Sustainable development of electroencephalography materials and technology

Ling Xiong , Nannan Li , Yi Luo , Lei Chen

SusMat ›› 2024, Vol. 4 ›› Issue (2) : e195

PDF
SusMat ›› 2024, Vol. 4 ›› Issue (2) : e195 DOI: 10.1002/sus2.195
REVIEW

Sustainable development of electroencephalography materials and technology

Author information +
History +
PDF

Abstract

Electroencephalogram (EEG) is one of the most important bioelectrical signals related to brain activity and plays a crucial role in clinical medicine. Driven by continuously expanding applications, the development of EEG materials and technology has attracted considerable attention. However, systematic analysis of the sustainable development of EEG materials and technology is still lacking. This review discusses the sustainable development of EEG materials and technology. First, the developing course of EEG is introduced to reveal its significance, particularly in clinical medicine. Then, the sustainability of the EEG materials and technology is discussed from two main aspects: integrated systems and EEG electrodes. For integrated systems, sustainability has been focused on the developing trend toward mobile EEG systems and big-data monitoring/analyzing of EEG signals. Sustainability is related to miniaturized, wireless, portable, and wearable systems that are integrated with big-data modeling techniques. For EEG electrodes and materials, sustainability has been comprehensively analyzed from three perspectives: performance of different material/structural categories, sustainable materials for EEG electrodes, and sustainable manufacturing technologies. In addition, sustainable applications of EEG have been presented. Finally, the sustainable development of EEG materials and technology in recent decades is summarized, revealing future possible research directions as well as urgent challenges.

Keywords

clinical medicine / electroencephalography technology / limitations and future directions / materials and electrodes / sustainable development

Cite this article

Download citation ▾
Ling Xiong, Nannan Li, Yi Luo, Lei Chen. Sustainable development of electroencephalography materials and technology. SusMat, 2024, 4(2): e195 DOI:10.1002/sus2.195

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Caton R. Electrical currents of the brain. J Nerv Ment Dis. 1875;2(4):610.

[2]

Stone JL, Hughes JR. Early history of electroencephalography and establishment of the American Clinical Neurophysiology Society. J Clin Neurophysiol. 2013;30(1):28-44.

[3]

Gloor P. Hans Berger on electroencephalography. Am J Eeg Technol. 1969;9(1):1-8.

[4]

Haas LF. Hans Berger (1873-1941), Richard Caton (1842-1926), and electroencephalography. J Neurol Neurosurg Psychiatry. 2003;74(1):9.

[5]

Berger H. Über das Elektrenkephalogramm des Menschen: neunte Mitteilung. Archiv f Psychiatrie. 1934;102(1):538-557.

[6]

Woldring S, MN D. Spontaneous unit-activity in the superficial cortical layers. Acta Physiol Pharmacol Neerl. 1950;1(3):369-379.

[7]

Hubel DH, Wiesel TN. Receptive fields of single neurons in the cat's striate cortex. J Physiol. 1959;148(3):574-591.

[8]

Li F, Wang J, Liao Y, et al. Differentiation of schizophrenia by combining the spatial EEG brain network patterns of rest and task P300. IEEE Trans Neural Syst Rehabil Eng. 2019;27(4):594-602.

[9]

Xu P, Xiong X, Xue Q, et al. Differentiating between psychogenic nonepileptic seizures and epilepsy based on common spatial pattern of weighted EEG resting networks. IEEE Trans Biomed Eng. 2014;61(6):1747-1755.

[10]

Enriquez-Geppert S, Huster RJ, Herrmann CS. EEG-Neurofeedback as a tool to modulate cognition and behavior: a review tutorial. Front Hum Neurosci. 2017;11:51.

[11]

Li F, Yi C, Song L, et al. Brain network reconfiguration during motor imagery revealed by a large-scale network analysis of scalp EEG. Brain Topogr. 2019;32(2):304-314.

[12]

Tian Y, Xu W, Zhang H, et al. The scalp time-varying networks of N170: reference, latency, and information flow. Front Neurosci. 2018;12:250.

[13]

He B, Yuan H, Meng J, Gao S. Brain-Computer interfaces. In: He B, ed. Neural Engineering. Springer International Publishing; 2020:131-183.

[14]

Zhang R, Li X, Wang Y, et al. Using brain network features to increase the classification accuracy of MI-BCI inefficiency subject. IEEE Access. 2019;7:74490-74499.

[15]

Zhao X, Liu C, Xu Z, Zhang L, Zhang R. SSVEP stimulus layout effect on accuracy of brain-computer interfaces in augmented reality glasses. IEEE Access. 2020;8:5990-5998.

[16]

Jellinger KA. Practical guide for clinical neurophysiologic testing: EEG. Eur J Neurol. 2010;17(5):e39-e39.

[17]

Biasiucci A, Franceschiello B, Murray MM. Electroencephalography. Curr Biol. 2019;29(3):R80-R85.

[18]

Kiloh LG, Osselton JW, Bickford RG. Clinical electroencephalography. J Nerv Ment. 1963;136(3):307-308.

[19]

Wang X, Wang Y, Liu D, Wang Y, Wang Z. Automated recognition of epilepsy from EEG signals using a combining space–time algorithm of CNN-LSTM. Sci Rep. 2023;13(1):14876.

[20]

Almashaikhi T, Rheims S, Jung J, et al. Functional connectivity of insular efferences. Hum Brain Mapp. 2014;35(10):5279-5294.

[21]

Blauwblomme T, David O, Minotti L, et al. Prognostic value of insular lobe involvement in temporal lobe epilepsy: a stereoelectroencephalographic study. Epilepsia. 2013;54(9):1658-1667.

[22]

Blume WT, Lüders HO, Mizrahi E, Tassinari C, Van Emde Boas W, Engel J. Glossary of descriptive terminology for ictal semiology: report of the ILAE Task Force on Classification and Terminology. Epilepsia. 2002;42(9):1212-1218.

[23]

Hariembrundtland G. World Commission on environment and development. EPL. 1985;14(1):26-30.

[24]

Hacking T, Guthrie P. A framework for clarifying the meaning of triple bottom-line, integrated, and sustainability assessment. Environ Impact Assess Rev. 2008;28(2-3):73-89.

[25]

Finkbeiner M, Schau EM, Lehmann A, Traverso M. Towards life cycle sustainability assessment. Sustainability. 2010;2(10):3309-3322.

[26]

Backes JG, Traverso M. Life cycle sustainability assessment as a metrics towards SDGs agenda 2030. Curr Opin Green Sustain Chem. 2022;38:100683.

[27]

Reuter B. Assessment of sustainability issues for the selection of materials and technologies during product design: a case study of lithium-ion batteries for electric vehicles. Int J Interact Des Manuf. 2016;10(3):217-227.

[28]

Beard JR, Officer A, De Carvalho IA, et al. The World report on ageing and health: a policy framework for healthy ageing. Lancet. 2016;387(10033):2145-2154.

[29]

Garin N, Olaya B, Miret M, et al. Built environment and elderly population health: a comprehensive literature review. CPEMH. 2014;10(1):103-115.

[30]

Yang L, Liu Q, Zhang Z, Gan L, Zhang Y, Wu J. Materials for dry electrodes for the electroencephalography: advances, challenges, perspectives. Adv Mater Technol. 2022;7(3):2100612.

[31]

Teplan M. Fundamentals of EEG measurement. Meas Sci Rev. 2002;2(2):1-11.

[32]

Biondi A, Laiou P, Bruno E, et al. Remote and long-term self-monitoring of electroencephalographic and noninvasive measurable variables at home in patients with epilepsy (EEG@HOME): protocol for an observational study. JMIR Res Protoc. 2021;10(3):e25309.

[33]

Lau-Zhu A, Lau MPH, McLoughlin G. Mobile EEG in research on neurodevelopmental disorders: opportunities and challenges. Dev Cogn Neurosci. 2019;36:100635.

[34]

Gargiulo G, Calvo RA, Bifulco P, et al. A new EEG recording system for passive dry electrodes. Clin Neurophysiol. 2010;121(5):686-693.

[35]

Hsieh JC, Li Y, Wang H, et al. Design of hydrogel-based wearable EEG electrodes for medical applications. J Mater Chem B. 2022;10(37):7260-7280.

[36]

Yao K, Lan S, Xu C, Su R, Liu X. A wearable EEG-based control network and emergency medical assistance system. In: 2017 International Symposium on Antennas and Propagation (ISAP), IEEE; 2017:1-2.

[37]

Casson A, Yates D, Smith S, Duncan J, Rodriguez-Villegas E. Wearable electroencephalography. IEEE Eng Med Biol Mag. 2010;29(3):44-56.

[38]

Tian L, Zimmerman B, Akhtar A, et al. Large-area MRI-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring. Nat Biomed Eng. 2019;3(3):194.

[39]

Wu H, Yang G, Zhu K, et al. On-skin electrodes: materials, devices, and systems of on-skin electrodes for electrophysiological monitoring and human-machine interfaces. Adv Sci. 2021;8(2):2170007.

[40]

Chen G, Rodriguez-Villegas E, Casson AJ. Wearable algorithms. In: Sazonov E, Neuman MR, eds. Wearable Sensors. Elsevier; 2014:353-382.

[41]

Casson AJ, Rodriguez-Villegas E. Data reduction techniques to facilitate wireless and long term AEEG epilepsy monitoring. In: 2007 3rd International IEEE/EMBS Conference on Neural Engineering. IEEE; 2007:298-301.

[42]

David Hairston W, Whitaker KW, Ries AJ, et al. Usability of four commercially-oriented EEG systems. J Neural Eng. 2014;11(4):046018.

[43]

Raduntz T. Signal quality evaluation of emerging EEG devices. Front Physiol. 2018;9(98):1-12.

[44]

Petr J, Roman M. EEG/ERP portal for Android platform. Front Neuroinform. 2013;7.

[45]

Chen M, Ma Y, Song J, Lai CF, Hu B. Smart clothing: connecting human with clouds and big data for sustainable health monitoring. Mobile Netw Appl. 2016;21(5):825-845.

[46]

Khodagholy D, Gelinas JN, Zhao Z, et al. Organic electronics for high-resolution electrocorticography of the human brain. Sci Adv. 2016;2(11):e1601027.

[47]

Teplan M. Fundamentals of EEG measurement. Meas Sci Rev. 2002;2(2):1-11.

[48]

Khazi M, Kumar A, Vidya MJ. Analysis of EEG using 10:20 electrode system. IJIRSET. 2012;1(2):185-191.

[49]

Gilliam F, Kuzniecky R, Faught E. Ambulatory EEG monitoring. J Clin Neurophysiol. 1999;16(2):111-115.

[50]

Ma Z, Gao X, Gao S. Enhanced P300-based cursor movement control. In: Schmorrow DD, Reeves LM, eds. Foundations of Augmented Cognition. SpringerBerlin Heidelberg; 2007:120-126.

[51]

Holmes MD. Dense array EEG: methodology and new hypothesis on epilepsy syndromes. Epilepsia. 2008;49(s3):3-14.

[52]

Ghearing GR. The Johns Hopkins Atlas of Digital EEG: an interactive training guide. Neurology. 2008;70(6):494-494.

[53]

Uktveris T, Jusas V. Development of a modular board for EEG signal acquisition. Sensors. 2018;18(7):2140.

[54]

Obeid I, Picone J. The Temple University Hospital EEG Data Corpus. Front Neurosci. 2016;10.

[55]

Frauscher B, Von Ellenrieder N, Zelmann R, et al. Atlas of the normal intracranial electroencephalogram: neurophysiological awake activity in different cortical areas. Brain. 2018;141(4):1130-1144.

[56]

Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134(1):9-21.

[57]

Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci. 2011;2011:1-9.

[58]

Bigdely-Shamlo N, Mullen T, Kothe C, Su KM, Robbins KA. The PREP pipeline: standardized preprocessing for large-scale EEG analysis. Front Neuroinform. 2015;9:16.

[59]

Cowley BU, Korpela J, Torniainen J. Computational testing for automated preprocessing: a Matlab toolbox to enable large scale electroencephalography data processing. PeerJ Computer Sci. 2017;3:e108.

[60]

Gabard-Durnam LJ, Mendez Leal AS, Wilkinson CL, Levin AR. The Harvard automated processing pipeline for electroencephalography (HAPPE): standardized processing software for developmental and high-artifact data. Front Neurosci. 2018;12:97.

[61]

Pedroni A, Bahreini A, Langer N. Automagic: standardized preprocessing of big EEG data. Neuroimage. 2019;200:460-473.

[62]

Dong L, Li J, Zou Q, et al. WeBrain: a web-based brainformatics platform of computational ecosystem for EEG big data analysis. Neuroimage. 2021;245:118713.

[63]

Li G, Wang S, Duan YY. Towards gel-free electrodes: a systematic study of electrode-skin impedance. Sens Actuators B. 2017;241:1244-1255.

[64]

Mathewson KE, Harrison TJL, Kizuk SAD. High and dry? Comparing active dry EEG electrodes to active and passive wet electrodes. Psychophysiology. 2017;54(1):74-82.

[65]

Tallgren P, Vanhatalo S, Kaila K, Voipio J. Evaluation of commercially available electrodes and gels for recording of slow EEG potentials. Clin Neurophysiol. 2005;116(4):799-806.

[66]

Guideline 5: guidelines for standard electrode position nomenclature. J Clin Neurophysiol. 2006;23(2):107-110.

[67]

Im C, Seo JM. A review of electrodes for the electrical brain signal recording. Biomed Eng Lett. 2016;6(3):104-112.

[68]

Chen YH, De Beeck M, Vanderheyden L, et al. Soft, comfortable polymer dry electrodes for high quality ECG and EEG recording. Sensors. 2014;14(12):23758-23780.

[69]

Tseghai GB, Malengier B, Fante KA, Langenhove LV. The status of textile-based dry EEG electrodes. Autex Res J. 2021;21(1):63-70.

[70]

Grozea C, Voinescu CD, Fazli S. Bristle-sensors—low-cost flexible passive dry EEG electrodes for neurofeedback and BCI applications. J Neural Eng. 2011;8(2):025008.

[71]

Liao LD, Wang IJ, Chen SF, Chang JY, Lin CT. Design, fabrication and experimental validation of a novel dry-contact sensor for measuring electroencephalography signals without skin preparation. Sensors. 2011;11(6):5819-5834.

[72]

Peng HL, Liu JQ, Dong YZ, Yang B, Chen X, Yang CS. Parylene-based flexible dry electrode for biopotential recording. Sens Actuators B. 2016;231:1-11.

[73]

Griss P, Enoksson P, Tolvanen-Laakso HK, Merilainen P, Ollmar S, Stemme G. Micromachined electrodes for biopotential measurements. J Microelectromech Syst. 2001;10(1):10-16.

[74]

Li G, Wu J, Xia Y, et al. Towards emerging EEG applications: a novel printable flexible Ag/AgCl dry electrode array for robust recording of EEG signals at forehead sites. J Neural Eng. 2020;17(2):026001.

[75]

Velcescu A, Lindley A, Cursio C, et al. Flexible 3D-printed EEG electrodes. Sensors. 2019;19(7):1650.

[76]

Krachunov S, Casson A. 3D printed dry EEG electrodes. Sensors. 2016;16(10):1635.

[77]

Wang LF, Liu JQ, Yang B, Yang CS. PDMS-based low cost flexible dry electrode for long-term EEG measurement. IEEE Sensors J. 2012;12(9):2898-2904.

[78]

Nawrocki RA, Matsuhisa N, Yokota T, Someya T. 300-nm imperceptible, ultraflexible, and biocompatible e-skin fit with tactile sensors and organic transistors. Adv Electron Mater. 2016;2(4):1500452.

[79]

Nawrocki RA, Jin H, Lee S, Yokota T, Sekino M, Someya T. Self-Adhesive and ultra-conformable, sub-300 nm dry thin-film electrodes for surface monitoring of biopotentials. Adv Funct Mater. 2018;28(36):1803279.

[80]

Kim DY, Ku Y, Ahn JW, Kwon C, Kim HC. Electro-deposited nanoporous platinum electrode for EEG monitoring. J Korean Med Sci. 2018;33(21):e154.

[81]

Arai M, Nishinaka Y, Miki N. Electroencephalogram measurement using polymer-based dry microneedle electrode. Jpn J Appl Phys. 2015;54(6S1):06FP14.

[82]

de Camp NV, Kalinka G, Bergeler J. Light-cured polymer electrodes for non-invasive EEG recordings. Sci Rep. 2018;8(1):14041.

[83]

Zhang L, Kumar KS, He H, et al. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring. Nat Commun. 2020;11(1):4683.

[84]

Baek DH, Moon JH, Choi YY, et al. A dry release of polyimide electrodes using Kapton film and application to EEG signal measurements. Microsyst Technol. 2011;17(1):7-14.

[85]

Myers AC, Huang H, Zhu Y. Wearable silver nanowire dry electrodes for electrophysiological sensing. RSC Adv. 2015;5(15):11627-11632.

[86]

Qin Q, Li J, Yao S, Liu C, Huang H, Zhu Y. Electrocardiogram of a silver nanowire based dry electrode: quantitative comparison with the standard Ag/AgCl gel electrode. IEEE Access. 2019;7:20789-20800.

[87]

Ruffini G, Dunne S, Fuentemilla L, et al. First human trials of a dry electrophysiology sensor using a carbon nanotube array interface. Sens Actuators A. 2008;144(2):275-279.

[88]

Hoon Lee J, Min Lee S, Jin Byeon H, Sook Hong J, Suk Park K, Lee SH. CNT/PDMS-based canal-typed ear electrodes for inconspicuous EEG recording. J Neural Eng. 2014;11(4):046014.

[89]

Li Z, Guo W, Huang Y, Zhu K, Yi H, Wu H. On-skin graphene electrodes for large area electrophysiological monitoring and human-machine interfaces. Carbon. 2020;164:164-170.

[90]

Das PS, Park SH, Baik KY, Lee JW, Park JY. Thermally reduced graphene oxide-nylon membrane based epidermal sensor using vacuum filtration for wearable electrophysiological signals and human motion monitoring. Carbon. 2020;158:386-393.

[91]

Wang LF, Liu JQ, Yan XX, Yang B, Yang CS. A MEMS-based pyramid micro-needle electrode for long-term EEG measurement. Microsyst Technol. 2013;19(2):269-276.

[92]

Ng WC, Seet HL, Lee KS, et al. Micro-spike EEG electrode and the vacuum-casting technology for mass production. J Mater Process Technol. 2009;209(9):4434-4438.

[93]

Lepola P, Myllymaa S, Töyräs J, et al. Screen-printed EEG electrode set for emergency use. Sens Actuators A. 2014;213:19-26.

[94]

Shuaib M, Haleem A, Kumar S, Javaid M. Impact of 3D Printing on the environment: a literature-based study. SUSOC. 2021;2:57-63.

[95]

Ruiz-Morales JC, Tarancón A, Canales-Vázquez J, et al. Three dimensional printing of components and functional devices for energy and environmental applications. Energy Environ Sci. 2017;10(4):846-859.

[96]

Salvo P, Raedt R, Carrette E, Schaubroeck D, Vanfleteren J, Cardon L. A 3D printed dry electrode for ECG/EEG recording. Sens Actuators A. 2012;174:96-102.

[97]

Casson AJ. Wearable EEG and beyond. Biomed Eng Lett. 2019;9(1):53-71.

[98]

Hanon MM, Marczis R, Zsidai L. Influence of the 3D printing process settings on tensile strength of PLA and HT-PLA. Period Polytech Mech Eng. 2020;65(1):38-46.

[99]

Kazemian A, Khoshnevis B. Real-time extrusion quality monitoring techniques for construction 3D printing. Constr Build Mater. 2021;303:124520.

[100]

Slipher GA, Hairston WD, Bradford JC, Bain ED, Mrozek RA. Carbon nanofiber-filled conductive silicone elastomers as soft, dry bioelectronic interfaces. PLoS One. 2018;13(2):e0189415.

[101]

Tong A, Perera P, Sarsenbayeva Z, McEwan A, De Silva AC, Withana A. Fully 3D-printed dry EEG electrodes. Sensors. 2023;23(11):5175.

[102]

Ameta KL, Solanki VS, Singh V, Devi AP, Chundawat RS, Haque S. Critical appraisal and systematic review of 3D & 4D printing in sustainable and environment-friendly smart manufacturing technologies. SM&T. 2022;34:e00481.

[103]

Herman ST, Abend NS, Bleck TP, et al. Consensus statement on continuous EEG in critically ill adults and children, part I: indications. Clin Neurophysiol Pract. 2015;32(2):87-95.

[104]

Lee SY, Chung SE, Kim DW, et al. Estimating the prevalence of treated epilepsy using administrative health data and its validity: ESSENCE study. J Clin Neurol. 2016;12(4):434-440.

[105]

Nair DR. Management of drug-resistant epilepsy. Continuum. 2016;22(1, Epilepsy):157-172.

[106]

Spencer D, Nguyen DK, Sivaraju A. Invasive EEG in presurgical evaluation of epilepsy. In: Shorvon S, Perucca E, Engel J, eds. The Treatment of Epilepsy. 1st ed. Wiley; 2015:733-755.

[107]

Hong KS, Lee SK, Kim JY, Lee DS, Chung CK. Pre-surgical evaluation and surgical outcome of 41 patients with non-lesional neocortical epilepsy. Seizure. 2002;11(3):184-192.

[108]

Jeha LE, Najm I, Bingaman W, Dinner D, Widdess-Walsh P, Luders H. Surgical outcome and prognostic factors of frontal lobe epilepsy surgery. Brain. 2007;130(2):574-584.

[109]

Lee SY, Lee JY, Kim DW, Lee SK, Chung CK. Factors related to successful antiepileptic drug withdrawal after anterior temporal lobectomy for medial temporal lobe epilepsy. Seizure. 2008;17(1):11-18.

[110]

Taraschenko O. At the mercy of a mouse click: impact of EEG technology on academic epilepsy practice. Epilepsia. 2020;61(8):1786-1788.

[111]

Smith SJM. EEG in the diagnosis, classification, and management of patients with epilepsy. J Neurol. 2005;76(suppl_2):ii2-ii7.

[112]

Waterhouse E. New horizons in ambulatory electroencephalography. IEEE Eng Med Biol Mag. 2003;22(3):74-80.

[113]

Patel AC, Thornton RC, Mitchell TN, Michell AW. Advances in EEG: home video telemetry, high frequency oscillations and electrical source imaging. J Neurol. 2016;263(10):2139-2144.

[114]

Boto E, Seedat ZA, Holmes N, et al. Wearable neuroimaging: combining and contrasting magnetoencephalography and electroencephalography. Neuroimage. 2019;201:116099.

[115]

Nirenberg LM, Hanley J, Stear EB. A new approach to prosthetic control: EEG motor signal tracking with an adaptively designed phase-locked loop. IEEE Trans Biomed Eng. 1971;18(6):389-398.

[116]

Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM. Brain–computer interfaces for communication and control. Clin Neurophysiol. 2002;113(6):767-791.

[117]

Nicolas-Alonso LF, Gomez-Gil J. Brain Computer interfaces, a review. Sensors. 2012;12(2):1211-1279.

[118]

Lebedev MA, Nicolelis MAL. Brain-machine interfaces: from basic science to neuroprostheses and neurorehabilitation. Physiol Rev. 2017;97(2):767-837.

[119]

Aricò P, Borghini G, Di Flumeri G, Sciaraffa N, Babiloni F. Passive BCI beyond the lab: current trends and future directions. Physiol Meas. 2018;39(8):08TR02.

[120]

Abiri R, Borhani S, Sellers EW, Jiang Y, Zhao X. A comprehensive review of EEG-based brain–computer interface paradigms. J Neural Eng. 2019;16(1):011001.

[121]

Bi L, Fan XA, Liu Y. EEG-based brain-controlled mobile robots: a survey. IEEE Trans Human-Mach Syst. 2013;43(2):161-176.

[122]

Birbaumer N, Ghanayim N, Hinterberger T, et al. A spelling device for the paralysed. Nature. 1999;398(6725):297-298.

[123]

Meng J, Zhang S, Bekyo A, Olsoe J, Baxter B, He B. Noninvasive electroencephalogram based control of a robotic arm for reach and grasp tasks. Sci Rep. 2016;6(1):38565.

[124]

Daly JJ, Wolpaw JR. Brain–computer interfaces in neurological rehabilitation. Lancet Neurol. 2008;7(11):1032-1043.

[125]

Birbaumer N, Cohen LG. Brain-computer interfaces: communication and restoration of movement in paralysis: communication and restoration of movement in paralysis. J Physiol. 2007;579(3):621-636.

[126]

Machado S, Almada LF, Naidu Annavarapu R. Progress and prospects in EEG-based Brain-Computer interface: clinical applications in neurorehabilitation. J Rehabil Rob. Published online 2013.

[127]

Moghimi S, Kushki A, Marie Guerguerian A, Chau T. A review of EEG-Based Brain-Computer interfaces as access pathways for individuals with severe disabilities. Assist Technol. 2013;25(2):99-110.

[128]

Birbaumer N. Breaking the silence: brain-computer interfaces (BCI) for communication and motor control. Psychophysiology. 2006;43(6):517-532.

[129]

Contreras-Vidal JL, Presacco A, Agashe H, Paek A. Restoration of whole body movement: toward a noninvasive brain-machine interface system. IEEE Pulse. 2012;3(1):34-37.

[130]

Mulder T. Motor imagery and action observation: cognitive tools for rehabilitation. J Neural Transm. 2007;114(10):1265-1278.

[131]

Brunner C, Birbaumer N, Blankertz B, et al. BNCI Horizon 2020: towards a roadmap for the BCI community. BCI. 2015;2(1):1-10.

[132]

Malechka T, Tetzel T, Krebs U, Feuser D, Graeser A. SBCI-headset—wearable and modular device for hybrid Brain-Computer interface. Micromachines. 2015;6(3):291-311.

[133]

Suresh S, Liu Y, Yeow RCH. Development of a wearable electroencephalographic device for anxiety monitoring. J Med Devices. 2015;9(3):030917.

[134]

Xing X, Wang Y, Pei W, et al. A high-speed SSVEP-based BCI using dry EEG electrodes. Sci Rep. 2018;8(1):14708.

[135]

Zander TO, Lehne M, Ihme K, et al. A dry EEG-system for scientific research and Brain–Computer interfaces. Front Neurosci. 2011;5:53.

[136]

Mullen TR, Kothe CAE, Chi YM, et al. Real-time neuroimaging and cognitive monitoring using wearable dry EEG. IEEE Trans Biomed Eng. 2015;62(11):2553-2567.

[137]

Chen Y, Atnafu AD, Schlattner I, et al. A high-security EEG-based login system with RSVP stimuli and dry electrodes. IEEE TransInformForensic Secur. 2016;11(12):2635-2647.

[138]

Gu X, Cao Z, Jolfaei A, et al. EEG-based Brain-Computer interfaces (BCIs): a survey of recent studies on signal sensing technologies and computational intelligence approaches and their applications. IEEE/ACM Trans Comput Biol and Bioinf. 2021;18(5):1645-1666.

[139]

Portillo-Lara R, Tahirbegi B, Chapman CAR, Goding JA, Green RA. Mind the gap: state-of-the-art technologies and applications for EEG-based brain–computer interfaces. APL Bioeng. 2021;5(3):031507.

[140]

Casson AJ, Smith S, Duncan JS, Rodriguez-Villegas E. Wearable EEG: what is it, why is it needed and what does it entail? In: 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE; 2008:5867-5870.

[141]

Yazicioglu RF, Merken P, Puers R, et al. A 200µW eight-channel EEG acquisition ASIC for ambulatory EEG systems. JSCC. 2008;43(12):3025-3038.

[142]

Melnik A, Legkov P, Izdebski K, et al. Systems, subjects, sessions: to what extent do these factors influence EEG data? Front Hum Neurosci. 2017;11:150.

[143]

Oliveira AS, Schlink BR, Hairston WD, König P, Ferris DP. Proposing metrics for benchmarking novel EEG technologies towards real-world measurements. Front Hum Neurosci. 2016;10:188.

[144]

Ratti E, Waninger S, Berka C, Ruffini G, Verma A. Comparison of medical and consumer wireless EEG systems for use in clinical trials. Front Hum Neurosci. 2017;11:398.

[145]

Rogers JM, Johnstone SJ, Aminov A, Donnelly J, Wilson PH. Test-retest reliability of a single-channel, wireless EEG system. Int J Psychophysiol. 2016;106:87-96.

[146]

Von Buren T, Mitcheson PD, Green TC, Yeatman EM, Holmes AS, Troster G. Optimization of inertial micropower generators for human walking motion. IEEE Sensors J. 2006;6(1):28-38.

[147]

Torfs T, Leonov V, Yazicioglu RF, et al. Wearable autonomous wireless electro-encephalography system fully powered by human body heat. In: Sensors. IEEE; 2008:1269-1272.

[148]

Chen ACN. New perspectives in EEG/MEG brain mapping and PET/fMRI neuroimaging of human pain. Int J Psychophysiol. 2001;42(2):147-159.

[149]

Paulesu E, Danelli L, Berlingeri M. Reading the dyslexic brain: multiple dysfunctional routes revealed by a new meta-analysis of PET and fMRI activation studies. Front Hum Neurosci. 2014;8:830.

[150]

Huster RJ, Debener S, Eichele T, Herrmann CS. Methods for simultaneous EEG-fMRI: an introductory review. J Neurosci. 2012;32(18):6053-6060.

[151]

Khan MJ, Ghafoor U, Hong KS. Early detection of hemodynamic responses using EEG: a hybrid EEG-fNIRS study. Front Hum Neurosci. 2018;12:479.

[152]

Li R, Potter T, Huang W, Zhang Y. Enhancing performance of a hybrid EEG-fNIRS system using channel selection and early temporal features. Front Hum Neurosci. 2017;11:462.

[153]

Uchitel J, Vidal-Rosas EE, Cooper RJ, Zhao H. Wearable, integrated EEG–fNIRS technologies: a review. Sensors. 2021;21(18):6106.

RIGHTS & PERMISSIONS

2024 The Authors. SusMat published by Sichuan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

257

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/