Significantly enhanced ion-migration and sodium-storage capability derived by strongly coupled dual interfacial engineering in heterogeneous bimetallic sulfides with densified carbon matrix

Wenxi Zhao , Xiaoqing Ma , Guangzhao Wang , Linglin Tan , Xinqin Wang , Xun He , Yan Wang , Yongsong Luo , Dongdong Zheng , Shengjun Sun , Qian Liu , Luming Li , Wei Chu , Xuping Sun

SusMat ›› 2024, Vol. 4 ›› Issue (3) : e198

PDF
SusMat ›› 2024, Vol. 4 ›› Issue (3) : e198 DOI: 10.1002/sus2.198
RESEARCH ARTICLE

Significantly enhanced ion-migration and sodium-storage capability derived by strongly coupled dual interfacial engineering in heterogeneous bimetallic sulfides with densified carbon matrix

Author information +
History +
PDF

Abstract

The development of highly efficient sodium-ion batteries depends critically on the successful exploitation of advanced anode hosts that is capable of overcoming sluggish reaction kinetics while also withstanding severe structural deformation triggered by the large radius of Na+-insertion. Herein, a hierarchically hybrid material with hetero-Co3S4/NiS hollow nanosphere packaged into a densified N-doped carbon matrix (Co3S4/NiS@N-C) was designed and fabricated utilizing CoNi-glycerate as the self-sacrifice template, making the utmost of the synergistic effect of hetero-Co3S4/NiS with strong electric field and rich reaction active-sites together with the densified outer-carbon scaffolds with remarkable electronic conductivity and robust mechanical toughness. As anticipated, as-fabricated Co3S4/NiS@N-C anode affords remarkable specific capacity, prolonged cycle lifespan up to 2 400 cycles with an only 0.05% fading each cycle at 20.0 A g−1, and excellent rate feature (354.9 mAh g−1 at 30.0 A g−1), one of the best performances for most existing Co3S4/NiS-based anodes. Ex situ structural characterizations in tandem with theoretical analysis demonstrate the reversible insertion-conversion mechanism of initially proceeding with Na+ de-/intercalation and superior heterogeneous interfacial reaction behavior with strong Na+-adsorption ability. Further, sodium-ion full cell and hybrid capacitor based on Co3S4/NiS@N-C anode exhibit impressive electrochemical characteristics on cycling performance and rate capability, showcasing its outstanding feasibility toward practical use.

Keywords

anode materials / bimetallic metal sulfides / heterogeneous interface / outer-carbon skeleton / sodium ion battery

Cite this article

Download citation ▾
Wenxi Zhao, Xiaoqing Ma, Guangzhao Wang, Linglin Tan, Xinqin Wang, Xun He, Yan Wang, Yongsong Luo, Dongdong Zheng, Shengjun Sun, Qian Liu, Luming Li, Wei Chu, Xuping Sun. Significantly enhanced ion-migration and sodium-storage capability derived by strongly coupled dual interfacial engineering in heterogeneous bimetallic sulfides with densified carbon matrix. SusMat, 2024, 4(3): e198 DOI:10.1002/sus2.198

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li Q, Yang D, Chen H, et al. Advances in metal phosphides for sodium-ion batteries. SusMat. 2021;1(3):2302426.

[2]

Xiao B, Sun Z, Zhang H, et al. Enabling highly-efficient and stable potassium-ion storage by exposing atomic-dispersed super-coordinated antimony O2Sb1N4 sites on N-doped carbon nanosheets. Energy Environ Sci. 2023;16(5):2153-2166.

[3]

Ke C, Shao R, Zhang Y, et al. Synergistic engineering of heterointerface and architecture in new-type ZnS/Sn heterostructures in situ encapsulated in nitrogen-doped carbon toward high-efficient lithium-ion storage. Adv Funct Mater. 2022;32(38):2205635.

[4]

Wan G, Peng B, Zhao L, et al. Dual-strategy modification on P2-Na0.67Ni0.33Mn0.67O2 realizes stable high-voltage cathode and high energy density full cell for sodium-ion batteries. SusMat. 2023;3(1):58-71.

[5]

Zhao W, Ma X, Gao L, et al. Hierarchical architecture engineering of branch-leaf-shaped cobalt phosphosulfide quantum dots:enabling multi-dimensional ion-transport channels for high-efficiency sodium storage. Adv Mater. 2024;36(4):2305190.

[6]

Fu R, Pan J, Wang M, et al. In situ atomic-scale deciphering of multiple dynamic phase transformations and reversible sodium storage in ternary metal sulfide anode. ACS Nano. 2023;17(13):12483-12498.

[7]

Xi Y, Wang X, Wang H, et al. Optimizing the electron spin states of Na4Fe3(PO4)2P2O7 cathodes via Mn/F dual-doping for enhanced sodium storage. Adv Funct Mater. 2023; 2309701.

[8]

Song X, Li X, Wang J, et al. V–O–C bonding of heterointerface boosting kinetics of free-standing Na5V12O32 cathode for ultralong lifespan sodium-ion batteries. Adv Funct Mater. 2024;34:2303211.

[9]

Bashir T, Zhou S, Yang S, et al. Progress in 3D-MXene electrodes for lithium/sodium/potassium/magnesium/zinc/aluminum-ion batteries. Electrochem Energy Rev. 2023;6(1):5.

[10]

Tang Z, Zhou S, Huang Y, et al. Improving the initial coulombic efficiency of carbonaceous materials for Li/Na-ion batteries:origins, solutions, and perspectives. Electrochem Energy Rev. 2023;6(1):8.

[11]

Zuo J, Liu Z, Jiang H, et al. Sodium titanate nanowires for Na+-based hybrid energy storage with high power density. SusMat. 2022;2:720-730.

[12]

Zhao W, Gao L, Yue L, et al. Constructing a hollow microflower-like ZnS/CuS@C heterojunction as an effective ion-transport booster for an ultrastable and high-rate sodium storage anode. J Mater Chem A. 2021;9(10):6402-6412.

[13]

Saroja A, Wang Z, Tinker H, Wang F, Shearing P, Xu Y. Enabling intercalation-type TiNb24O62 anode for sodium-and potassium-ion batteries via a synergetic strategy of oxygen vacancy and carbon incorporation. SusMat. 2023;3:9011-9034.

[14]

Zhou S, Tang Z, Pan Z, et al. Regulating closed pore structure enables significantly improved sodium storage for hard carbon pyrolyzing at relatively low temperature. SusMat. 2022;2(3):1255-1262.

[15]

Yuan J, Yu B, Pan D, et al. Universal source-template route to metal selenides implanting on 3D carbon nanoarchitecture: Cu2−xSe@3D-CN with Se–C bonding for advanced Na storage. Adv Funct Mater. 2023;33(46):2305503.

[16]

Zhao W, Ma X, Zheng Y, et al. Hierarchical wormlike engineering: self-assembled SnS2 nanoflake arrays decorated on hexagonal FeS2@C nano-spindles enables stable and fast sodium storage. Chem Eng J. 2023;459:141629.

[17]

Xiao B, Zhang H, Sun Z, et al. Achieving high-capacity and long-life K+ storage enabled by constructing yolk-shell Sb2S3@N, S-doped carbon nanorod anodes. J Energy Chem. 2023;76:547-556.

[18]

Huang X, Wang R, Wu L, Zhang H, Liu J. All-climate long-life and fast-charging sodium-ion battery using Co3S4@NiS2 heterostructures encapsulated in carbon matrix as anode. Small. 2023;19(45):2304165.

[19]

Ho S, Tuan H. Cu3PS4: a sulfur-rich metal phosphosulfide with superior ionic diffusion channel for high-performance potassium ion batteries/hybrid capacitors. Chem Eng J. 2023;452:139199.

[20]

Xiao Y, Miao Y, Wan S, Sun Y, Chen S. Synergistic engineering of Se vacancies and heterointerfaces in zinc–cobalt selenide anode for highly efficient Na-ion batteries. Small. 2022;18(28):2202582.

[21]

Zhang B, Wang Y, Gao F, et al. Urchin-like alkaline nickel-cobalt carbonate derived Ni3S4/Co3S4 nanoparticles anchored on rGO for lithium/sodium-ion batteries with enhanced capacity. J Ind Eng Chem. 2023;128:317-325.

[22]

Muhammad M, Liu Y, Sheng L, Haruna B, Hu X, Wen Z. Phase engineering of nickel-based sulfides toward robust sodium-ion batteries. J Colloid Interf Sci. 2023;646:245-253.

[23]

Ru J, He T, Chen B, et al. Covalent assembly of MoS2 nanosheets with SnS nanodots as linkages for lithium/sodium-ion batteries. Angew Chem Int Ed. 2020;132(34):14729-14735.

[24]

Yao L, Gu Q, Yu X. Three-dimensional MOFs@MXene aerogel composite derived MXene threaded hollow carbon confined CoS nanoparticles toward advanced alkali-ion batteries. ACS Nano. 2021;15(2):3228-3240.

[25]

Ma K, Dong Y, Jiang H, Hu Y, Saha P, Li C. Densified MoS2/Ti3C2 films with balanced porosity for ultrahigh volumetric capacity sodium-ion battery. Chem Eng J. 2021;413:127479.

[26]

Li D, Dai L, Ren X, et al. Foldable potassium-ion batteries enabled by free-standing and flexible SnS2@C nanofibers. Energy Environ Sci. 2021;14(1):424-436.

[27]

Jiang Q, Wang L, Zhao W, et al. Carbon dots decorated on the ultrafine metal sulfide nanoparticles implanted hollow layered double hydroxides nanocages as new-type anodes for potassium-ion batteries. Chem Eng J. 2022;433:133539.

[28]

Tang L, Zhang B, Peng T, et al. MoS2/SnS@C hollow hierarchical nanotubes as superior performance anode for sodium-ion batteries. Nano Energy. 2021;90:106568.

[29]

Huang H, Luo X, Yao Y, et al. Binding Se into nitrogen-doped porous carbon nanosheets for high-performance potassium storage. InfoMat. 2021;3(4):421-431.

[30]

Qian K, Li L, Yang D, et al. Metal-electronegativity-induced, synchronously formed hetero- and vacancy-structures of selenide molybdenum for non-aqueous sodium-based dual-ion storage. Adv Funct Mater. 2023;33(14):2213009.

[31]

Wang J, Wang B, Sun H, Wang G, Bai J, Wang H. Heterogeneous interface containing selenium vacancies space-confined in double carbon to induce superior electronic/ionic transport dynamics for sodium/potassium-ion half/full batteries. Energy Storage Mater. 2022;46:394-405.

[32]

Chen F, Shi D, Yang M, et al. Novel designed MnS–MoS2 heterostructure for fast and stable Li/Na storage: insights into the advanced mechanism attributed to phase engineering. Adv Funct Mater. 2021;31(6):2007132.

[33]

Xiao S, Li X, Zhang W, et al. Bilateral interfaces in In2Se3–CoIn2–CoSe2 heterostructures for high-rate reversible sodium storage. ACS Nano. 2021;15(8):13307-13318.

[34]

Zhang Y, Chen Y, Jiang Y, et al. Construction of VS2/VOx heterostructure via hydrolysis-oxidation coupling reaction with superior sodium storage properties. Adv Funct Mater. 2023;33(12):2212785.

[35]

Zhao W, Wang X, Ma X, et al. In situ tailoring bimetallic-organic framework-derived yolk-shell NiS2/CuS hollow microspheres: an extraordinary kinetically pseudocapacitive nanoreactor for an effective sodium-ion storage anode. J Mater Chem A. 2021;9(28):15807-15819.

[36]

Chen C, Maier J. Decoupling electron and ion storage and the path from interfacial storage to artificial electrodes. Nat Energy. 2018;3(2):102-108.

[37]

Fang Y, Luan D, Lou X. Recent advances on mixed metal sulfides for advanced sodium-ion batteries. Adv Mater. 2020;32(42):2002976.

[38]

Cheng J, Niu Z, Zhao Z, et al. Enhanced ion/electron migration and sodium storage driven by different MoS2–ZnIn2S4 heterointerfaces. Adv Energy Mater. 2023;13(5):2203248.

[39]

Wang F, Liu Z, Feng H, et al. Engineering C–S–Fe bond confinement effect to stabilize metallic-phase sulfide for high power density sodium-ion batteries. Small. 2023;19(37):2302200.

[40]

Zhao W, Zhang C, Li Y, Yu L, Ma X. Synergistically induced dual-interfacial interactions in iron–nickel sulfides heterojunction encapsulated by N, S-codoped carbon matrix heightened ion-transport kinetics for sodium-storage. Chem Eng J. 2023;468:143596.

[41]

Li J, Ding Z, Li J, Wang C, Pan L, Wang G. Synergistic coupling of NiS1.03 nanoparticle with S-doped reduced graphene oxide for enhanced lithium and sodium storage. Chem Eng J. 2021;407:127199.

[42]

Silambarasan K, Archana J, Athithya S, et al. Hierarchical NiO@NiS@graphene nanocomposite as a sustainable counter electrode for Pt free dye-sensitized solar cell. Appl Surf Sci. 2020;501:144010.

[43]

Ding L, Li D, Shen H, Qiao X, Shen H, Shi W. 2D β-NiS as electron harvester anchors on 2D ZnIn2S4 for boosting photocatalytic hydrogen production. J Alloy Compd. 2021;853:157328.

[44]

Huang C, Gao A, Yi F, et al. Metal organic framework derived hollow NiS@C with S-vacancies to boost high-performance supercapacitors. Chem Eng J. 2021;419:129643.

[45]

Cheng Q, Yang C, Tao K, Han L. Inlaying ZIF-derived Co3S4 hollow nanocages on intertwined polypyrrole tubes conductive networks for high-performance supercapacitors. Electrochim Acta. 2020;341:136042.

[46]

Yan B, Lin L, Sun H, et al. Double-shelled NiS/SnS@N-doped carbon nanoboxes engineered from NiSn(OH)6 cube templates for advanced sodium-ion battery anodes. Chem Eng J. 2023;477:146950.

[47]

Zou H, Gu Y, Hui B, et al. Nitrogen and sulfur vacancies in carbon shell to tune charge distribution of Co6Ni3S8 core and boost sodium storage. Adv Energy Mater. 2020;10(18):1904147.

[48]

He W, Mu Y, Lamsal B, et al. Realizing rapid kinetics of Na ions in tin–antimony bimetallic sulfide anode with engineered porous structure. Small Struct. 2023;4(10):2300100.

[49]

Shao W, Cao Q, Liu S, et al. Replacing “Alkyl” with “Aryl” for inducing accessible channels to closed pores as plateau-dominated sodium-ion battery anode. SusMat. 2022;2(3):2303742.

[50]

Shi L, Li D, Yao P, et al. SnS2 nanosheets coating on nanohollow cubic CoS2/C for ultralong life and high rate capability half/full sodium-ion batteries. Small. 2018;14(41):1802716.

[51]

Liu X, Xiang Y, Li Q, et al. SnS2–CoS2@C nanocubes as high initial coulombic efficiency and long-life anodes for sodium-ion batteries. Electrochim Acta. 2021;387:138525.

[52]

Huang X, Tao K, Han T, et al. Long-cycling-life sodium-ion battery using binary metal sulfide hybrid nanocages as anode. Small. 2023;19(39):2302706.

[53]

Jiang Y, Zou G, Hong W, et al. N-rich carbon-coated Co3S4 ultrafine nanocrystals derived from ZIF-67 as an advanced anode for sodium-ion batteries. Nanoscale. 2018;10(39):18786.

[54]

Zhou Q, Liu L, Huang Z, Yi L, Wang X, Cao G. Co3S4@polyaniline nanotubes as high-performance anode materials for sodium ion batteries. J Mater Chem A. 2016;4(15):5505-5516.

[55]

Song Z, Wang G, Chen Y, Chang Q, Lu Y, Wen Z. Construction of hierarchical NiS@C/rGO heterostructures for enhanced sodium storage. Chem Eng J. 2022;435:134633.

[56]

Sun Z, Zhao C, Cao X, et al. Insights into the phase transformation of NiCo2S4@rGO for sodium-ion battery electrode. Electrochim Acta. 2020;338:135900.

[57]

Li T, Xia Y, Wu H, Zhang D, Xu F. Building a flexible and applicable sodium ion full battery based on self-supporting large-scale CNT films intertwined with ultra-long cycling NiCo2S4. Nanoscale. 2022;14(28):10226-10235.

[58]

Ma Y, Zhang Y, Wang F, Xie H, Wang J. Bimetallic sulfide NiCo2S4 yolk-shell nanospheres as high-performance cathode materials for rechargeable magnesium batteries. Nanoscale. 2022;14(12):4753-4761.

[59]

Zhao W, Wang X, Ma X, et al. Functional integration of hierarchical core-shell architectures via vertically arrayed ultrathin CuSe nanosheets decorated on hollow CuS microcages targeting highly effective sodium-ion storage. J Mater Chem A. 2021;9(48):27615.

[60]

Liu D, Hu A, Zhu Y, et al. Hierarchical microstructure of CNTs interwoven ultrathin Co3S4 nanosheets as a high performance anode for sodium-ion battery. Ceram Int. 2019;45(3):3591-3599.

[61]

Guo C, Zhang W, Liu Y, et al. Constructing CoO/Co3S4 heterostructures embedded in N-doped carbon frameworks for high-performance sodium-ion batteries. Adv Funct Mater. 2019;29(29):190192.

[62]

Wu Y, Yang H, Yang Y, et al. SnS2/Co3S4 hollow nanocubes anchored on S-doped graphene for ultrafast and stable Na-ion storage. Small. 2019;15(46):1903873.

[63]

Zhang Z, Huang Y, Liu X, Chen C, Xu Z, Liu P. Zeolitic imidazolate frameworks derived ZnS/Co3S4 composite nanoparticles doping on polyhedral carbon framework for efficient lithium/sodium storage anode materials. Carbon. 2020;157:244-254.

[64]

Xie H, Chen M, Wu L. Hierarchical nanostructured NiS/MoS2/C composite hollow spheres for high performance sodium-ion storage performance. ACS Appl Mater Interfaces. 2019;11(44):41222-41228.

[65]

Zhao X, Gong F, Zhao Y, et al. Encapsulating NiS nanocrystal into nitrogen-doped carbon framework for high performance sodium/potassium-ion storage. Chem Eng J. 2020;392:123675.

[66]

Fan S, Huang S, Chen Y, et al. Construction of complex NiS multi-shelled hollow structures with enhanced sodium storage. Energy Storage Mater. 2019;23:17-24.

[67]

Xia G, Li X, Gu Y, et al. Flower-like NiS/C as high-performance anode material for sodium-ion batteries. Ionics. 2021;27(1):191-197.

[68]

Song P, Li J, Zhang Y, et al. Design of double-shelled NiS-FeS@NC hollow nanocubes for high-performance sodium-ion batteries. J Alloy Compd. 2023;950:169905.

[69]

Li Q, Deng R, Chen Y, et al. Homologous heterostructured NiS/NiS2@C hollow ultrathin microspheres with interfacial electron redistribution for high-performance sodium storage. Small. 2023;19(42):2303642.

[70]

Zhang H, Liu B, Lu Z, et al. Sulfur-bridged bonds heightened Na-storage properties in MnS nanocubes encapsulated by S-doped carbon matrix synthesized via solvent-free tactics for high-performance hybrid sodium ion capacitors. Small. 2023;19(16):2207214.

[71]

Zheng Y, Wei S, Shang J, Wang D, Lei C, Zhao Y. High-performance sodium-ion batteries enabled by 3D nanoflowers comprised of ternary Sn-based dichalcogenides embedded in nitrogen and sulfur dual-doped carbon. Small. 2023;19(47):2303746.

[72]

Yang K, Tang J, Liu Y, et al. Controllable synthesis of peapod-like Sb@C and corn-like C@Sb nanotubes for sodium storage. ACS Nano. 2020;14(5):5728-5737.

[73]

Hu X, Zhong G, Li J, et al. Hierarchical porous carbon nanofibers for compatible anode and cathode of potassium-ion hybrid capacitor. Energy Environ Sci. 2020;13(8):2431-2440.

[74]

Wang S, Lv S, Wang G, et al. Construction of novel bimetallic oxyphosphide as advanced anode for potassium ion hybrid capacitor. Adv Sci. 2022;9(9):2105193.

RIGHTS & PERMISSIONS

2024 The Author(s). SusMat published by Sichuan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

504

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/