Electrocatalytic synthesis of C–N coupling compounds from CO2 and nitrogenous species

Zheng Zhang , Danyang Li , Yunchuan Tu , Jiao Deng , Huiting Bi , Yongchao Yao , Yan Wang , Tingshuai Li , Yongsong Luo , Shengjun Sun , Dongdong Zheng , Sónia A. C. Carabineiro , Zhou Chen , Junjiang Zhu , Xuping Sun

SusMat ›› 2024, Vol. 4 ›› Issue (2) : e193

PDF
SusMat ›› 2024, Vol. 4 ›› Issue (2) : e193 DOI: 10.1002/sus2.193
REVIEW

Electrocatalytic synthesis of C–N coupling compounds from CO2 and nitrogenous species

Author information +
History +
PDF

Abstract

The electrocatalytic synthesis of C–N coupling compounds from CO2 and nitrogenous species not only offers an effective avenue to achieve carbon neutrality and reduce environmental pollution, but also establishes a route to synthesize valuable chemicals, such as urea, amide, and amine. This innovative approach expands the application range and product categories beyond simple carbonaceous species in electrocatalytic CO2 reduction, which is becoming a rapidly advancing field. This review summarizes the research progress in electrocatalytic urea synthesis, using N2, NO2, and NO3 as nitrogenous species, and explores emerging trends in the electrosynthesis of amide and amine from CO2 and nitrogen species. Additionally, the future opportunities in this field are highlighted, including electrosynthesis of amino acids and other compounds containing C–N bonds, anodic C–N coupling reactions beyond water oxidation, and the catalytic mechanism of corresponding reactions. This critical review also captures the insights aimed at accelerating the development of electrochemical C–N coupling reactions, confirming the superiority of this electrochemical method over the traditional techniques.

Keywords

C–N coupling / CO 2 reduction / electrocatalysis / nitrogenous species / reaction mechanism

Cite this article

Download citation ▾
Zheng Zhang, Danyang Li, Yunchuan Tu, Jiao Deng, Huiting Bi, Yongchao Yao, Yan Wang, Tingshuai Li, Yongsong Luo, Shengjun Sun, Dongdong Zheng, Sónia A. C. Carabineiro, Zhou Chen, Junjiang Zhu, Xuping Sun. Electrocatalytic synthesis of C–N coupling compounds from CO2 and nitrogenous species. SusMat, 2024, 4(2): e193 DOI:10.1002/sus2.193

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Service RF. Carbon capture marches toward practical use. Science. 2021;371(6536):1300.

[2]

Zhang Z, Zhao W, Nong J, et al. Liquid–solid phase-change behavior of diethylenetriamine in nonaqueous systems for carbon dioxide absorption. Energy Technol. 2017;5(3):461-468.

[3]

Sharifian R, Wagterveld RM, Digdaya IA, Xiang C, Vermaas DA. Electrochemical carbon dioxide capture to close the carbon cycle. Energy Environ Sci. 2021;14(2):781-814.

[4]

Hepburn C, Adlen E, Beddington J, et al. The technological and economic prospects for CO2 utilization and removal. Nature. 2019;575(7781):87-97.

[5]

Zhao P, Jiang H, Shen H, et al. Construction of low-coordination Cu−C2 single-atoms electrocatalyst facilitating the efficient electrochemical CO2 reduction to methane. Angew Chem Int Ed. 2023;62(49):e202314121.

[6]

Zhang Z, Yu L, Tu Y, et al. Unveiling the active site of metal-free nitrogen-doped carbon for electrocatalytic carbon dioxide reduction. Cell Rep Phys Sci. 2020;1(8):100145.

[7]

Wang K, Zhu Y, Gu M, et al. A derivative of ZnIn2S4 nanosheet supported Pd boosts selective CO2 hydrogenation. Adv Funct Mater. 2023;33(30):2215148.

[8]

Li Z, Qi X, Wang J, et al. Stabilizing highly active atomically dispersed NiN4Cl sites by Cl-doping for CO2 electroreduction. SusMat. 2023;3(4):498-509.

[9]

Liu G, Li X, Liu M, et al. Dimensional engineering of covalent organic frameworks derived carbons for electrocatalytic carbon dioxide reduction. SusMat. 2023;3(6):834-842.

[10]

Rochelle GT. Amine scrubbing for CO2 capture. Science. 2009;325(5948):1652.

[11]

Nitopi S, Bertheussen E, Scott SB, et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem Rev. 2019;119(12):7610-7672.

[12]

Wakerley D, Lamaison S, Wicks J, et al. Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers. Nat Energy. 2022;7(2):130-143.

[13]

She X, Wang Y, Xu H, Tsang SCE, Lau SP. Challenges and opportunities in electrocatalytic CO2 reduction to chemicals and fuels. Angew Chem Int Ed. 2022;61(49):e202211396.

[14]

Sang J, Wei P, Liu T, et al. A reconstructed Cu2P2O7 catalyst for selective CO2 electroreduction to multicarbon products. Angew Chem Int Ed. 2022;61(5):e202114238.

[15]

Li W, Yin Z, Gao Z, et al. Bifunctional ionomers for efficient coelectrolysis of CO2 and pure water towards ethylene production at industrial-scale current densities. Nat Energy. 2022;7:835-843.

[16]

Zhang Z, Huang X, Chen Z, et al. Membrane electrode assembly for electrocatalytic CO2 reduction: principle and application. Angew Chem Int Ed. 2023;62(28):e202302789.

[17]

Zhang G, Li L, Zhao ZJ, Wang T, Gong J. Electrochemical approaches to CO2 conversion on copper-based catalysts. Acc Mater Res. 2023;4(3):212-222.

[18]

Li L, Li X, Sun Y, Xie Y. Rational design of electrocatalytic carbon dioxide reduction for a zero-carbon network. Chem Soc Rev. 2022;51(4):1234-1252.

[19]

Lv JJ, Yin R, Zhou L, et al. Microenvironment engineering for the electrocatalytic CO2 reduction reaction. Angew Chem Int Ed. 2022;61(39):e202207252.

[20]

Tao Z, Rooney CL, Liang Y, Wang H. Accessing organonitrogen compounds via C–N coupling in electrocatalytic CO2 reduction. J Am Chem Soc. 2021;143(47):19630-19642.

[21]

Li J, Zhang Y, Kuruvinashetti K, Kornienko N. Construction of C–N bonds from small-molecule precursors through heterogeneous electrocatalysis. Nat Rev Chem. 2022;6(5):303-319.

[22]

Zhang Y, Yu Q, Wang X, Guo W. Conversion of nitrogenous small molecules into value-added chemicals by building N–C bonds. Chem Eng J. 2023;474:145899.

[23]

Jiang H, Wu X, Zhang H, et al. Toward effective electrocatalytic C–N coupling for the synthesis of organic nitrogenous compounds using CO2 and biomass as carbon sources. SusMat. 2023;3(6):781-820.

[24]

Peng X, Zeng L, Wang D, et al. Electrochemical C–N coupling of CO2 and nitrogenous small molecules for the electrosynthesis of organonitrogen compounds. Chem Soc Rev. 2023;52(6):2193-2237.

[25]

Zhong Y, Xiong H, Low J, Long R, Xiong Y. Recent progress in electrochemical C–N coupling reactions. eScience. 2023;3(1):100086.

[26]

Liu S, Wang M, Cheng Q, et al. Turning waste into wealth: sustainable production of high-value-added chemicals from catalytic coupling of carbon dioxide and nitrogenous small molecules. ACS Nano. 2022;16(11):17911-17930.

[27]

Ye Y, Li Z, Ding S, Fu J, Liu H, Zhu W. Synergistic treatment of carbon dioxide and nitrogen-containing wastewater by electrochemical C–N coupling. iScience. 2023;26(7):107009.

[28]

Tang C, Qiao SZ. How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully. Chem Soc Rev. 2019;48(12):3166-3180.

[29]

Qing G, Ghazfar R, Jackowski ST, et al. Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chem Rev. 2020;120(12):5437-5516.

[30]

Liu Q, Xu T, Luo Y, et al. Recent advances in strategies for highly selective electrocatalytic N2 reduction toward ambient NH3 synthesis. Curr Opin Electrochem. 2021;29:100766.

[31]

Ouyang L, Liang J, Luo Y, et al. Recent advances in electrocatalytic ammonia synthesis. Chin J Catal. 2023;50:6-44.

[32]

Wan H, Wang X, Tan L, et al. Electrochemical synthesis of urea: co-reduction of nitric oxide and carbon monoxide. ACS Catal. 2023;13(3):1926-1933.

[33]

Xian J, Li S, Su H, et al. Electrocatalytic synthesis of essential amino acids from nitric oxide using atomically dispersed Fe on N-doped carbon. Angew Chem Int Ed. 2023;62(26):e202304007.

[34]

Zhang L, Liang J, Wang Y, et al. High-performance electrochemical NO reduction into NH3 by MoS2 nanosheet. Angew Chem Int Ed. 2021;60(48):25263-25268.

[35]

Liang J, Liu P, Li Q, et al. Amorphous boron carbide on titanium dioxide nanobelt arrays for high-efficiency electrocatalytic NO reduction to NH3. Angew Chem Int Ed. 2022;61(18):e202202087.

[36]

Yue L, Song W, Zhang L, et al. Recent advance in heterogenous electrocatalysts for highly selective nitrite reduction to ammonia under ambient condition. Small Struct. 2023;4(11):2300168.

[37]

Liang J, Li Z, Zhang L, et al. Advances in ammonia electrosynthesis from ambient nitrate/nitrite reduction. Chem. 2023;9(7):1768-1827.

[38]

Song W, Yue L, Fan X, et al. Recent progress and strategies on the design of catalysts for electrochemical ammonia synthesis from nitrate reduction. Inorg Chem Front. 2023;10(12):3489-3514.

[39]

Cao N, Quan Y, Guan A, et al. Oxygen vacancies enhanced cooperative electrocatalytic reduction of carbon dioxide and nitrite ions to urea. J Colloid Interface Sci. 2020;577:109-114.

[40]

Liu S, Yin S, Wang Z, et al. AuCu nanofibers for electrosynthesis of urea from carbon dioxide and nitrite. Cell Rep Phys Sci. 2022;3(5):100869.

[41]

Lv C, Zhong L, Liu H, et al. Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide. Nat Sustain. 2021;4(10):868-876.

[42]

Wei X, Liu Y, Zhu X, et al. Dynamic reconstitution between copper single atoms and clusters for electrocatalytic urea synthesis. Adv Mater. 2023;35(18):2300020.

[43]

Jiang M, Zhu M, Wang M, et al. Review on electrocatalytic coreduction of carbon dioxide and nitrogenous species for urea synthesis. ACS Nano. 2023;17(4):3209-3224.

[44]

Chen C, He N, Wang S. Electrocatalytic C–N coupling for urea synthesis. Small Sci. 2021;1(11):2100070.

[45]

Yu K, Wang H, Yu W, Li S, Zhang X, Bian Z. Resource utilization of carbon dioxide and nitrate to produce value-added organonitrogen compounds through an electrochemical approach. Appl Catal B Environ. 2024;341:123292.

[46]

Comer BM, Fuentes P, Dimkpa CO, et al. Prospects and challenges for solar fertilizers. Joule. 2019;3(7):1578-1605.

[47]

Rollinson AN, Jones J, Dupont V, Twigg MV. Urea as a hydrogen carrier: a perspective on its potential for safe, sustainable and long-term energy supply. Energy Environ Sci. 2011;4(4):1216-1224.

[48]

Zheng X, Yang J, Li P, et al. Dual-atom support boosts nickel-catalyzed urea electrooxidation. Angew Chem Int Ed. 2023;62(22):e202217449.

[49]

Schlögl R. Catalytic synthesis of ammonia—a “never-ending story”? Angew Chem Int Ed. 2003;42(18):2004-2008.

[50]

Soloveichik G. Electrochemical synthesis of ammonia as a potential alternative to the Haber–Bosch process. Nat Catal. 2019;2(5):377-380.

[51]

Giddey S, Badwal SPS, Kulkarni A. Review of electrochemical ammonia production technologies and materials. Int J Hydrogen Energy. 2013;38(34):14576-14594.

[52]

Kyriakou V, Garagounis I, Vourros A, Vasileiou E, Stoukides M. An electrochemical Haber–Bosch process. Joule. 2020;4(1):142-158.

[53]

Liu H. Ammonia synthesis catalyst 100 years: practice, enlightenment and challenge. Chin J Catal. 2014;35(10):1619-1640.

[54]

Wang Y, Chen D, Chen C, Wang S. Electrocatalytic urea synthesis via C–N coupling from CO2 and nitrogenous species. Acc Chem Res. 2024;57(2):247-256.

[55]

Chen C, Zhu X, Wen X, et al. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nat Chem. 2020;12(8):717-724.

[56]

Yuan M, Chen J, Bai Y, et al. Electrochemical C–N coupling with perovskite hybrids toward efficient urea synthesis. Chem Sci. 2021;12(17):6048-6058.

[57]

Yuan M, Chen J, Bai Y, et al. Unveiling electrochemical urea synthesis by co-activation of CO2 and N2 with Mott–Schottky heterostructure catalysts. Angew Chem Int Ed. 2021;60(19):10910-10918.

[58]

Yuan M, Chen J, Xu Y, et al. Highly selective electroreduction of N2 and CO2 to urea over artificial frustrated Lewis pairs. Energy Environ Sci. 2021;14(12):6605-6615.

[59]

Mukherjee J, Paul S, Adalder A, et al. Understanding the site-selective electrocatalytic co-reduction mechanism for green urea synthesis using copper phthalocyanine nanotubes. Adv Funct Mater. 2022;32(31):2200882.

[60]

Yuan M, Chen J, Zhang H, et al. Host–guest molecular interaction promoted urea electrosynthesis over a precisely designed conductive metal–organic framework. Energy Environ Sci. 2022;15(5):2084-2095.

[61]

Yuan M, Zhang H, Xu Y, et al. Artificial frustrated Lewis pairs facilitating the electrochemical N2 and CO2 conversion to urea. Chem Catal. 2022;2(2):309-320.

[62]

Jiao D, Dong Y, Cui X, et al. Boosting the efficiency of urea synthesis via cooperative electroreduction of N2 and CO2 on MoP. J Mater Chem A. 2023;11(1):232-240.

[63]

Lv Z, Zhou S, Zhao L, et al. Coactivation of multiphase reactants for the electrosynthesis of urea. Adv Energy Mater. 2023;13(25):2300946.

[64]

Pan L, Wang J, Lu F, et al. Single-atom or dual-atom in TiO2 nanosheet: which is the better choice for electrocatalytic urea synthesis? Angew Chem Int Ed. 2023;62(8):e202216835.

[65]

Zhang X, Zhu X, Bo S, et al. Electrocatalytic urea synthesis with 63.5% Faradaic efficiency and 100% N-selectivity via one-step C−N coupling. Angew Chem Int Ed. 2023;62(33):e202305447.

[66]

Mei Z, Zhou Y, Lv W, et al. Recent progress in electrocatalytic urea synthesis under ambient conditions. ACS Sustain Chem Eng. 2022;10(38):12477-12496.

[67]

Liu J, Smith SC, Gu Y, Kou L. C─N coupling enabled by N─N bond breaking for electrochemical urea production. Adv Funct Mater. 2023;33(47):2305894.

[68]

Wang Y, Mao J, Meng X, Yu L, Deng D, Bao X. Catalysis with two-dimensional materials confining single atoms: concept, design, and applications. Chem Rev. 2019;119(3):1806-1854.

[69]

Li R, Wang D. Superiority of dual-atom catalysts in electrocatalysis: one step further than single-atom catalysts. Adv Energy Mater. 2022;12(9):2103564.

[70]

Huang JR, Qiu XF, Zhao ZH, et al. Single-product Faradaic efficiency for electrocatalytic of CO2 to CO at current density larger than 1.2 A cm−2 in neutral aqueous solution by a single-atom nanozyme. Angew Chem Int Ed. 2022;61(44):e202210985.

[71]

Li K, Wang Y, Lu J, et al. Screening and mechanistic study of bimetallic catalysts for the electrosynthesis of urea from carbon dioxide and dinitrogen. Cell Rep Phys Sci. 2023;4(6):101435.

[72]

Zhang Z, Xiao J, Chen XJ, et al. Reaction mechanisms of well-defined metal–N4 sites in electrocatalytic CO2 reduction. Angew Chem Int Ed. 2018;57(50):16339-16342.

[73]

Wu Y, Jiang Z, Lu X, Liang Y, Wang H. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature. 2019;575(7784):639-642.

[74]

Zhong H, Wang M, Ghorbani-Asl M, et al. Boosting the electrocatalytic conversion of nitrogen to ammonia on metal-phthalocyanine-based two-dimensional conjugated covalent organic frameworks. J Am Chem Soc. 2021;143(47):19992-20000.

[75]

Ghorai UK, Paul S, Ghorai B, et al. Scalable production of cobalt phthalocyanine nanotubes: efficient and robust hollow electrocatalyst for ammonia synthesis at room temperature. ACS Nano. 2021;15(3):5230-5239.

[76]

Xu D, Zhang SN, Chen JS, Li XH. Design of the synergistic rectifying interfaces in Mott–Schottky catalysts. Chem Rev. 2023;123(1):1-30.

[77]

Zhang X, Wang Y, Wang Y, et al. Recent advances in electrocatalytic nitrite reduction. Chem Commun. 2022;58(17):2777-2787.

[78]

Shibata M, Yoshida K, Furuya N. Electrochemical synthesis of urea on reduction of carbon dioxide with nitrate and nitrite ions using Cu-loaded gas-diffusion electrode. J Electroanal Chem. 1995;387(1):143-145.

[79]

Feng Y, Yang H, Zhang Y, et al. Te-doped Pd nanocrystal for electrochemical urea production by efficiently coupling carbon dioxide reduction with nitrite reduction. Nano Lett. 2020;20(11):8282-8289.

[80]

Sun H, Yan Z, Liu F, Xu W, Cheng F, Chen J. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv Mater. 2020;32(3):1806326.

[81]

Meng N, Huang Y, Liu Y, Yu Y, Zhang B. Electrosynthesis of urea from nitrite and CO2 over oxygen vacancy-rich ZnO porous nanosheets. Cell Rep Phys Sci. 2021;2(3):100378.

[82]

Abascal E, Gómez-Coma L, Ortiz I, Ortiz A. Global diagnosis of nitrate pollution in groundwater and review of removal technologies. Sci Total Environ. 2022;810:152233.

[83]

Zheng M, Ma H, Li Z, et al. Theoretical insights on C–N coupling mechanism and guidance for screening the catalysts of electrocatalytic urea synthesis by descriptors. Appl Catal B Environ. 2024;342:123366.

[84]

Garcia-Segura S, Lanzarini-Lopes M, Hristovski K, Westerhoff P. Electrocatalytic reduction of nitrate: fundamentals to full-scale water treatment applications. Appl Catal B Environ. 2018;236:546-568.

[85]

Li X, Wu X, Lv X, Wang J, Wu HB. Recent advances in metal-based electrocatalysts with hetero-interfaces for CO2 reduction reaction. Chem Catal. 2022;2(2):262-291.

[86]

Shin S, Sultan S, Chen ZX, et al. Copper with an atomic-scale spacing for efficient electrocatalytic co-reduction of carbon dioxide and nitrate to urea. Energy Environ Sci. 2023;16(5):2003-2013.

[87]

Qiu M, Zhu X, Bo S, et al. Boosting electrocatalytic urea production via promoting asymmetric C–N coupling. CCS Chem. 2023;5(11):2617-2627.

[88]

Leverett J, Tran-Phu T, Yuwono JA, et al. Tuning the coordination structure of Cu–N–C single atom catalysts for simultaneous electrochemical reduction of CO2 and NO3 to urea. Adv Energy Mater. 2022;12(32):2201500.

[89]

Wang Y, Xia S, Zhang J, et al. Spatial management of CO diffusion on tandem electrode promotes NH2 intermediate formation for efficient urea electrosynthesis. ACS Energy Lett. 2023;8(8):3373-3380.

[90]

Zhao Y, Ding Y, Li W, et al. Efficient urea electrosynthesis from carbon dioxide and nitrate via alternating Cu–W bimetallic C–N coupling sites. Nat Commun. 2023;14(1):4491.

[91]

Zhang S, Geng J, Zhao Z, et al. High-efficiency electrosynthesis of urea over bacterial cellulose regulated Pd–Cu bimetallic catalyst. EES Catal. 2023;1(1):45-53.

[92]

Meng N, Ma X, Wang C, et al. Oxide-derived core–shell Cu@Zn nanowires for urea electrosynthesis from carbon dioxide and nitrate in water. ACS Nano. 2022;16(6):9095-9104.

[93]

Qin J, Liu N, Chen L, et al. Selective electrochemical urea synthesis from nitrate and CO2 using in situ Ru anchoring onto a three-dimensional copper electrode. ACS Sustain Chem Eng. 2022;10(48):15869-15875.

[94]

Fu S, Chu K, Guo M, et al. Ultrasonic-assisted hydrothermal synthesis of RhCu alloy nanospheres for electrocatalytic urea production. Chem Commun. 2023;59(29):4344-4347.

[95]

Liu Y, Tu X, Wei X, et al. C-bound or O-bound surface: which one boosts electrocatalytic urea synthesis? Angew Chem Int Ed. 2023;62(19):e202300387.

[96]

Luo Y, Xie K, Ou P, et al. Selective electrochemical synthesis of urea from nitrate and CO2 via relay catalysis on hybrid catalysts. Nat Catal. 2023;6(10):939-948.

[97]

Sun M, Wu G, Jiang J, et al. Carbon-anchored molybdenum oxide nanoclusters as efficient catalysts for the electrosynthesis of ammonia and urea. Angew Chem Int Ed. 2023;62(19):e202301957.

[98]

Geng J, Ji S, Jin M, et al. Ambient electrosynthesis of urea with nitrate and carbon dioxide over iron-based dual-sites. Angew Chem Int Ed. 2023;62(6):e202210958.

[99]

Lv C, Lee C, Zhong L, et al. A defect engineered electrocatalyst that promotes high-efficiency urea synthesis under ambient conditions. ACS Nano. 2022;16(5):8213-8222.

[100]

Wei X, Wen X, Liu Y, et al. Oxygen vacancy-mediated selective C–N coupling toward electrocatalytic urea synthesis. J Am Chem Soc. 2022;144(26):11530-11535.

[101]

Zhang X, Zhu X, Bo S, et al. Identifying and tailoring C–N coupling site for efficient urea synthesis over diatomic Fe–Ni catalyst. Nat Commun. 2022;13(1):5337.

[102]

Li N, Gao H, Liu Z, et al. Metalphthalocyanine frameworks grown on TiO2 nanotubes for synergistically and efficiently electrocatalyzing urea production from CO2 and nitrate. Sci China Chem. 2023;66(5):1417-1424.

[103]

Liu X, Kumar PV, Chen Q, et al. Carbon nanotubes with fluorine-rich surface as metal-free electrocatalyst for effective synthesis of urea from nitrate and CO2. Appl Catal B Environ. 2022;316:121618.

[104]

Tu X, Zhu X, Bo S, et al. A universal approach for sustainable urea synthesis via intermediate assembly at the electrode/electrolyte interface. Angew Chem Int Ed. 2024;63(3):e202317087.

[105]

Li Y, Zheng S, Liu H, et al. Sequential co-reduction of nitrate and carbon dioxide enables selective urea electrosynthesis. Nat Commun. 2024;15(1):176.

[106]

Wang J, Tan HY, Zhu Y, Chu H, Chen HM. Linking the dynamic chemical state of catalysts with the product profile of electrocatalytic CO2 reduction. Angew Chem Int Ed. 2021;60(32):17254-17267.

[107]

Li X, Wang S, Li L, Sun Y, Xie Y. Progress and perspective for in situ studies of CO2 reduction. J Am Chem Soc. 2020;142(21):9567-9581.

[108]

Yang GL, Hsieh CT, Ho YS, et al. Gaseous CO2 coupling with N-containing intermediates for key C–N bond formation during urea production from coelectrolysis over Cu. ACS Catal. 2022;12(18):11494-11504.

[109]

Zhang Y, Wang Y, Han L, et al. Nitrite electroreduction to ammonia promoted by molecular carbon dioxide with near-unity Faradaic efficiency. Angew Chem Int Ed. 2023;62(3):e202213711.

[110]

Guo M, Fang L, Zhang L, et al. Pulsed electrocatalysis enabling high overall nitrogen fixation performance for atomically dispersed Fe on TiO2. Angew Chem Int Ed. 2023;62(13):e202217635.

[111]

Zhang S, Wu J, Zheng M, et al. Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia. Nat Commun. 2023;14(1):3634.

[112]

Chen S, Li X, Kao CW, et al. Unveiling the proton-feeding effect in sulfur-doped Fe−N−C single-atom catalyst for enhanced CO2 electroreduction. Angew Chem Int Ed. 2022;61(32):e202206233.

[113]

Zhang Z, Ma C, Tu Y, et al. Multiscale carbon foam confining single iron atoms for efficient electrocatalytic CO2 reduction to CO. Nano Res. 2019;12(9):2313-2317.

[114]

Wang H, Jiang Y, Li S, et al. Realizing efficient C–N coupling via electrochemical co-reduction of CO2 and NO3− on AuPd nanoalloy to form urea: key C–N coupling intermediates. Appl Catal B Environ. 2022;318:121819.

[115]

Liu C, Tong H, Wang P, et al. The asymmetric orbital hybridization in single-atom-dimers for urea synthesis by optimizing the C–N coupling reaction pathway. Appl Catal B Environ. 2023;336:122917.

[116]

Lanigan RM, Sheppard TD. Recent developments in amide synthesis: direct amidation of carboxylic acids and transamidation reactions. Eur J Org Chem. 2013;2013(33):7453-7465.

[117]

Lundberg H, Tinnis F, Selander N, Adolfsson H. Catalytic amide formation from non-activated carboxylic acids and amines. Chem Soc Rev. 2014;43(8):2714-2742.

[118]

Li J, Kornienko N. Electrochemically driven C–N bond formation from CO2 and ammonia at the triple-phase boundary. Chem Sci. 2022;13(14):3957-3964.

[119]

Kuang S, Xiao T, Chi H, et al. Acetamide electrosynthesis from CO2 and nitrite in water. Angew Chem Int Ed. 2024;63:e202316772.

[120]

Tao Z, Wu Y, Wu Z, Shang B, Rooney C, Wang H. Cascade electrocatalytic reduction of carbon dioxide and nitrate to ethylamine. J Energy Chem. 2022;65:367-370.

[121]

Rabinowitz JA, Kanan MW. The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem. Nat Commun. 2020;11(1):5231.

[122]

Disch J, Bohn L, Koch S, et al. High-resolution neutron imaging of salt precipitation and water transport in zero-gap CO2 electrolysis. Nat Commun. 2022;13(1):6099.

[123]

Sassenburg M, Kelly M, Subramanian S, Smith WA, Burdyny T. Zero-gap electrochemical CO2 reduction cells: challenges and operational strategies for prevention of salt precipitation. ACS Energy Lett. 2023;8(1):321-331.

[124]

Ozden A, Wang Y, Li F, et al. Cascade CO2 electroreduction enables efficient carbonate-free production of ethylene. Joule. 2021;5(3):706-719.

[125]

Li L, Liu Z, Yu X, Zhong M. Achieving high single-pass carbon conversion efficiencies in durable CO2 electroreduction in strong acids via electrode structure engineering. Angew Chem Int Ed. 2023;62(21):e202300226.

[126]

Jouny M, Lv JJ, Cheng T, et al. Formation of carbon–nitrogen bonds in carbon monoxide electrolysis. Nat Chem. 2019;11(9):846-851.

[127]

Wang Z, Zhou Y, Liu D, et al. Carbon-confined indium oxides for efficient carbon dioxide reduction in a solid-state electrolyte flow cell. Angew Chem Int Ed. 2022;61(21):e202200552.

[128]

Liu Z, Lv X, Zhang J, et al. Hydroxy-group-enriched In2O3 facilitates CO2 electroreduction to formate at large current densities. Adv Mater Interfaces. 2022;9(6):2101956.

[129]

Ma X, Zhang Y, Fan T, et al. Facet dopant regulation of Cu2O boosts electrocatalytic CO2 reduction to formate. Adv Funct Mater. 2023;33(16):2213145.

[130]

Guo C, Zhou W, Lan X, et al. Electrochemical upgrading of formic acid to formamide via coupling nitrite co-reduction. J Am Chem Soc. 2022;144(35):16006-16011.

[131]

Corbin DR, Schwarz S, Sonnichsen GC. Methylamines synthesis: a review. Catal Today. 1997;37(2):71-102.

[132]

Wu Y, Jiang Z, Lin Z, Liang Y, Wang H. Direct electrosynthesis of methylamine from carbon dioxide and nitrate. Nat Sustain. 2021;4(8):725-730.

[133]

Jing H, Long J, Li H, Fu X, Xiao J. Computational insights on electrocatalytic synthesis of methylamine from nitrate and carbon dioxide. ACS Catal. 2023;13(15):9925-9935.

[134]

Bähn S, Imm S, Neubert L, Zhang M, Neumann H, Beller M. The catalytic amination of alcohols. ChemCatChem. 2011;3(12):1853-1864.

[135]

Hayes KS. Industrial processes for manufacturing amines. Appl Catal A Gen. 2001;221(1):187-195.

[136]

Xu L, Tan X, He ZH, et al. Emerging green catalytic synthesis of biomolecules from CO2 and/or nitrogenous small molecules. Matter. 2024;7(1):59-81.

[137]

Fang Y, Liu X, Liu Z, et al. Synthesis of amino acids by electrocatalytic reduction of CO2 on chiral Cu surfaces. Chem. 2023;9(2):460-471.

[138]

Wu R, Li F, Cui X, et al. Enzymatic electrosynthesis of glycine from CO2 and NH3. Angew Chem Int Ed. 2023;62(14):e202218387.

[139]

Lan J, Wei Z, Lu YR, et al. Efficient electrosynthesis of formamide from carbon monoxide and nitrite on a Ru-dispersed Cu nanocluster catalyst. Nat Commun. 2023;14(1):2870.

[140]

Kim JE, Jang JH, Lee KM, et al. Electrochemical synthesis of glycine from oxalic acid and nitrate. Angew Chem Int Ed. 2021;60(40):21943-21951.

[141]

Jiang N, Zhu Z, Xue W, Xia BY, You B. Emerging electrocatalysts for water oxidation under near-neutral CO2 reduction conditions. Adv Mater. 2022;34(2):2105852.

[142]

Yan D, Mebrahtu C, Wang S, Palkovits R. Innovative electrochemical strategies for hydrogen production: from electricity input to electricity output. Angew Chem Int Ed. 2023;62(16):e202214333.

[143]

Yamaguchi K, Kobayashi H, Oishi T, Mizuno N. Heterogeneously catalyzed synthesis of primary amides directly from primary alcohols and aqueous ammonia. Angew Chem Int Ed. 2012;51(2):544-547.

[144]

Meng N, Shao J, Li H, et al. Electrosynthesis of formamide from methanol and ammonia under ambient conditions. Nat Commun. 2022;13(1):5452.

[145]

Shao J, Meng N, Wang Y, et al. Scalable electrosynthesis of formamide through C−N coupling at the industrially relevant current density of 120 mA cm−2. Angew Chem Int Ed. 2022;61(44):e202213009.

[146]

Lu Y, Li Y, Zhou B, et al. Anodic electrosynthesis of amide from alcohol and ammonia. CCS Chem. 2024;6(1):125-136.

[147]

Zhao S, Yang Y, Tang Z. Insight into structural evolution, active sites, and stability of heterogeneous electrocatalysts. Angew Chem Int Ed. 2022;61(11):e202110186.

[148]

Lai W, Ma Z, Zhang J, Yuan Y, Qiao Y, Huang H. Dynamic evolution of active sites in electrocatalytic CO2 reduction reaction: fundamental understanding and recent progress. Adv Funct Mater. 2022;32(16):2111193.

[149]

Xu Y, Yang H, Chang X, Xu B. Introduction to electrocatalytic kinetics. Acta Phys-Chim Sin. 2022;39:2210025.

[150]

Yuan T, Voznyy O. Guidelines for reliable urea detection in electrocatalysis. Cell Rep Phys Sci. 2023;4(8):101521.

RIGHTS & PERMISSIONS

2024 The Authors. SusMat published by Sichuan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

199

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/