Understanding and unveiling the electro-chemo-mechanical behavior in solid-state batteries

Yunlei Zhong , Xia Zhang , Yong Zhang , Peng Jia , Yuebin Xi , Lixing Kang , Zhenjiang Yu

SusMat ›› 2024, Vol. 4 ›› Issue (2) : e190

PDF
SusMat ›› 2024, Vol. 4 ›› Issue (2) : e190 DOI: 10.1002/sus2.190
REVIEW

Understanding and unveiling the electro-chemo-mechanical behavior in solid-state batteries

Author information +
History +
PDF

Abstract

Solid-state batteries (SSBs) are attracting growing interest as long-lasting, thermally resilient, and high-safe energy storage systems. As an emerging area of battery chemistry, there are many issues with SSBs, including strongly reductive lithium anodes, oxidized cathodes (state of charge), the thermodynamic stability limits of solid-state electrolytes (SSEs), and the ubiquitous and critical interfaces. In this Review, we provided an overview of the main obstacles in the development of SSBs, such as the lithium anode|SSEs interface, the cathode|SSEs interface, lithium-ion transport in the SSEs, and the root origin of lithium intrusions, as well as the safety issues caused by the dendrites. Understanding and overcoming these obstacles are crucial but also extremely challenging as the localized and buried nature of the intimate contact between electrode and SSEs makes direct detection difficult. We reviewed advanced characterization techniques and discussed the complex ion/electron-transport mechanism that have been plaguing electrochemists. Finally, we focused on studying and revealing the coupled electro-chemo-mechanical behavior occurring in the lithium anode, cathode, SSEs, and beyond.

Keywords

advanced characterization techniques / chemo-mechanical effects / interface

Cite this article

Download citation ▾
Yunlei Zhong, Xia Zhang, Yong Zhang, Peng Jia, Yuebin Xi, Lixing Kang, Zhenjiang Yu. Understanding and unveiling the electro-chemo-mechanical behavior in solid-state batteries. SusMat, 2024, 4(2): e190 DOI:10.1002/sus2.190

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yu Z, Zhang X, Fu C, et al. Dendrites in solid-state batteries: ion transport behavior, advanced characterization, and interface regulation. Adv Energy Mater. 2021;11(18):2003250.

[2]

Krauskopf T, Richte F, Zeier W, et al. Physicochemical concepts of the lithium metal anode in solid-state batteries. Chem Rev. 2020;120(15):7745–7794.

[3]

Huo H, Janek J. Silicon as emerging anode in solid-state batteries. ACS Energy Lett. 2022;7(11):4005-4016.

[4]

Singh DK, Henss A, Mogwitz B, et al. Li6PS5Cl microstructure and influence on dendrite growth in solid-state batteries with lithium metal anode. Cell Rep Phys Sci. 2022;3(9):101043.

[5]

Janek J, Zeier W. Challenges in speeding up solid-state battery development. Nat Energy. 2023;8(3):230-240.

[6]

Xu L, Lu Y, Zhao C, et al. Toward the scale-up of solid-state lithium metal batteries: the gaps between lab-level cells and practical large-format batteries. Adv Energy Mater. 2021;11(4):2002360.

[7]

Lou S, Liu Q, Zhang F, et al. Insights into interfacial effect and local lithium-ion transport in polycrystalline cathodes of solid-state batteries. Nat Commun. 2020;11(1):5700.

[8]

Jiang F, Yang S, Liu H, et al. Mechanism understanding for stripping electrochemistry of Li metal anode. Sustain Mater. 2021;1(4):506-536.

[9]

Zhang H, Chen Y, Li C, et al. Electrolyte and anode-electrolyte interphase in solid-state lithium metal polymer batteries: a perspective. Sustain Mater. 2021;1(1):24-37.

[10]

Jangid M, Davis A, Liao D, et al. Improved rate capability in composite solidstate battery electrodes using 3-D architectures. ACS Energy Lett. 2023;8(6):2522-2531.

[11]

Vishnugopi B, Kazyak E, Lewis J, et al. Challenges and opportunities for fast charging of solid-state lithium metal batteries. ACS Energy Lett. 2021;6(10):3734-3749.

[12]

Kim K, Balaish J, Wadaguchi M, et al. Solid-state Li-metal batteries: challenges and horizons of oxide and sulfide solid electrolytes and their interfaces. Adv Energy Mater. 2021;11(1):2002689.

[13]

He Y, Lu C, Liu S, et al. Interfacial incompatibility and internal stresses in all-solid-state lithium ion batteries. Adv Energy Mater. 2019;9(36):1901810.

[14]

Han S, Kil D, Lee S, et al. A full oxide-based solid-state lithium battery and its unexpected cathode degradation mechanism. ACS Energy Lett. 2023;8(11):4794-4805.

[15]

Lewis A, Tippens J, Cortes Q, et al. Chemo-mechanical challenges in solid-state batteries. Trends Chem. 2019;1(9):845-857.

[16]

Porz L, Swamy T, Sheldon W, et al. Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv Energy Mater. 2017;7(20):1701003.

[17]

Hatzell KB, Chen XC, Cobb CL, et al. Challenges in lithium metal anodes for solid-state batteries. ACS Energy Lett.2020;5(3):922-934.

[18]

Cronk A, Chen YT, Deysher G, et al. Overcoming the interfacial challenges of LiFePO4 in inorganic all-solid-state batteries. ACS Energy Lett. 2023;8(1):827-835.

[19]

Koerver R, Aygün I, Leichtweiß T, et al. Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes. Chem Mater. 2017;29(13):5574-5582.

[20]

Sakuda A, Hayashi A, Tatsumisago M. Interfacial observation between LiCoO2 electrode and Li2S−P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy. Chem Mater. 2010;22(3):949-956.

[21]

Meng YS, Srinivasan V, Xu K. Designing better electrolytes. Science. 2022;378(6624):eabq3750.

[22]

Monroe C, Newman J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J Electrochem Soc. 2005;152(2):A396.

[23]

Monroe C, Newman J. Dendrite growth in lithium/polymer systems: a propagation model for liquid electrolytes under galvanostatic conditions. J Electrochem Soc. 2003;150(2):A1377.

[24]

Ni JE, Case ED, Sakamoto JS, et al. Room temperature elastic moduli and Vickers hardness of hot-pressed LLZO cubic garnet. J Mater Sci. 2012;47(23):7978-7985.

[25]

Yu S, Schmidt RD, Garcia-Mendez R, et al. Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO). Chem Mater. 2016;28(1):197-206.

[26]

Lu Y, Zhao CZ, Yuan H, et al. Critical current density in solid-state lithium metal batteries: mechanism, influences, and strategies. Adv Funct Mater. 2021;31(18):2009925.

[27]

Krauskopf T, Hartmann H, Zeier W, et al. Toward a fundamental understanding of the lithium metal anode in solid-state batteries an electrochemo-mechanical study on the Garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12. ACS Appl Mater Interfaces. 2019;11(15):14463–14477.

[28]

Lu Y, Zhao C, Hu J, et al. The void formation behaviors in working solid-state Li metal batteries. Sci Adv. 2022;8(45):eadd0510.

[29]

Vishnugopi B, Naik K, Kawakami H, et al. Asymmetric contact loss dynamics during plating and stripping in solid-state batteries. Adv Energy Mater. 2023;13(8):2203671.

[30]

Kasemchainan J, Zekoll1 S, Jolly DS, et al. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nat Mater. 2019;18(10):1105-1111.

[31]

Wan H, Liu S, Deng T, et al. Bifunctional interphase-enabled Li10GeP2S12 electrolytes for lithium–sulfur battery. ACS Energy Lett. 2021;6(3):862-868.

[32]

Doux JM, Nguyen H, Tan DHS, et al. Stack pressure considerations for room-temperature all-solid-state lithium metal batteries. Adv Energy Mater. 2020;10(2):1903253.

[33]

Ferrese A, Newman J. Mechanical deformation of a lithium-metal anode due to a very stiff separator. J Electrochem Soc. 2014;161(9):A1350.

[34]

Han F, Westover AS, Yue J, et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat Energy. 2019;4(3):187-196.

[35]

Wang MJ, Choudhury R, Sakamoto J. Characterizing the Li-solid-electrolyte interface dynamics as a function of stack pressure and current density. Joule. 2019;3(9):2165-2178.

[36]

Monroe C, Newman J. The effect of interfacial deformation on electrodeposition kinetics. J Electrochem Soc. 2004;151(6):A880.

[37]

Barai P, Higa K, Srinivasan V, et al. Lithium dendrite growth mechanisms in polymer electrolytes and prevention strategies. Phys Chem Chem Phys. 2017;19(4):20493-20505.

[38]

Liu H, Cheng XB, Huang JQ, et al. Controlling dendrite growth in solid-state electrolytes. ACS Energy Lett. 2020;5(3):833-843.

[39]

Westover AS, Dudney NJ, Sacci RL, et al. Deposition and confinement of Li metal along an artificial lipon–lipon interface. ACS Energy Lett. 2019;4(3):651-655.

[40]

McConohy G, Xu X, Cui T, et al. Mechanical regulation of lithium intrusion probability in garnet solid electrolytes. Nat Energy. 2023;8(3):241-250.

[41]

Huo H, Gao J, Zhao N, et al. A flexible electron-blocking interfacial shield for dendrite-free solid lithium metal batteries. Nat Commun. 2021;12(1):176.

[42]

Wang C, Gong Y, Liu B, et al. Conformal, nanoscale ZnO surface modification of Garnet-based solid-state electrolyte for lithium metal anodes. Nano Lett. 2017;17(1):565-571.

[43]

Baniya A, Gurung A, Pokharel J, et al. Mitigating interfacial mismatch between lithium metal and garnet-type solid electrolyte by depositing metal nitride lithiophilic interlayer. ACS Appl Energy Mater. 2022;5(1):648-657.

[44]

Lou J, Wang G, Xia Y, et al. Achieving efficient and stable interface between metallic lithium and garnet-type solid electrolyte through a thin indium tin oxide interlayer. J Power Sources. 2020;448:227440.

[45]

Chou CY, Kim H, Hwang GS. A comparative first-principles study of the structure, energetics, and properties of Li–M (M = Si, Ge, Sn) alloys. J Phys Chem C. 2011;115(40):20018-20026.

[46]

Kim S, Yoon G, Jung SK, et al. High-power hybrid solid-state lithium–metal batteries enabled by preferred directional lithium growth mechanism. ACS Energy Lett. 2023;8(1):9-20.

[47]

Spencer-Jolly D, Agarwal V, Doerrer C, et al. Structural changes in the silver-carbon composite anode interlayer of solid-state batteries. Joule. 2023;7(3):503-514.

[48]

Thenuwara A, Thompson E, Malkowski T, et al. Interplay among metallic interlayers, discharge rate, and pressure in LLZO-based lithium−metal batteries. ACS Energy Lett.2023;8(10):4016–4023.

[49]

Wan Z, Shi K, Huang Y, et al. Three-dimensional alloy interface between Li6.4La3Zr1.4Ta0.6O12 and Li metal to achieve excellent cycling stability of all-solid-state battery. J Power Sources. 2021;505:230062.

[50]

Han S, Kil D, Lee S, et al. A full oxide-based solid-state lithium battery and its unexpected cathode degradation mechanism. ACS Energy Lett. 2023;8(11):4794–4805.

[51]

Bucci G, Swamy T, Chiang YM, et al. Modeling of internal mechanical failure of all-solid-state batteries during electrochemical cycling, and implications for battery design. J Mater Chem A. 2017;5(36):19422-19430.

[52]

Zhang W, Weber DA, Weigand H, et al. Interfacial processes and influence of composite cathode microstructure controlling the performance of all-solid-state lithium batteries. ACS Appl Mater Interfaces. 2017;9(21):17835-17845.

[53]

Haruyama J, Sodeyama K, Tateyama Y. Cation mixing properties toward Co diffusion at the LiCoO2 cathode/sulfide electrolyte interface in a solid-state battery. ACS Appl Mater Interfaces. 2017;9(1):286-292.

[54]

Neumann A, Randau S, Becker-Steinberger K, et al. Analysis of interfacial effects in all-solid-state batteries with thiophosphate solid electrolytes. ACS Appl Mater Interfaces. 2020;12(8):9277-9291.

[55]

Auvergniot J, Cassel A, Ledeuil JB, et al. Interface stability of argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in bulk all-solid-state batteries. Chem Mater. 2017;29(9):3883-3890.

[56]

Hänsel C, Afyon S, Rupp JL. Investigating the all-solid-state batteries based on lithium garnets and a high potential cathode–LiMn1.5Ni0.5O4. Nanoscale. 2016;8(43):18412-18420.

[57]

Huo H, Huang K, Luo W, et al. Evaluating interfacial stability in solid-state pouch cells via ultrasonic imaging. ACS Energy Lett.2022;7(2):650-658.

[58]

Kobayashi T, Ohnishi T, Osawa T, et al. In-operando lithium-ion transport tracking in an all-solid-state battery. Small. 2022;18(46):2204455.

[59]

Sharma SS, Manthiram A. Towards more environmentally and socially responsible batteries. Energy Environ Sci. 2020;13(11):4087-4097.

[60]

Xia Q, Zan F, Zhang Q, et al. All-solid-state thin film lithium/lithium-ion microbatteries for powering the internet of things. Adv Mater. 2023;35(2):2200538.

[61]

Xia Q, Zhang Q, Sun S, et al. Tunnel intergrowth LixMnO2 nanosheet arrays as 3D cathode for high-performance all-solid-state thin film lithium microbatteries. Adv Mater. 2021;33(5):2003524.

[62]

Xia Q, Sun S, Xu J, et al. Self-standing 3D cathodes for all-solid-state thin film lithium batteries with improved interface kinetics. Small. 2018;14(52):1804149.

[63]

Yu Z, Shan H, Zhong Y, et al. Insights into electrode architectures and lithium-ion transport in polycrystalline V2O5 cathodes of solid-state batteries. Small. 2023;19(43):2303046.

[64]

Chen Y, Duquesnoy M, Tan D, et al. Fabrication of high-quality thin solid-state electrolyte films assisted by machine learning. ACS Energy Lett. 2021;6:1639-1648.

[65]

Vishnugopi B, Hasan T, Zhou H, et al. Interphases and electrode crosstalk dictate the thermal stability of solid-state batteries. ACS Energy Lett. 2023;8(1):398-407.

[66]

Wu Y, Xu J, Lu P, et al. Thermal stability of sulfide solid electrolyte with lithium metal. Adv Energy Mater. 2023;13(36):2301336.

[67]

Rui X, Ren D, Liu X, et al. Distinct thermal runaway mechanisms of sulfide-based all-solid-state batteries. Energy Environ Sci. 2023;16(8):3552.

[68]

Kim T, Kim K, Lee S, et al. Thermal runaway behavior of Li6PS5Cl solid electrolytes for LiNi0.8Co0.1Mn0.1O2 and LiFePO4 in all-solid-state batteries. Chem Mater. 2022;34(20):9159-9171.

[69]

Tan DHS, Banerjee A, Chen Z, et al. From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. Nat Nanotechnol. 2020;15(3):170-180.

[70]

Yu Z, Shan H, Zhong Y, et al. Leveraging advanced x-ray imaging for sustainable battery design. ACS Energy Lett. 2022;7(9):3151-3176.

[71]

Scharf J, Chouchane M, Finegan DP, et al. Bridging nano-and microscale X-ray tomography for battery research by leveraging artificial intelligence. Nat Nanotechnol. 2022;17(5):446-459.

[72]

Lou S, Yu Z, Liu Q, et al. Multi-scale imaging of solid-state battery interfaces: from atomic scale to macroscopic scale. Chem. 2020;6(9):2199-2218.

[73]

Finegan DP, Squires I, Dahari A, et al. Machine-learning-driven advanced characterization of battery electrodes. ACS Energy Lett.2022;7(12):4368-4378.

[74]

Tarascon JM. Material science as a cornerstone driving battery research. Nat Mater. 2022;21(9):979-982.

RIGHTS & PERMISSIONS

2024 The Authors. SusMat published by Sichuan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

216

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/