Solvation structure design for stabilizing MXene in transition metal ion solutions

Jie Wang , Guohao Li , Guanshun Xie , Zhaohui Huang , Peng Zhang , Benhua Xu , Xiuqiang Xie , Nan Zhang

SusMat ›› 2024, Vol. 4 ›› Issue (3) : e202

PDF
SusMat ›› 2024, Vol. 4 ›› Issue (3) : e202 DOI: 10.1002/sus2.202
RESEARCH ARTICLE

Solvation structure design for stabilizing MXene in transition metal ion solutions

Author information +
History +
PDF

Abstract

Although MXene has attracted great interest in diverse fields, it is susceptible to oxidation in water (H2O) with transition metal ions such as Co2+, Fe2+, and Cu2+, which is pronounced at high temperatures. This impedes the preparation of MXene-based composites and their functional applications. Here, this study revealed that Co2+ increases the maximum and average atomic charge of H in H2O to improve the reactivity of H2O, which leads to the fact that Co2+ catalyzes the oxidation of Ti3C2Tx MXene. Furthermore, the addition of N,N-dimethyl formamide (DMF) reduces the H2O activity and improves the oxidation stability of Ti3C2Tx in the presence of Co2+ via preferentially forming coordination bonds with Co2+. This strategy is also effective in enhancing the oxidation tolerance of Ti3C2Tx to Fe2+ in H2O. Moreover, it is feasible to enhance the oxidation stability of Ti2CTx MXene in H2O with the existence of Co2+. By virtue of these, the CoO/Ti3C2Tx composite was successfully prepared without obvious Ti3C2Tx oxidation, which is desirable to harness the advantages of Ti3C2Tx as the complementary component for lithium-ion batteries. This work provides a straightforward paradigm to enhance the oxidation resistance of MXene in H2O in the presence of transition metal ions and at high temperatures, which opens a new vista to use MXene for target applications.

Keywords

hydrogen bonds / N,N-dimethyl formamide / solvation structure / stability / Ti 3C 2T x MXene / transition metal ions

Cite this article

Download citation ▾
Jie Wang, Guohao Li, Guanshun Xie, Zhaohui Huang, Peng Zhang, Benhua Xu, Xiuqiang Xie, Nan Zhang. Solvation structure design for stabilizing MXene in transition metal ion solutions. SusMat, 2024, 4(3): e202 DOI:10.1002/sus2.202

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater. 2011;23(37):4248-4253.

[2]

Wan S, Li X, Chen Y, et al. High-strength scalable MXene films through bridging-induced densification. Science. 2021;374(6563):96-99.

[3]

Ming F, Liang H, Huang G, Bayhan Z, Alshareef HN. MXenes for rechargeable batteries beyond the lithium-ion. Adv Mater. 2021;33(1):2004039.

[4]

Chu X, Wang Y, Cai L, et al. Boosting the energy density of aqueous MXene-based supercapacitor by integrating 3D conducting polymer hydrogel cathode. SusMat. 2022;2(3):379-390.

[5]

Lu Q, Liu C, Zhao Y, et al. Freestanding MXene-based macroforms for electrochemical energy storage applications. SusMat. 2023;3(4):471-497.

[6]

Chen J, Ding Y, Yan D, Huang J, Peng S. Synthesis of MXene and its application for zinc-ion storage. SusMat. 2022;2(3):293-318.

[7]

Bhargava Reddy MS, Kailasa S, Marupalli BC, Sadasivuni KK, Aich S. A family of 2D-MXenes: synthesis, properties, and gas sensing applications. ACS Sens. 2022;7(8):2132-2163.

[8]

Liu N, Li Q, Wan H, et al. High-temperature stability in air of Ti3C2Tx MXene-based composite with extracted bentonite. Nat Commun. 2022;13(1):5551.

[9]

Xie X, Chen C, Zhang N, et al. Microstructure and surface control of MXene films for water purification. Nat Sustain. 2019;2(9):856-862.

[10]

Wu X, Wang Z, Yu M, Xiu L, Qiu J. Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability. Adv Mater. 2017;29(24):1607017.

[11]

Carey M, Hinton Z, Natu V, et al. Dispersion and stabilization of alkylated 2D MXene in nonpolar solvents and their pseudocapacitive behavior. Cell Rep Phys Sci. 2020;1(4):100042.

[12]

Maleski K, Mochalin VN, Gogotsi Y. Dispersions of two-dimensional titanium carbide MXene in organic solvents. Chem Mater. 2017;29(4):1632-1640.

[13]

Huang S, Mochalin VN. Hydrolysis of 2D transition-metal carbides (MXenes) in colloidal solutions. Inorg Chem. 2019;58(3):1958-1966.

[14]

Zhao X, Vashisth A, Blivin JW, et al. pH, nanosheet concentration, ad antioxidant affect the oxidation of Ti3C2Tx and Ti2CTx MXene dispersions. Adv Mater Interfaces. 2020;7(20):2000845.

[15]

Lotfi R, Naguib M, Yilmaz DE, Nanda J, Van Duin AC. A comparative study on the oxidation of two-dimensional Ti3C2 MXene structures in different environments. J Mater Chem A. 2018;6(26):12733-12743.

[16]

Zhao X, Vashisth A, Prehn E, et al. Antioxidants unlock shelf-stable Ti3C2Tx (MXene) nanosheet dispersions. Matter. 2019;1(2):513-526.

[17]

Natu V, Hart JL, Sokol M, et al. Edge capping of 2D-MXene sheets with polyanionic salts to mitigate oxidation in aqueous colloidal suspensions. Angew Chem Int Ed. 2019;58(36):12655-12660.

[18]

Wu T, Kent PR, Gogotsi Y, Jiang D-E. How water attacks MXene. Chem Mater. 2022;34(11):4975-4982.

[19]

Ren CE, Zhao MQ, Makaryan T, et al. Porous two-dimensional transition metal carbide (MXene) flakes for high-performance Li-ion storage. ChemElectroChem. 2016;3(5):689-693.

[20]

Zhang CJ, Pinilla S, McEvoy N, et al. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem Mater. 2017;29(11):4848-4856.

[21]

Wang J, Xie G, Yu C, et al. Stabilizing Ti3C2Tx in a water medium under multiple environmental conditions by scavenging oxidative free radicals. Chem Mater. 2022;34(21):9517-9526.

[22]

Wang X, Wang Z, Qiu J. Stabilizing MXene by hydration chemistry in aqueous solution. Angew Chem Int Ed. 2021;60(51):26587-26591.

[23]

Wang Y, Wang Z, Pang WK, et al. Solvent control of water O−H bonds for highly reversible zinc ion batteries. Nat Commun. 2023;14(1):2720.

[24]

Cao L, Li D, Hu E, et al. Solvation structure design for aqueous Zn metal batteries. J Am Chem Soc. 2020;142(51):21404-21409.

[25]

Stenutz R. Gutmann Acceptor and Donor Number. 2023.

[26]

Wen J, Li S, Huang Z, Li W, Wang X. Colorimetric detection of Cu2+ and UO22+ by mixed solvent effect. Dyes Pigm. 2018;152:67-74.

[27]

Li Z, Wang L, Sun D, et al. Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2. Mater Sci Eng B. 2015;191:33-40.

[28]

Hong X, Xu Z, Lv ZP, et al. High-permittivity solvents increase MXene stability and stacking order enabling ultra efficient Terahertz shielding. Adv Sci (Weinh). 2024;11(5):e2305099.

[29]

Bocian S, Dziubakiewicz E, Buszewski B. Influence of the charge distribution on the stationary phases zeta potential. J Sep Sci. 2015;38(15):2625-2629.

[30]

Sekowski S, Olchowik-Grabarek E, Wieckowska W, et al. Zeta-potential and surface plasmon resonance analysis of interaction between potential anti-HIV tannins with different flexibility and human serum albumin. Colloids Surf B. 2020;194:111175.

[31]

Iqbal A, Hong J, Ko TY, Koo CM. Improving oxidation stability of 2D MXenes: synthesis, storage media, and conditions. Nano Converg. 2021;8(1):9.

[32]

Meng T, Sun P, Yang F, et al. Double-atom dealloying-derived Frank partial dislocations in cobalt nanocatalysts boost metal-air batteries and fuel cells. Proc Natl Acad Sci U S A. 2022;119(45):e2214089119.

[33]

Li R, Rao D, Zhou J, et al. Amorphization-induced surface electronic states modulation of cobaltous oxide nanosheets for lithium-sulfur batteries. Nat Commun. 2021;12(1):3102.

[34]

Dehghan R, Hansen TW, Wagner JB, et al. In-situ reduction of promoted cobalt oxide supported on alumina by environmental transmission electron microscopy. Catal Lett. 2011;141:754-761.

[35]

Xie C, Xu L, Peng J, et al. Halogenated Ti3C2 MXenes prepared by microwave molten salt for Hg0 photo-oxidation. Adv Funct Mater. 2023;33(14):2213782.

[36]

Zhang M, Jia M, Jin Y, Shi X. Synthesis and electrochemical performance of CoO/graphene nanocomposite as anode for lithium ion batteries. Appl Surf Sci. 2012;263:573-578.

[37]

Bindumadhavan K, Yeh M-H, Chou T-C, Chang P-Y, Doong R-A. Ultrafine CoO embedded reduced graphene oxide nanocomposites: a high rate anode for Li-ion battery. ChemistrySelect. 2016;1(18):5758-5767.

[38]

Pan L, Wei Y, Sun Z, Niederberger M. Layered hydrotalcite derived holey porous cobalt oxide nanosheets coated with nitrogen-doped carbon for high-mass-loading Li-ion storage. J Mater Chem A. 2020;8(48):26150-26157.

[39]

Fan X, Ni K, Yang H, Lu L, Li S. Hierarchical porous CoOx/carbon nanocomposite for enhanced lithium storage. J Electroanal Chem. 2019;847:113202.

[40]

Yuan R, Wen H, Zeng L, et al. Supercritical CO2 assisted solvothermal preparation of CoO/graphene nanocomposites for high performance lithium-ion batteries. Nanomaterials. 2021;11(3):694.

[41]

Şahan H, Göktepe H, Yıldız S, Çaymaz C, Patat Ş. A novel and green synthesis of mixed phase CoO@Co3O4@C anode material for lithium ion batteries. Ionics. 2018;25(2):447-455.

[42]

Sun X, Hao G-P, Lu X, et al. High-defect hydrophilic carbon cuboids anchored with Co/CoO nanoparticles as highly efficient and ultra-stable lithium-ion battery anodes. J Mater Chem A. 2016;4(26):10166-10173.

[43]

Liu H, Wang X, Xu H, et al. Nanostructured CoO/NiO/CoNi anodes with tunable morphology for high performance lithium-ion batteries. Dalton Trans. 2017;46(33):11031-11036.

[44]

Qiu H, Zheng H, Jin Y, et al. Mesoporous cubic SnO2-CoO nanoparticles deposited on graphene as anode materials for sodium ion batteries. J Alloys Compd. 2021;874(15):159967.

[45]

Bindumadhavan K, Chang P-Y, Yeh M-H, Doong R-A. Ultra-small CoO nanocrystals anchored on reduced graphene oxide for enhanced lithium storage in lithium ion batteries. MRS Commun. 2017;7(2):236-244.

[46]

Jinli Z, Jiao W, Yuanyuan L, et al. High-performance lithium iron phosphate with phosphorus-doped carbon layers for lithium ion batteries. J Mater Chem A. 2015;3(5):2043-2049.

[47]

Yan J, Ren CE, Maleski K, et al. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv Funct Mater. 2017;27(30):1701264.

[48]

Xie X, Zhang N, Tang Z-R, Anpo M, Xu Y-J. Ti3C2Tx MXene as a Janus cocatalyst for concurrent promoted photoactivity and inhibited photocorrosion. Appl Catal B Environ. 2018;237:43-49.

[49]

Berendsen HJ, van der Spoel D, van Drunen R. GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun. 1995;91(1-3):43-56.

[50]

Ma Y, Zhang Q, Liu L, et al. N,N-dimethylformamide tailors solvent effect to boost Zn anode reversibility in aqueous electrolyte. Natl Sci Rev. 2022;9(10):nwac051.

RIGHTS & PERMISSIONS

2024 The Author(s). SusMat published by Sichuan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

236

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/