Dendrite-free Zn deposition initiated by nanoscale inorganic–organic coating-modified 3D host for stable Zn-ion battery

Jiaming Dong , Junwen Duan , Ruirui Cao , Wang Zhang , Kangkang Fang , Hao Yang , Ying Liu , Zhitao Shen , Fumin Li , Rong Liu , Mengqi Jin , Longhui Lei , Huilin Li , Chong Chen

SusMat ›› 2024, Vol. 4 ›› Issue (2) : e189

PDF
SusMat ›› 2024, Vol. 4 ›› Issue (2) : e189 DOI: 10.1002/sus2.189
RESEARCH ARTICLE

Dendrite-free Zn deposition initiated by nanoscale inorganic–organic coating-modified 3D host for stable Zn-ion battery

Author information +
History +
PDF

Abstract

A 3D nanostructured scaffold as the host for zinc enables effective inhibition of anodic dendrite growth. However, the increased electrode/electrolyte interface area provided by using 3D matrices exacerbates the passivation and localized corrosion of the Zn anode, ultimately bringing about the degradation of the electrochemical performance. Herein, a nanoscale coating of inorganic–organic hybrid (α-In2Se3-Nafion) onto a flexible carbon nanotubes (CNTs) framework (ISNF@CNTs) is designed as a Zn plating/stripping scaffold to ensure uniform Zn nucleation, thus achieving a dendrite-free and durable Zn anode. The introduced inorganic–organic interfacial layer is dense and sturdy, which hinders the direct exposure of deposited Zn to electrolytes and mitigates the side reactions. Meanwhile, the zincophilic nature of ISNF can largely reduce the nucleation energy barrier and promote the ion-diffusion transportation. Consequently, the ISNF@CNTs@Zn electrode exhibits a low-voltage hysteresis and a superior cycling life (over 1500 h), with dendrite-free Zn-plating behaviors in a typical symmetrical cell test. Additionally, the superior feature of ISNF@CNTs@Zn anode is further demonstrated by Zn-MnO2 cells in both coin and flexible quasi-solid-state configurations. This work puts forward an inspired remedy for advanced Zn-ion batteries.

Keywords

2D/3D configuration / dendrite-free / inorganic–organic layer / interfacial protection / Zn-ion batteries

Cite this article

Download citation ▾
Jiaming Dong, Junwen Duan, Ruirui Cao, Wang Zhang, Kangkang Fang, Hao Yang, Ying Liu, Zhitao Shen, Fumin Li, Rong Liu, Mengqi Jin, Longhui Lei, Huilin Li, Chong Chen. Dendrite-free Zn deposition initiated by nanoscale inorganic–organic coating-modified 3D host for stable Zn-ion battery. SusMat, 2024, 4(2): e189 DOI:10.1002/sus2.189

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang F, Borodin O, Gao T, et al. Highly reversible zinc metal anode for aqueous batteries. Nat Mater. 2018;17(6):543-549.

[2]

Tang B, Shan L, Liang S, Zhou J. Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ Sci. 2019;12(11):3288-3304.

[3]

Sui Y, Ji X. Anticatalytic strategies to suppress water electrolysis in aqueous batteries. Chem Rev. 2021;121(11):6654-6695.

[4]

Blanc LE, Kundu D, Nazar LF. Scientific challenges for the implementation of Zn-ion batteries. Joule. 2020;4(4):771-799.

[5]

Kundu D, Adams BD, Duffort V, Vajargah SH, Nazar LF. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat Energy. 2016;1(10):16119.

[6]

Yang Y, Liu C, Lv Z, et al. Synergistic manipulation of Zn2+ ion flux and desolvation effect enabled by anodic growth of a 3D ZnF2 matrix for long-lifespan and dendrite-free Zn metal anodes. Adv Mater. 2021;33(11):2007388.

[7]

Li Q, Wang Y, Mo F, et al. Calendar life of Zn batteries based on Zn anode with Zn powder/current collector structure. Adv Energy Mater. 2021;11(14):2003931.

[8]

Su J, Yin X, Zhao H, et al. Temperature-dependent nucleation and electrochemical performance of Zn metal anodes. Nano Lett. 2022;22(4):1549-1556.

[9]

Cui B-F, Han X-P, Hu W-B. Micronanostructured design of dendrite-free zinc anodes and their applications in aqueous zinc-based rechargeable batteries. Small Struct. 2021;2(6):2000128.

[10]

Wang X, Sun C, Wu ZS. Recent progress of dendrite-free stable zinc anodes for advanced zinc-based rechargeable batteries: fundamentals, challenges, and perspectives. SusMat. 2023;3(2):180-206.

[11]

Du W, Ang EH, Yang Y, et al. Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy Environ Sci. 2020;13(10):3330-3360.

[12]

Li H, Han C, Huang Y, et al. An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ Sci. 2018;11(4):941-951.

[13]

Du H, Zhao R, Yang Y, et al. High-capacity and long-life zinc electrodeposition enabled by a self-healable and desolvation shield for aqueous zinc-ion batteries. Angew Chem Int Ed. 2022;61(10):e202114789.

[14]

Zhang Z, Xi B, Ma X, et al. Recent progress, mechanisms, and perspectives for crystal and interface chemistry applying to the Zn metal anodes in aqueous zinc-ion batteries. SusMat. 2022;2(2):114-141.

[15]

Geng Y, Pan L, Peng Z, et al. Electrolyte additive engineering for aqueous Zn ion batteries. Energy Storage Mater. 2022;51:733-755.

[16]

Zhang Q, Luan J, Huang X, et al. Revealing the role of crystal orientation of protective layers for stable zinc anode. Nat Commun. 2020;11(1):3961.

[17]

Guo X, Zhang Z, Li J, et al. Alleviation of dendrite formation on zinc anodes via electrolyte additives. ACS Energy Lett. 2021;6(2):395-403.

[18]

Sun S, Liu B, Zhang H, et al. Boosting energy storage via confining soluble redox species onto solid-liquid interface. Adv Energy Mater. 2021;11(8):2003599.

[19]

Zhao J, Zhang J, Yang W, et al. Water-in-deep eutectic solvent’’ electrolytes enable zinc metal anodes for rechargeable aqueous batteries. Nano Energy. 2019;57:625-634.

[20]

Zhang C, Holoubek J, Wu X, et al. A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode. Chem Commun. 2018;54(100):14097-14099.

[21]

Suo L, Borodin O, Gao T, et al. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science. 2015;350(6263):38-943.

[22]

Wu X, Xu Y, Zhang C, et al. Reverse dual-ion battery via a ZnCl2 water-in-salt electrolyte. J Am Chem Soc. 2019;141(15):6338-6344.

[23]

Guo W, Bai X, Cong Z, et al. Suppressing the exacerbated hydrogen evolution of porous Zn anode with an artificial solid-electrolyte interphase layer. ACS Appl Mater Interfaces. 2022;14(37):41988-41996.

[24]

Chu Y, Zhang S, Wu S, et al. In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes. Energy Environ Sci. 2021;14(6):3609-3620.

[25]

Guo Z, Fan L, Zhao C, et al. A dynamic and self-adapting interface coating for stable Zn-metal anodes. Adv Mater. 2022;34(2):2105133.

[26]

Duan J, Dong J, Cao R, et al. Regulated Zn plating and stripping by a multifunctional polymer-alloy interphase layer for stable Zn metal anode. Adv Sci. 2023;10(29):e2303343.

[27]

Zhang Q, Luan J, Fu L, et al. The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive. Angew Chem Int Ed. 2019;58(44):15841-15847.

[28]

Zuo T-T, Wu X-W, Yang C-P, et al. Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes. Adv Mater. 2017;29(29):1700389.

[29]

Zeng Y, Zhang X, Qin R, et al. Dendrite-free zinc deposition induced by multifunctional cnt frameworks for stable flexible Zn-ion batteries. Adv Mater. 2019;31(36):1903675.

[30]

Zhou J, Xie M, Wu F, et al. Encapsulation of metallic Zn in a hybrid MXene/graphene aerogel as a stable Zn anode for foldable Zn-ion batteries. Adv Mater. 2022;34(1):2106897.

[31]

Zeng L, He H, Chen H, et al. 3D printing architecting reservoir-integrated anode for dendrite-free, safe, and durable Zn batteries. Adv Energy Mater. 2022;12(12):2103708.

[32]

Zhang Q, Luan J, Huang X, et al. Simultaneously regulating the ion distribution and electric field to achieve dendrite-free Zn anode. Small. 2020;16(35):2000929.

[33]

Fan X-Y, Yang H, Feng B, et al. Rationally designed In@Zn@In trilayer structure on 3D porous Cu towards high-performance Zn-ion batteries. Chem Eng J. 2022;445:136799.

[34]

Kang L, Cui M, Jiang F, et al. Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv Energy Mater. 2018;8(25):1801090.

[35]

Shi H, Li M, Shaygan Nia A, et al. Ultrafast electrochemical synthesis of defect-free In2Se3 flakes for large-area optoelectronics. Adv Mater. 2020;32(8):1907244.

[36]

Ding W, Zhu J, Wang Z, et al. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der waals materials. Nat Commun. 2017;8(1):14956.

[37]

Lin Z, Liu Y, Halim U, et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature. 2018;562(7726):254-258.

[38]

Liu Y, Jiang Y, Hu Z, et al. In-situ electrochemically activated surface vanadium valence in V2C MXene to achieve high capacity and superior rate performance for Zn-ion batteries. Adv Funct Mater. 2021;31(8):2008033.

[39]

Liu Y, Dai Z, Zhang W, et al. Sulfonic-group-grafted Ti3C2Tx MXene: a silver bullet to settle the instability of polyaniline toward high-performance Zn-ion batteries. ACS Nano. 2021;15(5):9065-9075.

[40]

Yang Y, Xiao J, Cai J, et al. Mixed-valence copper selenide as an anode for ultralong lifespan rocking-chair Zn-ion batteries: an insight into its intercalation/extraction kinetics and charge storage mechanism. Adv Funct Mater. 2021;31(3):2005092.

[41]

Han W, Xiong L, Wang M, et al. Interface engineering via in-situ electrochemical induced znse for a stabilized zinc metal anode. Chem Eng J. 2022;442:136247.

[42]

Huang C, Zhao X, Hao Y, et al. Self-healing SeO2 additives enable zinc metal reversibility in aqueous ZnSO4 electrolytes. Adv Funct Mater. 2022;32(18):2112091.

[43]

Niu B, Li ZA, Luo D, et al. Nano-scaled hydrophobic confinement of aqueous electrolyte by a nonionic amphiphilic polymer for long-lasting and wide-temperature Zn-based energy storage. Energy Environ Sci. 2023;16(4):1662-1675.

[44]

Zhou X, Chen R, Cui E, et al. A novel hydrophobic-zincophilic bifunctional layer for stable Zn metal anodes. Energy Storage Mater. 2023;55:538-545.

[45]

Zhang L, Huang J, Guo H, et al. Tuning ion transport at the anode-electrolyte interface via a sulfonate-rich ion-exchange layer for durable zinc-iodine batteries. Adv Energy Mater. 2023;13(13):2203790.

[46]

Naveed A, Yang H, Yang J, Nuli Y, Wang J. Highly reversible and rechargeable safe Zn batteries based on a triethyl phosphate electrolyte. Angew Chem Int Ed. 2019;58(9):2760-2764.

[47]

Li C, Shyamsunder A, Hoane AG, et al. Highly reversible Zn anode with a practical areal capacity enabled by a sustainable electrolyte and superacid interfacial chemistry. Joule. 2022;6(5):1103-1120.

[48]

Zheng X, Liu Z, Sun J, et al. Constructing robust heterostructured interface for anode-free zinc batteries with ultrahigh capacities. Nat Commun. 2023;14(1):76.

[49]

Cui Y, Zhao Q, Wu X, et al. An interface-bridged organic-inorganic layer that suppresses dendrite formation and side reactions for ultra-long-life aqueous zinc metal anodes. Angew Chem Int Ed. 2020;59(38):16594-16601.

[50]

Li Z, Wu X, Yu X, et al. Long-life aqueous Zn-I2 battery enabled by a low-cost multifunctional zeolite membrane separator. Nano Lett. 2022;22(6):2538-2546.

[51]

Shang W, Li Q, Jiang F, et al. Boosting Zn||I2 battery's performance by coating a zeolite-based cation-exchange protecting layer. Nano-Micro Lett. 2022;14(1):82.

[52]

Cao Q, Gao H, Gao Y, et al. Regulating dendrite-free zinc deposition by 3D zincopilic nitrogen-doped vertical graphene for high-performance flexible Zn-ion batteries. Adv Funct Mater. 2021;31(37):2103922.

[53]

Wang JH, Chen LF, Dong WX, et al. Three-dimensional zinc-seeded carbon nanofiber architectures as lightweight and flexible hosts for a highly reversible zinc metal anode. ACS Nano. 2023;17(19):19087-19097.

[54]

Zeng Y, Zhang X, Qin R, et al. Dendrite-free zinc deposition induced by multifunctional CNTs frameworks for stable flexible Zn-ion batteries. Adv Mater. 2019;31(36):e1903675.

[55]

Lu H, Hu J, Zhang Y, et al. 3D cold-trap environment printing for long-cycle aqueous Zn-ion batteries. Adv Mater. 2023;35(9):e2209886.

[56]

He H, Zeng L, Luo D, et al. 3D printing of electron/ion-flux dual-gradient anodes for dendrite-free zinc batteries. Adv Mater. 2023;35(17):e2211498.

[57]

Yang JL, Yang PH, Yan WQ, Zhao JW, Fan HJ. 3D zincophilic micro-scaffold enables stable Zn deposition. Energy Storage Mater. 2022;51:259-265.

[58]

Zhang G, Zhang X, Liu H, et al. 3D-printed multi-channel metal lattices enabling localized electric-field redistribution for dendrite-free aqueous Zn ion batteries. Adv Energy Mater. 2021;11(19):2003927.

[59]

Zeng Y, Sun PX, Pei Z, et al. Nitrogen-doped carbon fibers embedded with zincophilic Cu nanoboxes for stable Zn-metal anodes. Adv Mater. 2022;34(18):e2200342.

[60]

Tian Y, An Y, Wei C, et al. Flexible and free-standing Ti3C2Tx MXene@Zn paper for dendrite-free aqueous zinc metal batteries and nonaqueous lithium metal batteries. ACS Nano. 2019;13(10):11676-11685.

[61]

Zhou YR, Wang XN, Shen XF, et al. 3D confined zinc plating/stripping with high discharge depth and excellent high-rate reversibility. J Mater Chem A. 2020;8(23):11719-11727.

[62]

Zhang Y, Deng S, Li Y, et al. Anchoring MnO2 on nitrogen-doped porous carbon nanosheets as flexible arrays cathodes for advanced rechargeable Zn-MnO2 batteries. Energy Storage Mater. 2020;29:52-59.

[63]

Wu B, Zhang G, Yan M, et al. Graphene scroll-coated α-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery. Small. 2018;14(13):1703850.

[64]

Li Y, Wang S, Salvador JR, et al. Reaction mechanisms for long-life rechargeable Zn/MnO2 batteries. Chem Mater. 2019;31(6):2036-2047.

[65]

An Y, Tian Y, Man Q, et al. Highly reversible Zn metal anodes enabled by freestanding, lightweight, and zincophilic MXene/nanoporous oxide heterostructure engineered separator for flexible Zn-MnO2 batteries. ACS Nano. 2022;16(4):6755-6770.

[66]

Wang Q, Wang SL, Guo XH, et al. MXene-reduced graphene oxide aerogel for aqueous zinc-ion hybrid supercapacitor with ultralong cycle life. Adv Electron Mater. 2019;5(12):1900537.

[67]

Xu C, Li B, Du H, Kang F. Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew Chem Int Ed. 2012;51(4):933-935.

[68]

Zhang L, Chen L, Zhou X, Liu Z. Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Adv Energy Mater. 2014;5(2):1400930.

[69]

Alfaruqi MH, Mathew V, Gim J, et al. Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system. Chem Mater. 2015;27(10):3609-3620.

[70]

Dai X, Wan F, Zhang L, Cao H, Niu Z. Freestanding graphene/VO2 composite films for highly stable aqueous Zn-ion batteries with superior rate performance. Energy Storage Mater. 2019;17:143-150.

[71]

Alfaruqi MH, Gim J, Kim S, et al. A layered δ-MnO2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications. Electrochem Commun. 2015;60:121-125.

[72]

Zhang N, Cheng F, Liu Y, et al. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J Am Chem Soc. 2016;138(39):12894-12901.

[73]

Chen T, Wang Y, Yang Y, et al. Heterometallic seed-mediated zinc deposition on inkjet printed silver nanoparticles toward foldable and heat-resistant zinc batteries. Adv Funct Mater. 2021;31(24):2101607.

[74]

Peng H, Liu C, Wang N, et al. Intercalation of organics into layered structures enables superior interface compatibility and fast charge diffusion for dendrite-free Zn anodes. Energy Environ Sci. 2022;15(4):1682-1693.

[75]

Gan H, Wu J, Zhang F, Li R, Liu H. Uniform Zn2+ distribution and deposition regulated by ultrathin hydroxyl-rich silica ion sieve in zinc metal anodes. Energy Storage Mater. 2023;55:264-271.

[76]

Xue P, Guo C, Wang N, et al. Synergistic manipulation of Zn2+ ion flux and nucleation induction effect enabled by 3D hollow SiO2/TiO2/carbon fiber for long-lifespan and dendrite-free Zn-metal composite anodes. Adv Funct Mater. 2021;31(50):2106417.

[77]

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phy Rev Lett. 1996;77(18):3865-3868.

RIGHTS & PERMISSIONS

2024 The Authors. SusMat published by Sichuan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

213

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/