]

Wang X, Chen G, Zhang K, et al. Self-healing multimodal flexible optoelectronic fiber sensors. Chem Mater. 2023;35(3):1345-1354.

[269]

Wu C, Liu X, Ying Y. Soft and stretchable optical waveguide: light delivery and manipulation at complex biointerfaces creating unique windows for on-body sensing. ACS Sens. 2021;6(4):1446-1460.

[270]

Hynninen V, Chandra S, Das S, et al. Luminescent gold nanocluster-methylcellulose composite optical fibers with low attenuation coefficient and high photostability. Small. 2021;17(27):2005205.

[271]

Fitria G, Kwon M, Lee H, et al. Microfluidic fabrication of highly efficient hydrogel optical fibers for in vivo fiber-optic applications. Adv Opt Mater. 2023;11(18):2300453.

[272]

Guimarães CF, Ahmed R, Mataji-Kojouri A, et al. Engineering polysaccharide-based hydrogel photonic constructs: from multiscale detection to the biofabrication of living optical fibers. Adv Mater. 2021;33(52):2105361.

[273]

Chen G, Wang G, Tan X, et al. Integrated dynamic wet spinning of core-sheath hydrogel fibers for optical-to-brain/tissue communications. Natl Sci Rev. 2021;8(9):nwaa209.

[274]

Chen G, Xu S, Zhou Q, et al. Temperature-gated light-guiding hydrogel fiber for thermoregulation during optogenetic neuromodulation. Adv Fiber Mater. 2023;5(3):968-978.

[275]

Gong X, Yin X, Wang F, et al. Electrospun nanofibrous membranes: a versatile medium for waterproof and breathable application. Small. 2023;19(2):2205067.

[276]

Wu Y, Dai X, Sun Z, et al. Highly integrated, scalable manufacturing and stretchable conductive core/shell fibers for strain sensing and self-powered smart textiles. Nano Energy. 2022;98:107240.

[277]

Zuo X, Fan T, Qu L, Zhang X, Miao J. Smart multi-responsive aramid aerogel fiber enabled self-powered fabrics. Nano Energy. 2022;101:107559.

[278]

Chen Y, Zhang C, Tao S, et al. High-performance smart cellulose nanohybrid aerogel fibers as a platform toward multifunctional textiles. Chem Eng J. 2023;466:143153.

[279]

Geng Y, Kizhakidathazhath R, Lagerwall JPF. Robust cholesteric liquid crystal elastomer fibres for mechanochromic textiles. Nat Mater. 2022;21(12):1441-1447.

[280]

Zhang Y, Wang H, Lu H, Li S, Zhang Y. Electronic fibers and textiles: recent progress and perspective. iScience. 2021;24(7):102716.

[281]

Zhang Y, Xia X, Ma K, et al. Functional textiles with smart properties: their fabrications and sustainable applications. Adv Funct Mater. 2023;33(33):2301607.

[282]

Dong K, Peng X, Cheng R, et al. Advances in high-performance autonomous energy and self-powered sensing textiles with novel 3D fabric structures. Adv Mater. 2022;34(21):2109355.

[283]

Wang Y, Ren J, Lv Z, et al. Direct functionalization of natural silks through continuous force-reeling technique. Chem Eng J. 2022;435:134901.

[284]

Li Q, Xu Z, Du X, et al. Microfluidic-directed hydrogel fabrics based on interfibrillar self-healing effects. Chem Mater. 2018;30(24):8822-8828.

[285]

Lan B, Wu F, Cheng Y, et al. Scalable, stretchable and washable triboelectric fibers for self-powering human-machine interaction and cardiopulmonary resuscitation training. Nano Energy. 2022;102:107737.

[286]

Jing T, Xu B, Yang Y. Organogel electrode based continuous fiber with large-scale production for stretchable triboelectric nanogenerator textiles. Nano Energy. 2021;84:105867.

[287]

Cui X, Wu H, Wang R. Fibrous triboelectric nanogenerators: fabrication, integration, and application. J Mater Chem A. 2022;10(30):15881-15905.

[288]

Wen N, Fan Z, Yang S, et al. High-performance stretchable thermoelectric fibers for wearable electronics. Chem Eng J. 2021;426:130816.

[289]

Rastegardoost MM, Tafreshi OA, Saadatnia Z, Ghaffari-Mosanenzadeh S, Park CB, Naguib HE. Recent advances on porous materials and structures for high-performance triboelectric nanogenerators. Nano Energy. 2023;111:108365.

[290]

Tian X, Dong S, Yang M, et al. Textile-based triboelectric nanogenerators for smart wearable systems: comfort, integration, and application. Adv Mater Technol. 2023;8(8):2201294.

[291]

Ning C, Wei C, Sheng F, et al. Scalable one-step wet-spinning of triboelectric fibers for large-area power and sensing textiles. Nano Res. 2023;16(5):7518-7526.

[292]

Dong L, Wang M, Wu J, Zhu C, Shi J, Morikawa H. Deformable textile-structured triboelectric nanogenerator knitted with multifunctional sensing fibers for biomechanical energy harvesting. Adv Fiber Mater. 2022;4(6):1486-1499.

[293]

Liu Y, Zhang Y, Xiong X, et al. Strategies for preparing continuous ultraflexible and ultrastrong poly(vinyl alcohol) aerogel fibers with excellent thermal insulation. Macromol Mater Eng. 2021;306(11):2100399.

[294]

Sun H, Mu W, Cui X, Xu Z, Zhang T, Zhao Y. Polymer-encapsulated aerogel fibers prepared via coaxial wet spinning with stepwise coagulation for thermal insulation. ACS Appl Polym Mater. 2023;5(1):552-559.

[295]

Huang J, Li J, Xu X, Hua L, Lu Z. In situ loading of polypyrrole onto aramid nanofiber and carbon nanotube aerogel fibers as physiology and motion sensors. ACS Nano. 2022;16(5):8161-8171.

[296]

Lu Z, Guo Z, Zhang J, Jia F, Dong J, Liu Y. Polyimide/carboxylated multi-walled carbon nanotube hybrid aerogel fibers for fabric sensors: implications for information acquisition and joule heating in harsh environments. ACS Appl Nano Mater. 2023;6(9):7593-7604.

[297]

Sun Y, Chen W, Zhou X. Thermal insulation fibers with a kevlar aerogel core and a porous nomex shell. RSC Adv. 2021;11(55):34828-34835.

[298]

Li M, Chen X, Li X, et al. Ultralight aerogel textiles based on aramid nanofibers composites with excellent thermal insulation and electromagnetic shielding properties. Compos Commun. 2022;35:101346.

[299]

Li M, Chen X, Li X, Dong J, Zhao X, Zhang Q. Controllable strong and ultralight aramid nanofiber-based aerogel fibers for thermal insulation applications. Adv Fiber Mater. 2022;4(5):1267-1277.

[300]

Pan Y, Sang M, Zhang J, et al. Flexible and lightweight kevlar composites towards flame retardant and impact resistance with excellent thermal stability. Chem Eng J. 2023;452:139565.

[301]

He H, Qin Y, Liu J, et al. A wearable self-powered fire warning e-textile enabled by aramid nanofibers/MXene/silver nanowires aerogel fiber for fire protection used in firefighting clothing. Chem Eng J. 2023;460:141661.

[302]

He H, Liu J, Wang Y, et al. An ultralight self-powered fire alarm e-textile based on conductive aerogel fiber with repeatable temperature monitoring performance used in firefighting clothing. ACS Nano. 2022;16(2):2953-2967.

[303]

Xie W, Liang X, Wang H, et al. Structurally tailoring clay nanosheets to design emerging macrofibers with tunable mechanical properties and thermal behavior. ACS Appl Mater Interfaces. 2023;15(2):3141-3151.

[304]

Sun C, Luo J, Yan S, et al. Thermally responsive fibers for versatile thermoactivated protective fabrics. Adv Funct Mater. 2023;33(9):2211035.

[305]

Sarikaya S, Gardea F, Strong H, Auletta JT, Mackie DM, Naraghi M. Tunable actuation of humidity-driven artificial muscles via graphene nanofillers. ACS Appl Polym Mater. 2022;4(12):8803-8811.

[306]

Sarikaya S, Gardea F, Auletta JT, et al. Fuel-driven redox reactions in electrolyte-free polymer actuators for soft robotics. ACS Appl Mater Interfaces. 2023;15(26):31803-31811.

[307]

Roach DJ, Yuan C, Kuang X, et al. Long liquid crystal elastomer fibers with large reversible actuation strains for smart textiles and artificial muscles. ACS Appl Mater Interfaces. 2019;11(21):19514-19521.

[308]

Kotikian A, Morales JM, Lu A, et al. Innervated, self-sensing liquid crystal elastomer actuators with closed loop control. Adv Mater. 2021;33(27):2101814.

[309]

Kim IH, Choi S, Lee J, et al. Human-muscle-inspired single fibre actuator with reversible percolation. Nat Nanotechnol. 2022;17(11):1198-1205.

[310]

Wang Y, Liao W, Sun J, Nandi R, Yang Z. Bioinspired construction of artificial cardiac muscles based on liquid crystal elastomer fibers. Adv Mater Technol. 2022;7(1):2100934.

[311]

He Q, Wang Z, Wang Y, et al. Electrospun liquid crystal elastomer microfiber actuator. Sci Robot. 2021;6(57):eabi9704.

[312]

Yu Y, Li L, Liu E, et al. Light-driven core-shell fiber actuator based on carbon nanotubes/liquid crystal elastomer for artificial muscle and phototropic locomotion. Carbon. 2022;187:97-107.

[313]

Liu J, Gao Y, Wang H, Poling-Skutvik R, Osuji CO, Yang S. Shaping and locomotion of soft robots using filament actuators made from liquid crystal elastomer–carbon nanotube composites. J Intell Syst. 2020;2(6):1900163.

[314]

Sun J, Wang Y, Liao W, Yang Z. Ultrafast, high-contractile electrothermal-driven liquid crystal elastomer fibers towards artificial muscles. Small. 2021;17(44):2103700.

[315]

Cui B, Ren M, Dong L, et al. Pretension-free and self-recoverable coiled artificial muscle fibers with powerful cyclic work capability. ACS Nano. 2023;17(13):12809-12819.

[316]

Cui Y, Li D, Gong C, Chang C. Bioinspired shape memory hydrogel artificial muscles driven by solvents. ACS Nano. 2021;15(8):13712-13720.

[317]

Sim HJ, Jang Y, Kim H, et al. Self-helical fiber for glucose-responsive artificial muscle. ACS Appl Mater Interfaces. 2020;12(18):20228-20233.

[318]

Chen M, Cui Y, Wang Y, Chang C. Triple physically cross-linked hydrogel artificial muscles with high-stroke and high-work capacity. Chem Eng J. 2023;453:139893.

[319]

Jiang Z, Abbasi BBA, Aloko S, Mokhtari F, Spinks GM. Ultra-soft organogel artificial muscles exhibiting high power density, large stroke, fast response and long-term durability in air. Adv Mater. 2023;35(29):2210419.

[320]

Aziz S, Zhang X, Naficy S, Salahuddin B, Jager EWH, Zhu Z. Plant-like tropisms in artificial muscles. Adv Mater. 2023;35(51):2212046.

[321]

Bakhshandeh B, Nateghi SS, Gazani MM, Dehghani Z, Mohammadzadeh F. A review on advances in the applications of spider silk in biomedical issues. Int J Biol Macromol. 2021;192:258-271.

[322]

Zhang J, Sun J, Li B, et al. Robust biological fibers based on widely available proteins: facile fabrication and suturing application. Small. 2020;16(8):1907598.

[323]

Liu M, Zhang Y, Liu K, et al. Biomimicking antibacterial opto-electro sensing sutures made of regenerated silk proteins. Adv Mater. 2021;33(1):2004733.

[324]

Wu M, Liu Y, Liu C, et al. Core-shell filament with excellent wound healing property made of cellulose nanofibrils and guar gum via interfacial polyelectrolyte complexation spinning. Small. 2023;19(4):2205867.

[325]

Kim J, Yang C, Yun T, et al. Surface-embedding of Mo microparticles for robust and conductive biodegradable fiber electrodes: toward 1D flexible transient electronics. Adv Sci. 2023;10(15):2206186.

[326]

Li Q, Ma W, Ma H, Shang H, Qiao N, Sun X. Synthesis and characterization of temperature-/pH-responsive hydrogels for drug delivery. ChemistrySelect. 2023;8(3):e202204270.

[327]

Chen C, Chen X, Zhang H, et al. Electrically-responsive core-shell hybrid microfibers for controlled drug release and cell culture. Acta Biomater. 2017;55:434-442.

[328]

Fang Y, Qiao N, Deng H, et al. PEDOT: pSS-based microfluidic-spun microfibers for tunable release of acetaminophen via electrical stimulation. Adv Mater Technol. 2022;7(10):2200103.

[329]

Yang K, Yang J, Man W, et al. N-cadherin-functionalized nanofiber hydrogel facilitates spinal cord injury repair by building a favorable niche for neural stem cells. Adv Fiber Mater. 2023;5(4):1349-1366.

[330]

Jiang S, Deng J, Jin Y, et al. Breathable, antifreezing, mechanically skin-like hydrogel textile wound dressings with dual antibacterial mechanisms. Bioact Mater. 2023;21:313-323.

[331]

Miranda CS, Silva AFG, Seabra CL, et al. Sodium alginate/polycaprolactone co-axial wet-spun microfibers modified with N-carboxymethyl chitosan and the peptide AAPV for Staphylococcus aureus and human neutrophil elastase inhibition in potential chronic wound scenarios. Biomater Adv. 2023;151:213488.

[332]

Heo DN, Lee S-J, Timsina R, Qiu X, Castro NJ, Zhang LG. Development of 3D printable conductive hydrogel with crystallized PEDOT:pSS for neural tissue engineering. Mater Sci Eng C. 2019;99:582-590.

[333]

Huang L, Zhang Z, Guo M, et al. Biomimetic hydrogels loaded with nanofibers mediate sustained release of pDNA and promote in situ bone regeneration. Macromol Biosci. 2021;21(4):2000393.

[334]

Li S, Wang W, Li W, et al. Fabrication of thermoresponsive hydrogel scaffolds with engineered microscale vasculatures. Adv Funct Mater. 2021;31(27):2102685.

[335]

Miller B, Hansrisuk A, Highley CB, Caliari SR. Guest–host supramolecular assembly of injectable hydrogel nanofibers for cell encapsulation. ACS Biomater Sci Eng. 2021;7(9):4164-4174.

[336]

Lin Z, Rao Z, Chen J, et al. Bioactive decellularized extracellular matrix hydrogel microspheres fabricated using a temperature-controlling microfluidic system. ACS Biomater Sci Eng. 2022;8(4):1644-1655.

[337]

Bian J, Cai F, Chen H, et al. Modulation of local overactive inflammation via injectable hydrogel microspheres. Nano Lett. 2021;21(6):2690-2698.

[338]

Li S, Cong Y, Fu J. Tissue adhesive hydrogel bioelectronics. J Mater Chem B. 2021;9(22):4423-4443.

[339]

Zhang S, Chen Y, Liu H, et al. Room-temperature-formed PEDOT:pSS hydrogels enable injectable, soft, and healable organic bioelectronics. Adv Mater. 2020;32(1):1904752.

[340]

Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat Rev Mater. 2016;1(12):16071.

[341]

Wei Z, Wang S, Hirvonen J, Santos HA, Li W. Microfluidics fabrication of micrometer-sized hydrogels with precisely controlled geometries for biomedical applications. Adv Healthc Mater. 2022;11(16):2200846.

[342]

Liu J, Qu S, Suo Z, Yang W. Functional hydrogel coatings. Natl Sci Rev. 2020;8(2):nwaa254.

[343]

Daly AC, Riley L, Segura T, Burdick JA. Hydrogel microparticles for biomedical applications. Nat Rev Mater. 2020;5(1):20-43.

[344]

Zhao C, Guo J, Zhang H, et al. Bamboo-inspired gasotransmitter microfibres for wound healing. Adv Fiber Mater. 2023;5(1):388-399.

[345]

Mirani B, Pagan E, Shojaei S, et al. Facile method for fabrication of meter-long multifunctional hydrogel fibers with controllable biophysical and biochemical features. ACS Appl Mater Interfaces. 2020;12(8):9080-9089.

[346]

George OJ, Song J, Benson JM, et al. Tunable synthesis of hydrogel microfibers via interfacial tetrazine ligation. Biomacromolecules. 2022;23(7):3017-3030.

[347]

Huang Q, He F, Yu J, et al. Microfluidic spinning-induced heterotypic bead-on-string fibers for dual-cargo release and wound healing. J Mater Chem B. 2021;9(11):2727-2735.

[348]

Guo J, Luo Z, Wang F, Gu H, Li M. Responsive hydrogel microfibers for biomedical engineering. Smart Med. 2022;1(1):e20220003.

[349]

Lee CK, Shin SR, Lee SH, et al. DNA hydrogel fiber with self-entanglement prepared by using an ionic liquid. Angew Chem Int Ed. 2008;47(13):2470-2474.

[350]

Li S, Dong S, Xu W, et al. Antibacterial hydrogels. Adv Sci. 2018;5(5):1700527.

[351]

Canales A, Park S, Kilias A, Anikeeva P. Multifunctional fibers as tools for neuroscience and neuroengineering. Acc Chem Res. 2018;51(4):829-838.

[352]

Wang Z, Wei H, Huang Y, Wei Y, Chen J. Naturally sourced hydrogels: emerging fundamental materials for next-generation healthcare sensing. Chem Soc Rev. 2023;52(9):2992-3034.

[353]

Chen S, Jiang S, Qiao D, et al. Chinese tofu-inspired biomimetic conductive and transparent fibers for biomedical applications. Small Methods. 2023;7(4):2201604.

[354]

Cheng C, Qiu Y, Tang S, et al. Artificial spider silk based programmable woven textile for efficient wound management. Adv Funct Mater. 2022;32(6):2107707.

[355]

Wang M, Sun S, Dong G, Long F, Butcher JT. Soft, strong, tough, and durable protein-based fiber hydrogels. Proc Natl Acad Sci USA. 2023;120(8):e2213030120.

[356]

Chen Z, Zhang T, Chen C-T, et al. Mechanically and electrically biocompatible hydrogel ionotronic fibers for fabricating structurally stable implants and enabling noncontact physioelectrical modulation. Mater Horiz. 2022;9(6):1735-1749.

[357]

Tang G, Luo Z, Lian L, et al. Liquid-embedded (bio)printing of alginate-free, standalone, ultrafine, and ultrathin-walled cannular structures. Proc Natl Acad Sci USA. 2023;120(7):e2206762120.

[358]

Liu Z, Zhu T, Wang J, et al. Functionalized fiber-based strain sensors: pathway to next-generation wearable electronics. Nano-Micro Lett. 2022;14(1):61.

[359]

Gao J, Fan Y, Zhang Q, et al. Ultra-robust and extensible fibrous mechanical sensors for wearable smart healthcare. Adv Mater. 2022;34(20):2107511.

[360]

Chang B, Luo J, Xia J, et al. Conductive elastic composite electrode and its application in electrocardiogram monitoring clothing. ACS Appl Electron Mater. 2023;5(4):2026-2036.

[361]

Chen J, Zhu G, Wang J, Chang X, Zhu Y. Multifunctional iontronic sensor based on liquid metal-filled hollow ionogel fibers in detecting pressure, temperature, and proximity. ACS Appl Mater Interfaces. 2023;15(5):7485-7495.

[362]

Tang Z, Jia S, Wang F, et al. Highly stretchable core-sheath fibers via wet-spinning for wearable strain sensors. ACS Appl Mater Interfaces. 2018;10(7):6624-6635.

[363]

Zhang J, Liu J, Zhao Z, et al. Calotropis gigantea fiber-based sensitivity-tunable strain sensors with insensitive response to wearable microclimate changes. Adv Fiber Mater. 2023;5(4):1378-1391.

[364]

Chung KY, Xu B, Li Z, Liu Y, Han J. Bioinspired ultra-stretchable dual-carbon conductive functional polymer fiber materials for health monitoring, energy harvesting and self-powered sensing. Chem Eng J. 2023;454:140384.

[365]

Tong X, Yang D, Hua T, Li S, Wang B, Shao Y. Multifunctional fiber for synchronous bio-sensing and power supply in sweat environment. Adv Funct Mater. 2023;33(30):2301174.

[366]

Xu S, Yan Y, Zhao Y, et al. Spinnable adhesive functional-hydrogel fibers for sensing and perception applications. J Mater Chem C. 2021;9(16):5554-5564.

[367]

Wei S, Qu G, Luo G, et al. Scalable and automated fabrication of conductive tough-hydrogel microfibers with ultrastretchability, 3D printability, and stress sensitivity. ACS Appl Mater Interfaces. 2018;10(13):11204-11212.

[368]

Liang Q, Zhang D, Wu Y, et al. Stretchable helical fibers with skin-core structure for pressure and proximity sensing. Nano Energy. 2023;113:108598.

[369]

Qu M, Wang H, Chen Q, et al. A thermally-electrically double-responsive polycaprolactone – thermoplastic polyurethane/multi-walled carbon nanotube fiber assisted with highly effective shape memory and strain sensing performance. Chem Eng J. 2022;427:131648.

[370]

Zhou J, Xu X, Xin Y, Lubineau G. Coaxial thermoplastic elastomer-wrapped carbon nanotube fibers for deformable and wearable strain sensors. Adv Funct Mater. 2018;28(16):1705591.

[371]

Qi X, Zhao H, Wang L, et al. Underwater sensing and warming E-textiles with reversible liquid metal electronics. Chem Eng J. 2022;437:135382.

[372]

On SY, Park SY, Chung YS, Kim SS. Effects of microwave-assisted cross-linking on the creep resistance and sensing accuracy of a coaxial-structured fiber strain sensor. Adv Mater Technol. 2023;8(6):2201615.

[373]

Lu D, Liao S, Chu Y, et al. Highly durable and fast response fabric strain sensor for movement monitoring under extreme conditions. Adv Fiber Mater. 2023;5(1):223-234.

[374]

Guo J, Zhao K, Zhou B, et al. Wearable and skin-mountable fiber-optic strain sensors interrogated by a free-running, dual-comb fiber laser. Adv Opt Mater. 2019;7(12):1900086.

[375]

Yue X, Jia Y, Wang X, et al. Highly stretchable and durable fiber-shaped strain sensor with porous core-sheath structure for human motion monitoring. Compos Sci Technol. 2020;189:108038.

[376]

Zhu Z, Liu C, Jiang F, et al. Flexible fiber-shaped hydrogen gas sensor via coupling palladium with conductive polymer gel fiber. J Hazard Mater. 2021;411:125008.

[377]

Chen J, Wen H, Zhang G, et al. Multifunctional conductive hydrogel/thermochromic elastomer hybrid fibers with a core-shell segmental configuration for wearable strain and temperature sensors. ACS Appl Mater Interfaces. 2020;12(6):7565-7574.

[378]

Kalidasan V, Yang X, Xiong Z, et al. Wirelessly operated bioelectronic sutures for the monitoring of deep surgical wounds. Nat Biomed Eng. 2021;5(10):1217-1227.

[379]

Ding H, Wu Z, Wang H, et al. An ultrastretchable, high-performance, and crosstalk-free proximity and pressure bimodal sensor based on ionic hydrogel fibers for human-machine interfaces. Mater Horiz. 2022;9(7):1935-1946.

[380]

Wu H, Wang L, Lou H, Wan J, Pu X. One-step coaxial spinning of core-sheath hydrogel fibers for stretchable ionic strain sensors. Chem Eng J. 2023;458:141393.

[381]

Hao Y, Zhang Y, Mensah A, Liao S, Lv P, Wei Q. Scalable, ultra-high stretchable and conductive fiber triboelectric nanogenerator for biomechanical sensing. Nano Energy. 2023;109:108291.

[382]

Kim Y, Chortos A, Xu W, et al. A bioinspired flexible organic artificial afferent nerve. Science. 2018;360(6392):998-1003.

[383]

Dong L, Ren M, Wang Y, et al. Artificial neuromuscular fibers by multilayered coaxial integration with dynamic adaption. Sci Adv. 2022;8(46):eabq7703.

[384]

Yu Y, Jin B, Chen J, et al. Nerve-on-a-chip derived biomimicking microfibers for peripheral nerve regeneration. Adv Sci. 2023;10(20):2207536.

[385]

Tian H, Wang C, Chen Y, et al. Optically modulated ionic conductivity in a hydrogel for emulating synaptic functions. Sci Adv. 2023;9(7):eadd6950.

[386]

Zhao W, Shao F, Sun F, et al. Neuron-inspired sticky artificial spider silk for signal transmission. Adv Mater. 2023;35(32):2300876.

[387]

Yang J, Yang K, Man W, et al. 3D bio-printed living nerve-like fibers refine the ecological niche for long-distance spinal cord injury regeneration. Bioact Mater. 2023;25:160-175.

[388]

Khan AQ, Yu K, Li J, et al. Spider silk supercontraction-inspired cotton-hydrogel self-adapting textiles. Adv Fiber Mater. 2022;4(6):1572-1583.

RIGHTS & PERMISSIONS

2024 The Author(s). SusMat published by Sichuan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

988

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/