Three-dimensional electrically conductive–hydrophobic layer for stable Zn metal anodes

Yang Mei , Jiahui Zhou , Botao Zhang , Li Li , Feng Wu , Yongxin Huang , Renjie Chen

SusMat ›› 2024, Vol. 4 ›› Issue (3) : e197

PDF
SusMat ›› 2024, Vol. 4 ›› Issue (3) : e197 DOI: 10.1002/sus2.197
RESEARCH ARTICLE

Three-dimensional electrically conductive–hydrophobic layer for stable Zn metal anodes

Author information +
History +
PDF

Abstract

The interrelated side reactions and dendrites growth severely destabilize the electrode/electrolyte interfaces, resulting in the difficult application of aqueous Zn ion batteries (AZIBs). Hydrophobic protective layer possesses natural inhibition ability for side reactions. However, the conventional protective layer with plane structure is difficult to attain joint regulation of side reaction and Zn nucleation. Herein, a novel three-dimensional (3D) electrically conductive and hydrophobic (3DECH) interface is elaborated to enable stable Zn anode. The as-prepared 3DECH interface presents a uniform 3D morphology with hydrophobic property, large specific surface area, abundant zincophilic sites, and excellent electroconductivity. Therefore, the 3DECH interface achieves uniform nucleation and dendrite-free deposition from synergetic benefits: (1) increased nucleation sites and reduced local current density through the special 3D structure and (2) uniform electric potential distribution and rapid Zn2+ transport due to the electroconductive alloy chemistry, thus coupling the hydrophobic property to obtain a highly reversible Zn anode. Consequently, the modified anode achieves a superior coulombic efficiency of 99.88% over 3500 cycles, and the pouch cells using modified anode and LiMn2O4 (LMO) cathode retain a capacity of 84 mAh g−1 after 700 cycles at a reasonable depth discharge of 36%, without dendrite piercing and “dead Zn.”

Keywords

electroconductive layer / flat deposition / hydrophobic layer / three-dimensional surface / zinc-metal anode

Cite this article

Download citation ▾
Yang Mei, Jiahui Zhou, Botao Zhang, Li Li, Feng Wu, Yongxin Huang, Renjie Chen. Three-dimensional electrically conductive–hydrophobic layer for stable Zn metal anodes. SusMat, 2024, 4(3): e197 DOI:10.1002/sus2.197

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Blanc LE, Kundu D, Nazar LF. Scientific challenges for the implementation of Zn-ion batteries. Joule. 2020;4(4):771-799.

[2]

Li Y, Fu J, Zhong C, et al. Recent advances in flexible zinc-based rechargeable batteries. Adv Energy Mater. 2018;9(1):1802605.

[3]

Xie X, Li J, Xing Z, Lu B, Liang S, Zhou J. Biocompatible zinc battery with programmable electro-cross-linked electrolyte. Natl Sci Rev. 2022;10(3).

[4]

Zhao Z, Wang R, Peng C, et al. Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries. Nat Commun. 2021;12(1):6606.

[5]

Zhao Y, Zhou R, Song Z, et al. Interfacial designing of MnO2 half-wrapped by aromatic polymers for high-performance aqueous zinc-ion batteries. Angew Chem Int Ed. 2022;61(49):e202212231.

[6]

Miao Z, Du M, Li H, et al. Constructing nano-channeled tin layer on metal zinc for high-performance zinc-ion batteries anode. EcoMat. 2021;3(4):e12125.

[7]

Liu A, Wu F, Zhang Y, et al. Ultralarge layer spacing and superior structural stability of V2O5 as high-performance cathode for aqueous zinc-ion battery. Nano Res. 2023;16:1-10.

[8]

Gao F, Mei B, Xu X, et al. Rational design of ZnMn2O4 nanoparticles on carbon nanotubes for high-rate and durable aqueous zinc-ion batteries. Chem Eng J. 2022;448:137742.

[9]

Islam S, Alfaruqi MH, Putro DY, et al. In situ oriented mn deficient ZnMn2O4@C nanoarchitecture for durable rechargeable aqueous zinc-ion batteries. Adv Sci. 2021;8(4):2002636.

[10]

He G, Liu Y, Gray DE, Othon J. Conductive polymer composites cathodes for rechargeable aqueous Zn-ion batteries: a mini-review. Compos Comm. 2021;27:100882.

[11]

Zampardi G, La Mantia F. Prussian blue analogues as aqueous Zn-ion batteries electrodes: current challenges and future perspectives. Curr Opin Electrochem. 2020;21:84-92.

[12]

Zeng Y, Lu XF, Zhang SL, Luan D, Li S, Lou XW. Construction of Co–Mn prussian blue analog hollow spheres for efficient aqueous Zn-ion batteries. Angew Chem Int Ed. 2021;60(41):22189-22194.

[13]

Zhang N, Chen X, Yu M, Niu Z, Cheng F, Chen J. Materials chemistry for rechargeable zinc-ion batteries. Chem Soc Rev. 2020;49(13):4203-4219.

[14]

Liu Y, Lu X, Lai F, et al. Rechargeable aqueous Zn-based energy storage devices. Joule. 2021;5(11):2845-2903.

[15]

Gao C, Wang J, Huang Y, et al. A high-performance free-standing Zn anode for flexible zinc-ion batteries. Nanoscale. 2021;13(22):10100-10107.

[16]

Wang Z, Huang J, Guo Z, et al. A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule. 2019;3(5):1289-1300.

[17]

Zhou J, Wu F, Mei Y, et al. Establishing thermal infusion method for stable zinc metal anodes in aqueous zinc-ion batteries. Adv Mater. 2022;34(21):e2200782.

[18]

Li Y, Yang S, Du H, et al. A stable fluoride-based interphase for a long cycle Zn metal anode in an aqueous zinc ion battery. J Mater Chem A. 2022;10(27):14399-14410.

[19]

Liu C, Luo Z, Deng W, et al. Liquid alloy interlayer for aqueous zinc-ion battery. ACS Energy Lett. 2021;6(2):675-683.

[20]

Chen A, Zhao C, Gao J, et al. Multifunctional SEI-like structure coating stabilizing Zn anodes at a large current and capacity. Energy Environ Sci. 2023;16(1):275-284.

[21]

Wang F, Borodin O, Gao T, et al. Highly reversible zinc metal anode for aqueous batteries. Nat Mater. 2018;17(6):543-549.

[22]

Miao L, Wang R, Di S, et al. Aqueous electrolytes with hydrophobic organic cosolvents for stabilizing zinc metal anodes. ACS Nano. 2022;16(6):9667-9678.

[23]

Li X, Chen Z, Ruan P, et al. Inducing preferential growth of the Zn (002) plane by using a multifunctional chelator for achieving highly reversible Zn anodes. Nanoscale. 2024;16(6):2923-2930.

[24]

Cao J, Zhang D, Gu C, et al. Modulating Zn deposition via ceramic-cellulose separator with interfacial polarization effect for durable zinc anode. Nano Energy. 2021;89:106322.

[25]

Yao L, Hou C, Liu M, et al. Ultra-stable Zn anode enabled by fiber-directed ion migration using mass-producible separator. Adv Funct Mater. 2022;33(5):2209301.

[26]

Zhang Y, Li X, Fan L, Shuai Y, Zhang N. Ultrathin and super-tough membrane for anti-dendrite separator in aqueous zinc-ion batteries. Cell Rep Phys Sci. 2022;3(4):100824.

[27]

Yang J, Zhao R, Wang Y, et al. Insights on artificial interphases of Zn and electrolyte: protection mechanisms, constructing techniques, applicability, and prospective. Adv Funct Mater. 2023;33:2213510.

[28]

Li J, Liu Z, Han S, et al. Hetero nucleus growth stabilizing zinc anode for high-biosecurity zinc-ion batteries. Nano-Micro Lett. 2023;15(1):237.

[29]

Liu Z, Guo Z, Fan L, et al. Construct robust epitaxial growth of (101) textured zinc metal anode for long life and high capacity in mild aqueous zinc-ion batteries. Adv Mater. 2023:2305988.

[30]

Zhou X, Chen R, Cui E, et al. A novel hydrophobic-zincophilic bifunctional layer for stable Zn metal anodes. Energy Stor Mater. 2023;55:538-545.

[31]

Tao Z, Zhu Y, Zhou Z, et al. Constructing hydrophobic interface with close-packed coordination supramolecular network for long-cycling and dendrite-free Zn-metal batteries. Small. 2022;18(22):e2107971.

[32]

Liu M, Yuan W, Ma G, et al. In-situ integration of a hydrophobic and fast-Zn2+-conductive inorganic interphase to stabilize Zn metal anodes. Angew Chem Int Ed. 2023;62(27):e202304444.

[33]

Guan K, Tao L, Yang R, et al. Anti-corrosion for reversible zinc anode via a hydrophobic interface in aqueous zinc batteries. Adv Energy Mater. 2022;12(9):2103557.

[34]

Yu H, Chen D, Zhang T, et al. Insight on the double-edged sword role of water molecules in the anode of aqueous zinc-ion batteries. Small Struct. 2022;3(12):2200143.

[35]

Zhou J, Xie M, Wu F, et al. Encapsulation of metallic Zn in a hybrid MXene/graphene aerogel as a stable Zn anode for foldable Zn-ion batteries. Adv Mater. 2022;34(1):2106897.

[36]

Cao Q, Gao Y, Pu J, et al. Gradient design of imprinted anode for stable Zn-ion batteries. Nat Commun. 2023;14(1):641.

[37]

Mu Y, Li Z, Wu B-K, et al. 3D hierarchical graphene matrices enable stable Zn anodes for aqueous Zn batteries. Nat Commun. 2023;14(1):4205.

[38]

Zhu X, Li X, Essandoh MLK, et al. Interface engineering with zincophilic MXene for regulated deposition of dendrite-free Zn metal anode. Energy Stor Mater. 2022;50:243-251.

[39]

Xie S, Li Y, Li X, et al. Stable zinc anodes enabled by zincophilic Cu nanowire networks. Nano-Micro Lett. 2021;14(1):39.

[40]

Zhou J, Mei Y, Wu F, et al. Regulated ion/electron-conducting interphase enables stable zinc-metal anodes for aqueous zinc-ions batteries. Angew Chem Int Ed. 2023;62(29):e202304454.

[41]

Ni J, Han K, Yu M, Zhang C. The influence of sodium citrate and potassium sodium tartrate compound additives on copper electrodeposition. Int J Electrochem Sci. 2017;12(7):6874-6884.

[42]

Chen C-H, Lin C-P, Chen C-M. Effect of Cu thickness on the evolution of the reaction products at the Sn-9 wt.% Zn solder/Cu interface during reflow. J Electron Mater. 2009;38:61-69.

[43]

Ballesteros J, Gómez-Solís C, Torres-Martínez L, Juárez-Ramírez I. Electrodeposition of Cu-Zn intermetallic compounds for its application as electrocatalyst in the hydrogen evolution reaction. Int J Electrochem Sci. 2015;10(4):2892-2903.

[44]

Zhao Q, Wang Y, Liu W, et al. An in-depth study of regulable zincophilic alloy matrix toward stable zinc metal batteries. Adv Mater Ineterfaces. 2022;9(7):2102254.

[45]

Liu M, Wang S, Jiang L. Nature-inspired superwettability systems. Nat Rev Mater. 2017;2(7):17036.

[46]

Olbasa BW, Huang CJ, Fenta FW, et al. Highly reversible Zn metal anode stabilized by dense and anion-derived passivation layer obtained from concentrated hybrid aqueous electrolyte. Adv Funct Mater. 2022;32(7):2103959.

[47]

He J, Tang Y, Liu G, et al. Intrinsic hydrogen-bond donors-lined organophosphate superionic nanochannels levering high-rate-endurable aqueous Zn batteries. Adv Energy Mater. 2022;12(46):2202661.

[48]

Li C, Xie X, Liang S, Zhou J. Issues and future perspective on zinc metal anode for rechargeable aqueous zinc-ion batteries. Energy Environ Mater. 2020;3(2):146-159.

RIGHTS & PERMISSIONS

2024 The Author(s). SusMat published by Sichuan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

371

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/