Side-chain symmetry-breaking strategy on porphyrin donors enables high-efficiency binary all-small-molecule organic solar cells

Wentao Zou , Xu Zhang , Haojiang Shen , Wenqing Zhang , Xinyue Jiang , Liaohui Ni , Can Shen , Longlong Geng , Xiaotao Hao , Yingguo Yang , Xunchang Wang , Renqiang Yang , Yanna Sun , Yuanyuan Kan , Ke Gao

SusMat ›› 2024, Vol. 4 ›› Issue (3) : e203

PDF
SusMat ›› 2024, Vol. 4 ›› Issue (3) : e203 DOI: 10.1002/sus2.203
RESEARCH ARTICLE

Side-chain symmetry-breaking strategy on porphyrin donors enables high-efficiency binary all-small-molecule organic solar cells

Author information +
History +
PDF

Abstract

Side-chain symmetry-breaking strategy plays an important role in developing photovoltaic materials for high-efficiency all-small-molecule organic solar cells (ASM OSCs). However, the power conversion efficiencies (PCEs) of ASM OSCs still lag behind their polymer-based counterparts, which can be attributed to the difficulties in achieving favorable morphology. Herein, two asymmetric porphyrin-based donors named DAPor-DPP and DDPor-DPP were synthesized, presenting stronger intermolecular interaction and closer molecular stacking compared to the symmetric ZnP-TEH. The DAPor-DPP:6TIC blend afforded a favorable morphology with nanoscale phase separation and more ordered molecular packing, thus achieving more efficient charge transportation and suppressed charge recombination. Consequently, the DAPor-DPP:6TIC-based device exhibited superior photovoltaic parameters, yielding a champion PCE of 16.62% higher than that of the DDPor-DPP-based device (14.96%). To our knowledge, 16.62% can be ranked as one of the highest PCE values among the binary ASM OSC filed. This work provides a prospective approach to address the challenge of ASM OSCs in improving film morphology and further achieving high efficiency via side-chain symmetry-breaking strategy, exhibiting great potential in constructing efficient ASM OSCs.

Keywords

all-small-molecule organic solar cells / asymmetric side-chain engineering / power conversion efficiency / small molecule donors

Cite this article

Download citation ▾
Wentao Zou, Xu Zhang, Haojiang Shen, Wenqing Zhang, Xinyue Jiang, Liaohui Ni, Can Shen, Longlong Geng, Xiaotao Hao, Yingguo Yang, Xunchang Wang, Renqiang Yang, Yanna Sun, Yuanyuan Kan, Ke Gao. Side-chain symmetry-breaking strategy on porphyrin donors enables high-efficiency binary all-small-molecule organic solar cells. SusMat, 2024, 4(3): e203 DOI:10.1002/sus2.203

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xian K, Zhang S, Xu Y, et al. Refining acceptor aggregation in nonfullerene organic solar cells to achieve high efficiency and superior thermal stability. Sci China Chem. 2023;66(1):202-215.

[2]

Wu X-F, Fu W-F, Xu Z, et al. Spiro linkage as an alternative strategy for promising nonfullerene acceptors in organic solar cells. Adv Func Mater. 2015;25(37):5954-5966.

[3]

Peng Z, Xian K, Liu J, et al. Unraveling the stretch-induced microstructural evolution and morphology-stretchability relationships of high-performance ternary organic photovoltaic blends. Adv Mater. 2023;35(3):2207884.

[4]

Bai H-R, An Q, Zhi H-F, et al. A random terpolymer donor with similar monomers enables 18.28% efficiency binary organic solar cells with well polymer batch reproducibility. ACS Energy Lett. 2022;7(9):3045-3057.

[5]

Gao Y, Yang X, Wang W, et al. High-performance small molecule organic solar cells enabled by a symmetric-asymmetric alloy acceptor with a broad composition tolerance. Adv Mater. 2023;35(23):2300531.

[6]

Gao Y, Xiao Z, Cui M, et al. Asymmetric π-bridge engineering enables high-permittivity benzo[1,2-b:4,5-b′]difuran-conjugated polymer for efficient organic solar cells. Adv Mater. 2024;36(9):2306373.

[7]

Pang B, Liao C, Xu X, Yu L, Li R, Peng Q. Benzo[d]thiazole based wide bandgap donor polymers enable 19.54% efficiency organic solar cells along with desirable batch-to-batch reproducibility and general applicability. Adv Mater. 2023;35(21):2300631.

[8]

He C, Shen Q, Wu B, et al. Simultaneous improvements in efficiency and stability of organic solar cells via a symmetric-asymmetric dual-acceptor strategy. Adv Energy Mater. 2023;13(20):2204154.

[9]

Wu X, Jiang X, Li X, et al. Introducing phenyl end group in the inner side chains of a-da'd-a acceptors enables high-efficiency organic solar cells processed with nonhalogenated solvent. Adv Mater. 2023;35(48):2302946.

[10]

Duan X, Yang Y, Yu J, et al. Solid additive dual-regulates spectral response enabling high-performance semitransparent organic solar cells. Adv Mater. 2024;36(18):2308750.

[11]

Liu K, Jiang Y, Ran G, Liu F, Zhang W, Zhu X. 19.7% efficiency binary organic solar cells achieved by selective core fluorination of nonfullerene electron acceptors. Joule. 2024;8(3):835-851.

[12]

Sharma A, Gasparini N, Markina A, et al. Semitransparent organic photovoltaics utilizing intrinsic charge generation in non-fullerene acceptors. Adv Mater. 2024;36(9):2305367.

[13]

Ding P, Yang D, Yang S, Ge Z. Stability of organic solar cells: toward commercial applications. Chem Soc Rev. 2024;53(5):2350-2387.

[14]

Zhang X, Qin L, Li Y, et al. High-performance all-small-molecule organic solar cells enabled by regio-isomerization of noncovalently conformational locks. Adv Funct Mater. 2022;32(19):2112433.

[15]

Yin P, Ma Y, Zheng Q. Improving the efficiency and stability of binary small-molecule organic solar cells by incorporating a small amount of polymer acceptor. J Mater Chem A. 2022;10(19):10400-10407.

[16]

Meng L, Li M, Lu G, et al. All-small-molecule organic solar cells with efficiency approaching 16% and ff over 80%. Small. 2022;18(21):2201400.

[17]

Zhang L, Sun R, Zhang Z, et al. Donor end-capped alkyl chain length dependent non-radiative energy loss in all-small-molecule organic solar cells. Adv Mater. 2022;34(50):2207020.

[18]

Zhang L, Deng D, Lu K, Wei Z. Optimization of charge management and energy loss in all-small-molecule organic solar cells. Adv Mater. 2023;35:2302915.

[19]

Jiang M, Bai H, Zhi H, et al. Rational compatibility in a ternary matrix enables all-small-molecule organic solar cells with over 16% efficiency. Energy Environ Sci. 2021;14(7):3945-3953.

[20]

Bin H, Angunawela I, Qiu B, et al. Precise control of phase separation enables 12% efficiency in all small molecule solar cells. Adv Energy Mater. 2020;10(34):2001589.

[21]

Zhang L, Zhu X, Deng D, et al. High miscibility compatible with ordered molecular packing enables an excellent efficiency of 16.2% in all-small-molecule organic solar cells. Adv Mater. 2022;34(5):2106316.

[22]

Xu T, Lv J, Yang K, et al. 15.8% efficiency binary all-small-molecule organic solar cells enabled by a selenophene substituted sematic liquid crystalline donor. Energy Environ Sci. 2021;14(10):5366-5376.

[23]

Kong X, Zhu C, Zhang J, et al. The effect of alkyl substitution position of thienyl outer side chains on photovoltaic performance of a-da′d-a type acceptors. Energy Environ Sci. 2022;15(5):2011-2020.

[24]

Gao W, Jiang M, Wu Z, et al. Intramolecular chloro-sulfur interaction and asymmetric side-chain isomerization to balance crystallinity and miscibility in all-small-molecule solar cells. Angew Chem Int Ed. 2022;61(33):e202205168.

[25]

Li H, Zhao Y, Fang J, et al. Improve the performance of the all-small-molecule nonfullerene organic solar cells through enhancing the crystallinity of acceptors. Adv Energy Mater. 2018;8(11):1702377.

[26]

Zhang Z, Miao J, Ding Z, et al. Efficient and thermally stable organic solar cells based on small molecule donor and polymer acceptor. Nat Commun. 2019;10(1):3271.

[27]

Han D, Wen S, Bi F, et al. Small molecular donor materials based on electron withdrawing benzobisthiazole core unit enable an efficiency of 11.8% for organic solar cells. Chem Eng J. 2023;463:142400.

[28]

Guo J, Qiu B, Xia X, et al. Miscibility regulation and thermal annealing induced hierarchical morphology enables high-efficiency all-small-molecule organic solar cells over 17%. Adv Energy Mater. 2023;13(25):2300481.

[29]

Wu S, Feng W, Meng L, et al. 15.51 % efficiency all-small-molecule organic solar cells achieved by symmetric thiazolyl substitution. Nano Energy. 2022;103:107801.

[30]

Ma K, Feng W, Liang H, et al. Modulation of alkyl chain length on the thiazole side group enables over 17% efficiency in all-small-molecule organic solar cells. Adv Func Mater. 2023;33(19):2214926.

[31]

Li D, Wang J, Xie L, et al. Crystallinity modulation of donors by heteroatom side-chain engineering and solvent additive achieving 14.3% all-small-molecule organic solar cells. J Mater Chem A. 2022;10(17):9635-9642.

[32]

Luo Z, Ma R, Liu T, et al. Fine-tuning energy levels via asymmetric end groups enables polymer solar cells with efficiencies over 17%. Joule. 2020;4(6):1236-1247.

[33]

Ge J, Hong L, Ma H, et al. Asymmetric substitution of end-groups triggers 16.34% efficiency for all-small-molecule organic solar cells. Adv Mater. 2022;34(29):2202752.

[34]

Feng S, Zhang C, Liu Y, et al. Fused-ring acceptors with asymmetric side chains for high-performance thick-film organic solar cells. Adv Mater. 2017;29(42):1703527.

[35]

Zhan L, Li S, Lau T-K, et al. Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model. Energy Environ Sci. 2020;13(2):635-645.

[36]

Li Z, Wang X, Zheng N, et al. Over 17% efficiency all-small-molecule organic solar cells based on an organic molecular donor employing a 2d side chain symmetry breaking strategy. Energy Environ Sci. 2022;15(10):4338-4348.

[37]

Gao K, Kan Y, Chen X, et al. Low-bandgap porphyrins for highly efficient organic solar cells: materials, morphology, and applications. Adv Mater. 2020;32(32):1906129.

[38]

Sun Y, Nian L, Kan Y, et al. Rational control of sequential morphology evolution and vertical distribution toward 17.18% efficiency all-small-molecule organic solar cells. Joule. 2022;6(12):2835-2848.

[39]

Shen H, Xu Y, Zou W, et al. Porphyrin-based donor with asymmetric ending groups enables 16.31% efficiency for ternary all-small-molecule organic solar cells. Chem Eng J. 2023;469:144063.

[40]

Nian L, Kan Y, Gao K, et al. Approaching 16% efficiency in all-small-molecule organic solar cells based on ternary strategy with a highly crystalline acceptor. Joule. 2020;4(10):2223-2236.

[41]

Gao K, Li L, Lai T, et al. Deep absorbing porphyrin small molecule for high-performance organic solar cells with very low energy losses. J Am Chem Soc. 2015;137(23):7282-7285.

[42]

Wang H, Xiao L, Yan L, et al. Structural engineering of porphyrin-based small molecules as donors for efficient organic solar cells. Chem Sci. 2016;7(7):4301-4307.

[43]

Gao K, Xiao L, Kan Y, et al. Solution-processed bulk heterojunction solar cells based on porphyrin small molecules with very low energy losses comparable to perovskite solar cells and high quantum efficiencies. J Mater Chem C. 2016;4(17):3843-3850.

[44]

Spano FC. The spectral signatures of frenkel polarons in h- and j-aggregates. Acc Chem Res. 2010;43(3):429-439.

[45]

Xu J, Lin F, Zhu L, et al. The crystalline behavior and device function of nonfullerene acceptors in organic solar cells. Adv Energy Mater. 2022;12(34):2201338.

[46]

Yang C, An Q, Jiang M, et al. Optimized crystal framework by asymmetric core isomerization in selenium-substituted acceptor for efficient binary organic solar cells. Angew Chem Int Ed. 2023;135(49):e202313016.

[47]

Yang L, Wang H, Cao J, Du F, Yu J, Tang W. Intermolecular interaction induced spontaneous aggregation enables over 14% efficiency as-cast nonfullerene solar cells. Chem Eng J. 2022;427:131942.

[48]

Sun M, Zhang K-N, Qiao J-W, et al. Overcoming disordered preaggregation in liquid state for highly efficient organic solar cells printed from nonhalogenated solvents. Adv Energy Mater. 2023;13(9):2203465.

[49]

Sun G, Jiang X, Li X, et al. High performance polymerized small molecule acceptor by synergistic optimization on π-bridge linker and side chain. Nat Commun. 2022;13(1):5267.

[50]

Yi J, Pan M, Chen L, et al. A benzo[1,2-b:4,5-b′]difuran based donor polymer achieving high-performance (>17%) single-junction organic solar cells with a fill factor of 80.4%. Adv Energy Mater. 2022;12(33):2201850.

[51]

He C, Chen Z, Wang T, et al. Asymmetric electron acceptor enables highly luminescent organic solar cells with certified efficiency over 18%. Nat Commun. 2022;13(1):2598.

RIGHTS & PERMISSIONS

2024 The Author(s). SusMat published by Sichuan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

285

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/