A three-way electrolyte with ternary solvents for high-energy-density and long-cycling lithium–sulfur pouch cells

Zheng Li , Legeng Yu , Chen-Xi Bi , Xi-Yao Li , Jin Ma , Xiang Chen , Xue-Qiang Zhang , Aibing Chen , Haoting Chen , Zuoru Zhang , Li-Zhen Fan , Bo-Quan Li , Cheng Tang , Qiang Zhang

SusMat ›› 2024, Vol. 4 ›› Issue (2) : e191

PDF
SusMat ›› 2024, Vol. 4 ›› Issue (2) : e191 DOI: 10.1002/sus2.191
RESEARCH ARTICLE

A three-way electrolyte with ternary solvents for high-energy-density and long-cycling lithium–sulfur pouch cells

Author information +
History +
PDF

Abstract

Lithium–sulfur (Li–S) batteries promise high-energy-density potential to exceed the commercialized lithium-ion batteries but suffer from limited cycling lifespan due to the side reactions between lithium polysulfides (LiPSs) and Li metal anodes. Herein, a three-way electrolyte with ternary solvents is proposed to enable high-energy-density and long-cycling Li–S pouch cells. Concretely, ternary solvents composed of 1,2-dimethoxyethane, di-isopropyl sulfide, and 1,3,5-trioxane are employed to guarantee smooth cathode kinetics, inhibit the parasitic reactions, and construct a robust solid electrolyte interphase, respectively. The cycling lifespan of Li–S coin cells with 50 µm Li anodes and 4.0 mg cm−2 sulfur cathodes is prolonged from 88 to 222 cycles using the three-way electrolyte. Nano-heterogeneous solvation structure of LiPSs and organic-rich solid electrolyte interphase are identified to improve the cycling stability of Li metal anodes. Consequently, a 3.0 Ah-level Li–S pouch cell with the three-way electrolyte realizes a high energy density of 405 Wh kg−1 and undergoes 27 cycles. This work affords a three-way electrolyte recipe for suppressing the side reactions of LiPSs and inspires rational electrolyte design for practical high-energy-density and long-cycling Li–S batteries.

Keywords

lithium metal anodes / lithium–sulfur batteries / pouch cells / solid electrolyte interphase / three-way electrolyte

Cite this article

Download citation ▾
Zheng Li, Legeng Yu, Chen-Xi Bi, Xi-Yao Li, Jin Ma, Xiang Chen, Xue-Qiang Zhang, Aibing Chen, Haoting Chen, Zuoru Zhang, Li-Zhen Fan, Bo-Quan Li, Cheng Tang, Qiang Zhang. A three-way electrolyte with ternary solvents for high-energy-density and long-cycling lithium–sulfur pouch cells. SusMat, 2024, 4(2): e191 DOI:10.1002/sus2.191

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414(6861):359-367.

[2]

Chu S, Cui Y, Liu N. The path towards sustainable energy. Nat Mater. 2017;16(1):16-22.

[3]

Manthiram A, Fu Y, Chung S-H, Zu C, Su Y-S. Rechargeable lithium–sulfur batteries. Chem Rev. 2014;114(23):11751-11787.

[4]

Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M. Li–O2 and Li–S batteries with high energy storage. Nat Mater. 2012;11(1):19-29.

[5]

Chen Z-X, Zhao M, Hou L-P, Zhang X-Q, Li B-Q, Huang J-Q. Toward practical high-energy-density lithium–sulfur pouch cells: a review. Adv Mater. 2022;34(35):2201555.

[6]

Wang S, Feng S, Liang J, et al. Insight into MoS2–MoN heterostructure to accelerate polysulfide conversion toward high-energy-density lithium–sulfur batteries. Adv Energy Mater. 2021;11(11):2003314.

[7]

He B, Rao Z, Cheng Z, et al. Rationally design a sulfur cathode with solid-phase conversion mechanism for high cycle-stable Li–S batteries. Adv Energy Mater. 2021;11(14):2003690.

[8]

Feng S, Fu Z-H, Chen X, Zhang Q. A review on theoretical models for lithium–sulfur battery cathodes. InfoMat. 2022;4(3):e12304.

[9]

Yeon JS, Ko YH, Park TH, Park H, Kim J, Park HS. Multidimensional hybrid architecture encapsulating cobalt oxide nanoparticles into carbon nanotube branched nitrogen-doped reduced graphene oxide networks for lithium–sulfur batteries. Energy Environ Mater. 2022;5(2):555-564.

[10]

Shen L, Song Y-W, Wang J, et al. Synergistic catalysis on dual-atom sites for high-performance lithium–sulfur batteries. Small Struct. 2022;4(6):2200205.

[11]

Zhang T, Shao W, Liu S, et al. A flexible design strategy to modify Ti3C2Tx MXene surface terminations via nucleophilic substitution for long-life Li–S batteries. J Energy Chem. 2022;74:349-358.

[12]

Song Y-W, Qin J-L, Zhao C-X, et al. The formation of crystalline lithium sulfide on electrocatalytic surfaces in lithium–sulfur batteries. J Energy Chem. 2022;64:568-573.

[13]

Liu Q, Han X, Zheng Z, et al. Crystallinity regulated functional separator based on bimetallic NixFey alloy nanoparticles for facilitated redox kinetics of lithium–sulfur batteries. Adv Funct Mater. 2022;32(47):2207094.

[14]

Elabd A, Kim J, Sethio D, et al. Dual functional high donor electrolytes for lithium–sulfur batteries under lithium nitrate free and lean electrolyte conditions. ACS Energy Lett. 2022;7(8):2459-2468.

[15]

Song Y-W, Shen L, Yao N, et al. Cationic lithium polysulfides in lithium–sulfur batteries. Chem. 2022;8(11):3031-3050.

[16]

Zhao C-X, Chen W-J, Zhao M, et al. Redox mediator assists electron transfer in lithium–sulfur batteries with sulfurized polyacrylonitrile cathodes. EcoMat. 2021;3(1):e12066.

[17]

Cheng Q, Chen Z-X, Li X-Y, et al. Constructing a 700 Wh kg−1-level rechargeable lithium–sulfur pouch cell. J Energy Chem. 2023;76:181-186.

[18]

Zhao M, Li BQ, Peng HJ, Yuan H, Wei JY, Huang JQ. Lithium–sulfur batteries under lean electrolyte conditions: challenges and opportunities. Angew Chem Int Ed. 2019;59(31):12636-12652.

[19]

Cai Y, Jin Q, Zhao K, Ma X, Zhang X. Mitigating side reaction for high capacity retention in lithium–sulfur batteries. Chin Chem Lett. 2022;33(1):457-461.

[20]

Bi C-X, Hou L-P, Li Z, et al. Protecting lithium metal anodes in lithium–sulfur batteries: a review. Energy Mater Adv. 2023;4(31):0010.

[21]

Peng L, Wei Z, Wan C, et al. A fundamental look at electrocatalytic sulfur reduction reaction. Nat Catal. 2020;3(9):762-770.

[22]

Zhang B, Wu J, Gu J, Li S, Yan T, Gao X-P. The fundamental understanding of lithium polysulfides in ether-based electrolyte for lithium–sulfur batteries. ACS Energy Lett. 2021;6(2):537-546.

[23]

Richter R, Häcker J, Zhao-Karger Z, et al. Insights into self-discharge of lithium– and magnesium–sulfur batteries. ACS Appl Energy Mater. 2020;3(9):8457-8474.

[24]

Yemini R, Noked M. Effect of polysulfide species on lithium anode cycle life and reversibility in Li–S batteries. ACS Appl Energy Mater. 2021;4(5):4711-4718.

[25]

Tao T, Lu SG, Fan Y, Lei WW, Huang SM, Chen Y. Anode improvement in rechargeable lithium–sulfur batteries. Adv Mater. 2017;29(48):1700542.

[26]

Chen X-R, Yan C, Ding J-F, Peng H-J, Zhang Q. New insights into “dead lithium” during stripping in lithium metal batteries. J Energy Chem. 2021;62:289-294.

[27]

Cui J, Zhan T-G, Zhang K-D, Chen D. The recent advances in constructing designed electrode in lithium metal batteries. Chin Chem Lett. 2017;28(12):2171-2179.

[28]

Xu X-Q, Cheng X-B, Jiang F-N, et al. Dendrite-accelerated thermal runaway mechanisms of lithium metal pouch batteries. SusMat. 2022;2(4):435-444.

[29]

Li Z, Hou L-P, Zhang X-Q, et al. A Nafion protective layer for stabilizing lithium metal anodes in working lithium–sulfur batteries. Battery Energy. 2022;1(3):20220006.

[30]

Jiang F-N, Yang S-J, Liu H, et al. Mechanism understanding for stripping electrochemistry of Li metal anode. SusMat. 2021;1(4):506-536.

[31]

Lang S, Feng X, Seok J, et al. Lithium–sulfur redox: challenges and opportunities. Curr Opin Electrochem. 2021;25:100652.

[32]

Chen Z-X, Hou L-P, Bi C-X, et al. Failure analysis of high-energy-density lithium‒sulfur pouch cells. Energy Storage Mater. 2022;53:315-321.

[33]

Liu Y, Elias Y, Meng J, et al. Electrolyte solutions design for lithium–sulfur batteries. Joule. 2021;5(9):2323-2364.

[34]

Liu G, Sun Q, Li Q, Zhang J, Ming J. Electrolyte issues in lithium–sulfur batteries: development, prospect, and challenges. Energy Fuels. 2021;35(13):10405-10427.

[35]

Gao Y-C, Yao N, Chen X, Yu L, Zhang R, Zhang Q. Data-driven insight into the reductive stability of ion–solvent complexes in lithium battery electrolytes. J Am Chem Soc. 2023;145(43):23764-23770.

[36]

Hou L-P, Zhang X-Q, Li B-Q, Zhang Q. Challenges and promises of lithium metal anode by soluble polysulfides in practical lithium–sulfur batteries. Mater Today. 2021;45:62-76.

[37]

Zhong N, Lei C, Meng R, Li J, He X, Liang X. Electrolyte solvation chemistry for the solution of high-donor-number solvent for stable Li–S batteries. Small. 2022;18(16):2200046.

[38]

Li Z, Zhou Y, Wang Y, Lu Y-C. Solvent-mediated Li2S electrodeposition: a critical manipulator in lithium–sulfur batteries. Adv Energy Mater. 2019;9(1):1802207.

[39]

Lac LC, Zavadil KR, Gewirth AA, Shao Y, Gallagher KG. Sparingly solvating electrolytes for high energy density lithium−sulfur batteries. ACS Energy Lett. 2016;1(3):503-509.

[40]

Park J-W, Ueno K, Tachikawa N, Dokko K, Watanabe M. Ionic liquid electrolytes for lithium–sulfur batteries. J Phys Chem C. 2013;117(40):20531-20541.

[41]

Dokko K, Tachikawa N, Yamauchi K, et al. Solvate ionic liquid electrolyte for Li–S batteries. J Electrochem Soc. 2013;160(8):A1304.

[42]

Cuisinier M, Cabelguen PE, Adams BD, Garsuch A, Balasubramanian M, Nazar LF. Unique behaviour of nonsolvents for polysulphides in lithium–sulphur batteries. Energy Environ Sci. 2014;7(8):2697-2705.

[43]

He M, Li X, Yang X, et al. Realizing solid-phase reaction in Li–S batteries via localized high-concentration carbonate electrolyte. Adv Energy Mater. 2021;11(31):2101004.

[44]

Yu Z, Rudnicki PE, Zhang Z, et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat Energy. 2022;7(1):94-106.

[45]

Hou L-P, Zhang X-Q, Yao N, et al. An encapsulating lithium-polysulfide electrolyte for practical lithium–sulfur batteries. Chem. 2022;8(4):1083-1098.

[46]

Hou LP, Li Z, Yao N, et al. Weakening the solvating power of solvents to encapsulate lithium polysulfides enables long-cycling lithium–sulfur batteries. Adv Mater. 2022;34(45):2205284.

[47]

Zhang X-Q, Cheng X-B, Zhang Q. Advances in interfaces between Li metal anode and electrolyte. Adv Mater Interfaces. 2018;5(2):1701097.

[48]

Wang D-Y, Wang W, Li F, Li X, Guo W, Fu Y. Nitrogen-rich azoles as trifunctional electrolyte additives for high-performance lithium–sulfur battery. J Energy Chem. 2022;71:572-579.

[49]

Yao Y-X, Zhang X-Q, Li B-Q, et al. A compact inorganic layer for robust anode protection in lithium–sulfur batteries. InfoMat. 2020;2(2):379-388.

[50]

Aurbach D, Pollak E, Elazari R, Salitra G, Kelley CS, Affinito J. On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. J Electrochem Soc. 2009;156(8):A694.

[51]

Hou L-P, Li X-Y, Bi C-X, et al. Constructing lithium oxysulfide-rich solid electrolyte interphase to shield polysulfides in practical lithium–sulfur batteries. J Power Sources. 2022;550:232144.

[52]

Ren Y, Bhargav A, Shin W, Sul H, Manthiram A. Anode-free lithium–sulfur cells enabled by rationally tuning lithium polysulfide molecules. Angew Chem Int Ed. 2022;61(35):e202207907.

[53]

Ma J-L, Meng F-L, Yu Y, et al. Prevention of dendrite growth and volume expansion to give high-performance aprotic bimetallic Li–Na alloy–O2 batteries. Nat Chem. 2019;11(1):64-70.

[54]

Hou L-P, Li Y, Li Z, et al. Electrolyte design for improving mechanical stability of solid electrolyte interphase in lithium–sulfur batteries. Angew Chem Int Ed. 2023;62(32):e202305466.

[55]

Li Z, Li Y, Bi C-X, et al. Construction of organic-rich solid electrolyte interphase for long-cycling lithium–sulfur batteries. Adv Funct Mater. 2023;33:2304541.

[56]

Liu T, Li H, Yue J, et al. Ultralight electrolyte for high-energy lithium-sulfur pouch cells. Angew Chem Int Ed. 2021;60(32):17547-17555.

[57]

Xue W, Shi Z, Suo L, et al. Intercalation-conversion hybrid cathodes enabling Li–S full-cell architectures with jointly superior gravimetric and volumetric energy densities. Nat Energy. 2019;4(5):374-382.

[58]

Ye Y, Wu F, Liu Y, et al. Toward practical high-energy batteries: a modular-assembled oval-like carbon microstructure for thick sulfur electrodes. Adv Mater. 2017;29(48):1700598.

[59]

Shi L, Bak S-M, Shadike Z, et al. Reaction heterogeneity in practical high-energy lithium–sulfur pouch cells. Energy Environ Sci. 2020;13(10):3620-3632.

[60]

Zhao M, Li B-Q, Chen X, Xie J, Yuan H, Huang J-Q. Redox comediation with organopolysulfides in working lithium–sulfur batteries. Chem. 2020;6(12):3297-3311.

[61]

Sun W, Liu S, Li Y, et al. Monodispersed FeS2 electrocatalyst anchored to nitrogen-doped carbon host for lithium–sulfur batteries. Adv Funct Mater. 2022;32(43):2205471.

RIGHTS & PERMISSIONS

2024 The Authors. SusMat published by Sichuan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

212

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/