Interfacial engineering for high-performance garnet-based solid-state lithium batteries

Lingchen Wang , Jiaxin Wu , Chengshuai Bao , Zichang You , Yan Lu , Zhaoyin Wen

SusMat ›› 2024, Vol. 4 ›› Issue (1) : 72 -105.

PDF
SusMat ›› 2024, Vol. 4 ›› Issue (1) : 72 -105. DOI: 10.1002/sus2.187
REVIEW

Interfacial engineering for high-performance garnet-based solid-state lithium batteries

Author information +
History +
PDF

Abstract

Solid-state batteries represent the future of energy storage technology, offering improved safety and energy density. Garnet-type Li7La3Zr2O12 (LLZO) solid-state electrolytes-based solid-state lithium batteries (SSLBs) stand out for their appealing material properties and chemical stability. Yet, their successful deployment depends on conquering interfacial challenges. This review article primarily focuses on the advancement of interfacial engineering for LLZO-based SSLBs. We commence with a concise introduction to solid-state electrolytes and a discussion of the challenges tied to interfacial properties in LLZO-based SSLBs. We deeply explore the correlations between structure and properties and the design principles vital for achieving an ideal electrode/electrolyte interface. Subsequently, we delve into the latest advancements and strategies dedicated to overcoming these challenges, with designated sections on cathode and anode interface design. In the end, we share our insights into the advancements and opportunities for interface design in realizing the full potential of LLZO-based SSLBs, ultimately contributing to the development of safe and high-performance energy storage solutions.

Keywords

anode interfaces / cathode interfaces / garnet-based electrolytes / interfacial modifications / solid-state lithium batteries

Cite this article

Download citation ▾
Lingchen Wang, Jiaxin Wu, Chengshuai Bao, Zichang You, Yan Lu, Zhaoyin Wen. Interfacial engineering for high-performance garnet-based solid-state lithium batteries. SusMat, 2024, 4(1): 72-105 DOI:10.1002/sus2.187

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Janek J, Zeier WG. Challenges in speeding up solid-state battery development. Nat Energy. 2023;8(3):230-240.

[2]

Xiao J, Shi F, Glossmann T, et al. From laboratory innovations to materials manufacturing for lithium-based batteries. Nat Energy. 2023;8(4):329-339.

[3]

Goodenough JB, Park K-S. The Li-ion rechargeable battery: a perspective. J Am Chem Soc. 2013;135(4):1167-1176.

[4]

Solid-state battery roadmap 2035+. Fraunhofer-Publica; 2022.

[5]

Battery innovation roadmap 2030. EUROBAT; 2020.

[6]

Xu W, Wang J, Ding F, et al. Lithium metal anodes for rechargeable batteries. Energy Environ Sci. 2014;7(2):513-537.

[7]

Choi JW, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater. 2016;1(4):16013.

[8]

Sun Y, Liu N, Cui Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat Energy. 2016;1(7):1-12.

[9]

Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol. 2017;12(3):194-206.

[10]

Randau S, Weber DA, Kötz O, et al. Benchmarking the performance of all-solid-state lithium batteries. Nat Energy. 2020;5(3):259-270.

[11]

Janek J, Zeier WG. A solid future for battery development. Nat Energy. 2016;1(9):16141.

[12]

Zhu J, Su H, Han X, et al. The restrained Li/gel polymer electrolyte interface deterioration enabled by the synergetic effect of ultra-lithiophilic interphase and interfacial coupling skeleton. Adv Funct Mater. 2023;33(34):2302229.

[13]

Ren Y, Danner T, Moy A, et al. Oxide-based solid-state batteries: a perspective on composite cathode architecture. Adv Energy Mater. 2023;13(1):2201939.

[14]

Pasta M, Armstrong D, Brown ZL, et al. 2020 roadmap on solid-state batteries. J Phys Energy. 2020;2(3):032008.

[15]

Krauskopf T, Richter FH, Zeier WG, et al. Physicochemical concepts of the lithium metal anode in solid-state batteries. Chem Rev. 2020;120(15):7745-7794.

[16]

Gao X, Liu B, Hu B, et al. Solid-state lithium battery cathodes operating at low pressures. Joule. 2022;6(3):636-646.

[17]

Xiao Y, Wang Y, Bo S, et al. Understanding interface stability in solid-state batteries. Nat Rev Mater. 2020;5(2):105-126.

[18]

Kamaya N, Homma K, Yamakawa Y, et al. A lithium superionic conductor. Nat Mater. 2011;10(9):682-686.

[19]

Zhao Q, Stalin S, Zhao C-Z, et al. Designing solid-state electrolytes for safe, energy-dense batteries. Nat Rev Mater. 2020;5(3):229-252.

[20]

Abakumov AM, Fedotov SS, Antipov EV, et al. Solid state chemistry for developing better metal-ion batteries. Nat Commun. 2020;11(1):4976.

[21]

Zhang Z, Shao Y, Lotsch B, et al. New horizons for inorganic solid state ion conductors. Energy Environ Sci. 2018;11(8):1945-1976.

[22]

Valøen LO, Reimers JN. Transport properties of LiPF6-based Li-ion battery electrolytes. J Electrochem Soc. 2005;152(5):A882.

[23]

Wang C, Fu K, Kammampata SP, et al. Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chem Rev. 2020;120(10):4257-4300.

[24]

Bachman JC, Muy S, Grimaud A, et al. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem Rev. 2016;116(1):140-162.

[25]

Manthiram A, Yu X, Wang S. Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater. 2017;2(4):1-16.

[26]

Fan L, Wei S, Li S, et al. Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Adv Energy Mater. 2018;8(11):1702657.

[27]

Huang X, Lu Y, Song Z, et al. Preparation of dense Ta-LLZO/MgO composite Li-ion solid electrolyte: sintering, microstructure, performance and the role of MgO. J Energy Chem. 2019;39:8-16.

[28]

Huang X, Lu Y, Song Z, et al. Manipulating Li2O atmosphere for sintering dense Li7La3Zr2O12 solid electrolyte. Energy Storage Mater. 2019;22:207-217.

[29]

Xu L, Li J, Deng W, et al. Garnet solid electrolyte for advanced all-solid-state Li batteries. Adv Energy Mater. 2021;11(2):2000648.

[30]

Famprikis T, Canepa P, Dawson JA, et al. Fundamentals of inorganic solid-state electrolytes for batteries. Nat Mater. 2019;18(12):1278-1291.

[31]

Chen R, Li Q, Yu X, et al. Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chem Rev. 2020;120(14):6820-6877.

[32]

Banerjee A, Wang X, Fang C, et al. Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem Rev. 2020;120(14):6878-6933.

[33]

Sang J, Tang B, Pan K, et al. Current status and enhancement strategies for all-solid-state lithium batteries. Acc Mater Res. 2023;4(6):472-483.

[34]

Cheng X, Zhao C, Yao Y, et al. Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes. Chem. 2019;5(1):74-96.

[35]

Zhou W, Li Y, Xin S, et al. Rechargeable sodium all-solid-state battery. ACS Cent Sci. 2017;3(1):52-57.

[36]

Sun C, Ruan Y, Zha W, et al. Recent advances in anodic interface engineering for solid-state lithium-metal batteries. Mater Horiz. 2020;7(7):1667-1696.

[37]

Wang J, Wang H, Xie J, et al. Fundamental study on the wetting property of liquid lithium. Energy Storage Mater. 2018;14:345-350.

[38]

Jin Y, Lu H, Lyu N, et al. Bonding lithium metal with garnet electrolyte by interfacial lithiophobicity/lithiophilicity transition mechanism over 380°C. Small Methods. 2023;7(4):2201140.

[39]

Meng J, Zhang Y, Zhou X, et al. Li2CO3-affiliative mechanism for air-accessible interface engineering of garnet electrolyte via facile liquid metal painting. Nat Commun. 2020;11(1):3716.

[40]

Xia W, Xu B, Duan H, et al. Reaction mechanisms of lithium garnet pellets in ambient air: the effect of humidity and CO2. J Am Ceram Soc. 2017;100(7):2832-2839.

[41]

Ye R, Ihrig M, Imanishi N, et al. A review on Li+/H+ exchange in garnet solid electrolytes: from instability against humidity to sustainable processing in water. ChemSusChem. 2021;14(20):4397-4407.

[42]

Li Y, Han J, Wang C, et al. Optimizing Li+ conductivity in a garnet framework. J Mater Chem. 2012;22(30):15357-15361.

[43]

Thompson T, Wolfenstine J, Allen JL, et al. Tetragonal vs. cubic phase stability in Al-free Ta doped Li7La3Zr2O12 (LLZO). J Mater Chem A. 2014;2(33):13431-13436.

[44]

Wolfenstine J, Allen JL, Read J, et al. Chemical stability of cubic Li7La3Zr2O12 with molten lithium at elevated temperature. J Mater Sci. 2013;48(17):5846-5851.

[45]

Chen R, Nolan AM, Lu J, et al. The thermal stability of lithium solid electrolytes with metallic lithium. Joule. 2020;4(4):812-821.

[46]

Zhu Y, Connell JG, Tepavcevic S, et al. Dopant-dependent stability of garnet solid electrolyte interfaces with lithium metal. Adv Energy Mater. 2019;9(12):1803440.

[47]

Huang X, Lu Y, Guo H, et al. None-mother-powder method to prepare dense li-garnet solid electrolytes with high critical current density. ACS Appl Energy Mater. 2018;1:5355–5365.

[48]

Ma C, Cheng Y, Yin K, et al. Interfacial stability of Li metal-solid electrolyte elucidated via in situ electron microscopy. Nano Lett. 2016;16(11):7030-7036.

[49]

Han F, Zhu Y, He X, et al. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv Energy Mater. 2016;6(8):1501590.

[50]

Charles M, John N. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J Electrochem Soc. 2005;152(2):A396-A404.

[51]

Ren Y, Shen Y, Lin Y, et al. Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte. Electrochem Commun. 2015;57:27-30.

[52]

Sudo R, Nakata Y, Ishiguro K, et al. Interface behavior between garnet-type lithium-conducting solid electrolyte and lithium metal. Solid State Ionics. 2014;262:151-154.

[53]

Tian H, Xu B, Qi Y. Computational study of lithium nucleation tendency in Li7La3Zr2O12 (LLZO) and rational design of interlayer materials to prevent lithium dendrites. J Power Sources. 2018;392:79-86.

[54]

Han F, Westover AS, Yue J, et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat Energy. 2019;4(3):187-196.

[55]

Tian H, Liu Z, Ji Y, et al. Interfacial electronic properties dictate Li dendrite growth in solid electrolytes. Chem Mater. 2019;31(18):7351-7359.

[56]

Zhang W, Schröder D, Arlt T, et al. Electrochemical expansion during cycling: monitoring the pressure changes in operating solid-state lithium batteries. J Mater Chem A. 2017;5(20):9929-9936.

[57]

Xu L, Lu Y, Zhao C, et al. Toward the scale-up of solid-state lithium metal batteries: the gaps between lab-level cells and practical large-format batteries. Adv Energy Mater. 2020;11(4):2002360.

[58]

Chen X, Guan Z, Chu F, et al. Air-stable inorganic solid-state electrolytes for high energy density lithium batteries: challenges, strategies, and prospects. InfoMat. 2021;4(1):e12248.

[59]

Zhang H, Chen Y, Li C, et al. Electrolyte and anode-electrolyte interphase in solid-state lithium metal polymer batteries: a perspective. SusMat. 2021;1(1):24-37.

[60]

Ma J, Zhang S, Zheng Y, et al. Interelectrode talk in solid-state lithium-metal batteries. Adv Mater. 2023;35(38):2301892.

[61]

Liu J, Yuan H, Liu H, et al. Unlocking the failure mechanism of solid state lithium metal batteries. Adv Energy Mater. 2021;12(4):2100748.

[62]

Lu Y, Zhao C, Hu J, et al. The void formation behaviors in working solid-state Li metal batteries. Sci Adv. 2022;8(45):eadd0510.

[63]

Tippens J, Miers JC, Afshar A, et al. Visualizing chemomechanical degradation of a solid-state battery electrolyte. ACS Energy Lett. 2019;4(6):1475-1483.

[64]

Liu Y, Xu X, Jiao X, et al. Role of interfacial defects on electro-chemo-mechanical failure of solid-state electrolyte. Adv Mater. 2023;35(24):2301152.

[65]

Xiong S, Xu X, Jiao X, et al. Mechanical failure of solid-state electrolyte rooted in synergy of interfacial and internal defects. Adv Energy Mater. 2023;13(14):2203614.

[66]

Hatzell KB, Chen XC, Cobb CL, et al. Challenges in lithium metal anodes for solid-state batteries. ACS Energy Lett. 2020;5(3):922-934.

[67]

Liu H, Cheng X-B, Huang J-Q, et al. Controlling dendrite growth in solid-state electrolytes. ACS Energy Lett. 2020;5(3):833-843.

[68]

Ning Z, Li G, Melvin DLR, et al. Dendrite initiation and propagation in lithium metal solid-state batteries. Nature. 2023;618(7964):287-293.

[69]

Ling C, Banerjee D, Matsui M. Study of the electrochemical deposition of Mg in the atomic level: why it prefers the non-dendritic morphology. Electrochim Acta. 2012;76:270-274.

[70]

Krauskopf T, Dippel R, Hartmann H, et al. Lithium-metal growth kinetics on LLZO garnet-type solid electrolytes. Joule. 2019;3(8):2030-2049.

[71]

Bay MC, Wang M, Grissa R, et al. Sodium plating from Na-β″-alumina ceramics at room temperature, paving the way for fast-charging all-solid-state batteries. Adv Energy Mater. 2019;10(3):1902899.

[72]

Wang M, Wolfenstine JB, Sakamoto J. Temperature dependent flux balance of the Li/Li7La3Zr2O12 interface. Electrochim Acta. 2019;296:842-847.

[73]

Krauskopf T, Mogwitz B, Hartmann H, et al. The fast charge transfer kinetics of the lithium metal anode on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12. Adv Energy Mater. 2020;10(27):2000945.

[74]

Ma X, Xu Y. Effects of polishing treatments on the interface between garnet solid electrolyte and lithium metal. Electrochim Acta. 2023;441:141789.

[75]

Ji W, Luo B, Wang Q, et al. Revealing the influence of surface microstructure on Li wettability and interfacial ionic transportation for garnet-type electrolytes. Adv Energy Mater. 2023;13(21):2300165.

[76]

Zhao CZ, Chen PY, Zhang R, et al. An ion redistributor for dendrite-free lithium metal anodes. Sci Adv. 2018;4(11):eaat3446.

[77]

Bao C, Zheng C, Wu M, et al. 12 μm-Thick sintered garnet ceramic skeleton enabling high-energy-density solid-state lithium metal batteries. Adv Energy Mater. 2023;13(13):2204028.

[78]

Chi S, Liu Y, Zhao N, et al. Solid polymer electrolyte soft interface layer with 3D lithium anode for all-solid-state lithium batteries. Energy Storage Mater. 2019;17:309-316.

[79]

Jiang T, He P, Wang G, et al. Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries. Adv Energy Mater. 2020;10(12):1903376.

[80]

Zhao C, Zhang X, Cheng X, et al. An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proc Natl Acad Sci U S A. 2017;114(42):11069-11074.

[81]

Xu R, Xiao Y, Zhang R, et al. Dual-phase single-ion pathway interfaces for robust lithium metal in working batteries. Adv Mater. 2019;31(19):1808392.

[82]

Kim S, Jung C, Kim H, et al. The role of interlayer chemistry in Li-metal growth through a garnet-type solid electrolyte. Adv Energy Mater. 2020;10(12):1903993.

[83]

Tantratian K, Yan H, Ellwood K, et al. Unraveling the Li penetration mechanism in polycrystalline solid electrolytes. Adv Energy Mater. 2021;11(13):2003417.

[84]

Cheng EJ, Sharafi A, Sakamoto J. Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte. Electrochim Acta. 2017;223:85-91.

[85]

Liu X, Garcia-Mendez R, Lupini AR, et al. Local electronic structure variation resulting in Li ‘filament’ formation within solid electrolytes. Nat Mater. 2021;20:1485-1490.

[86]

Yan H, Tantratian K, Ellwood K, et al. How does the creep stress regulate void formation at the lithium-solid electrolyte interface during stripping? Adv Energy Mater. 2021;12(2):2102283.

[87]

Sang J, Tang B, Qiu Y, et al. How does stacking pressure affect the performance of solid electrolytes and all-solid-state lithium metal batteries? Energy Environ Mater. 2023;0:e12670.

[88]

Li C, Qiu Y, Zhao Y, et al. Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chin Chem Lett. 2023;35(4):108846.

[89]

Thenuwara AC, Thompson EL, Malkowski TF, et al. Interplay among metallic interlayers, discharge rate, and pressure in LLZO-based lithium-metal batteries. ACS Energy Lett. 2023;8(10):4016-4023.

[90]

Cai M, Lu Y, Su J, et al. In situ lithiophilic layer from H+/Li+ exchange on garnet surface for the stable lithium-solid electrolyte interface. ACS Appl Mater Interfaces. 2019;11(38):35030-35038.

[91]

Dubey R, Sastre J, Cancellieri C, et al. Building a better Li-garnet solid electrolyte/metallic Li interface with antimony. Adv Energy Mater. 2021;11(39):2102086.

[92]

Muller M, Schmieg J, Dierickx S, et al. Reducing impedance at a Li-metal anode/garnet-type electrolyte interface implementing chemically resolvable in layers. ACS Appl Mater Interfaces. 2022;14(12):14739-14752.

[93]

Luo W, Gong Y, Zhu Y, et al. Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer. Adv Mater. 2017;29(22):1606042.

[94]

He M, Cui Z, Chen C, et al. Formation of self-limited, stable and conductive interfaces between garnet electrolytes and lithium anodes for reversible lithium cycling in solid-state batteries. J Mater Chem A. 2018;6(24):11463-11470.

[95]

Zhang W. Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries. J Power Sources. 2011;196(3):877-885.

[96]

Fu K, Gong Y, Liu B, et al. Toward garnet electrolyte-based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Sci Adv. 2017;3(4):e1601659.

[97]

Daniel J, Gonzalez-Malabet H, L'Antigua M, et al. Elucidating lithium alloying-induced degradation evolution in high-capacity electrodes. ACS Appl Mater Interfaces. 2018;11(1):563-577.

[98]

Han X, Gong Y, Fu K, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat Mater. 2017;16(5):572-579.

[99]

Wei Y, Xu H, Cheng H, et al. An oxygen vacancy-rich ZnO layer on garnet electrolyte enables dendrite-free solid state lithium metal batteries. Chem Eng J. 2022;433:133665.

[100]

Dai Q, Yao J, Du C, et al. Cryo-EM studies of atomic-scale structures of interfaces in garnet-type electrolyte based solid-state batteries. Adv Funct Mater. 2022;32(51):2208682.

[101]

Bai X, Zhao G, Yang G, et al. Titanium–oxygen clusters brazing Li with Li6.5La3Zr1.5Ta0.5O12 for high-performance all-solid-state Li batteries. Nano Lett. 2023;23(17):7934-7940.

[102]

Gao M, Gong Z, Li H, et al. Constructing a multifunctional interlayer toward ultra-high critical current density for garnet-based solid-state lithium batteries. Adv Funct Mater. 2023;33(22):2300319.

[103]

Lou J, Wang G, Xia Y, et al. Achieving efficient and stable interface between metallic lithium and garnet-type solid electrolyte through a thin indium tin oxide interlayer. J Power Sources. 2020;448:227440.

[104]

He X, Hua S, Yan F, et al. A superior stable interlayer for dendrite-free solid-state lithium metal batteries. Chem Eng J. 2021;421:127727.

[105]

Jiang H, Liu J, Tang B, et al. Regulation mechanism on a bilayer Li2O-rich interface between lithium metal and garnet-type solid electrolytes. Adv Funct Mater. 2023;34(4):2306399.

[106]

Cui J, Kim JH, Yao S, et al. Exploration of metal alloys as zero-resistance interfacial modification layers for garnet-type solid electrolytes. Adv Funct Mater. 2023;33(10):2210192.

[107]

Nolan AM, Wachsman ED, Mo Y. Computation-guided discovery of coating materials to stabilize the interface between lithium garnet solid electrolyte and high-energy cathodes for all-solid-state lithium batteries. Energy Storage Mater. 2021;41:571-580.

[108]

Tan J, Matz J, Dong P, et al. A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv Energy Mater. 2021;11(16):2100046.

[109]

Wang Z, Wang Y, Wu C, et al. Constructing nitrided interfaces for stabilizing Li metal electrodes in liquid electrolytes. Chem Sci. 2021;12(26):8945-8966.

[110]

Ruan Y, Lu Y, Huang X, et al. Acid induced conversion towards a robust and lithiophilic interface for Li-Li7La3Zr2O12 solid-state batteries. J Mater Chem A. 2019;7(24):14565-14574.

[111]

Huo H, Chen Y, Li R, et al. Design of a mixed conductive garnet/Li interface for dendrite-free solid lithium metal batteries. Energy Environ Sci. 2020;13(1):127-134.

[112]

Zhang L, Meng Q, Dai Y, et al. Ion/electron conductive layer with double-layer-like structure for dendrite-free solid-state lithium metal batteries. Nano Energy. 2023;113:108573.

[113]

Huang W, Zhao N, Bi Z, et al. Can we find solution to eliminate Li penetration through solid garnet electrolytes? Mater Today Nano. 2020;10:100075.

[114]

Yang G, Bai X, Zhang Y, et al. A bridge between ceramics electrolyte and interface layer to fast Li+ transfer for low interface impedance solid-state batteries. Adv Funct Mater. 2023;33(3):2211387.

[115]

Xiang X, Fang Z, Du C, et al. In situ construction of a multifunctional interlayer for garnet-type electrolytes to suppress lithium dendrite formation in solid-state lithium batteries. J Alloys Compd. 2023;965:171398.

[116]

Jiang J, Ou Y, Lu S, et al. In-situ construction of Li-Mg/LiF conductive layer to achieve an intimate lithium-garnet interface for all-solid-state Li metal battery. Energy Storage Mater. 2022;50:810-818.

[117]

Lu G, Liu W, Yang Z, et al. Superlithiophilic, ultrastable, and ionic-conductive interface enabled long lifespan all-solid-state lithium-metal batteries under high mass loading. Adv Funct Mater. 2023;33(49):2304407.

[118]

Lee K, Han S, Lee J, et al. Multifunctional interface for high-rate and long-durable garnet-type solid electrolyte in lithium metal batteries. ACS Energy Lett. 2021;7(1):381-389.

[119]

Bi Z, Shi R, Liu X, et al. In situ conversion reaction triggered alloy@antiperovskite hybrid layers for lithiophilic and robust lithium/garnet interfaces. Adv Funct Mater. 2023;33(43):2307701.

[120]

Zhao G, Luo C, Hua Q. Li+ selective transport network-assisted high-performance of garnet-based solid electrolyte for Li metal batteries. J Mater Chem A. 2023;11(37):20174-20186.

[121]

Leng J, Liang H, Wang H, et al. A facile and low-cost wet-chemistry artificial interface engineering for garnet-based solid-state Li metal batteries. Nano Energy. 2022;101:107603.

[122]

Feng W, Hu J, Qian G, et al. Stabilization of garnet/Li interphase by diluting the electronic conductor. Sci Adv. 2022;8(42):eadd8972.

[123]

Zhu Y, He X, Mo Y. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl Mater Interfaces. 2015;7(42):23685-23693.

[124]

Li Y, Prabhu AM, Choksi TS, et al. H2O and CO2 surface contamination of the lithium garnet Li7La3Zr2O12 solid electrolyte. J Mater Chem A. 2022;10(9):4960-4973.

[125]

Sharafi A, Kazyak E, Davis AL, et al. Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12. Chem Mater. 2017;29(18):7961-7968.

[126]

Zheng H, Li G, Ouyang R, et al. Origin of lithiophilicity of lithium garnets: compositing or cleaning? Adv Funct Mater. 2022;32(41):2205778.

[127]

Huo H, Luo J, Thangadurai V, et al. Li2CO3: a critical issue for developing solid garnet batteries. ACS Energy Lett. 2019;5(1):252-262.

[128]

Li Y, Chen X, Dolocan A, et al. Garnet electrolyte with an ultralow interfacial resistance for Li-metal batteries. J Am Chem Soc. 2018;140(20):6448-6455.

[129]

Feng W, Dong X, Zhang X, et al. Li/garnet interface stabilization by thermal-decomposition vapor deposition of an amorphous carbon layer. Angew Chem Int Ed. 2020;59(13):5346-5349.

[130]

Yang Y, Cui C, Hou Z, et al. Interface reconstruction via lithium thermal reduction to realize a long life all-solid-state battery. Energy Storage Mater. 2022;52:1-9.

[131]

Liu X, Chen Y, Hood ZD, et al. Elucidating the mobility of H+ and Li+ ions in (Li6.25−xHxAl0.25)La3Zr2O12 viacorrelative neutron and electron spectroscopy. Energy Environ Sci. 2019;12(3):945-951.

[132]

Liu C, Rui K, Shen C, et al. Reversible ion exchange and structural stability of garnet-type Nb-doped Li7La3Zr2O12 in water for applications in lithium batteries. J Power Sources. 2015;282:286-293.

[133]

Cai M, Lu Y, Yao L, et al. Robust conversion-type Li/garnet interphases from metal salt solutions. Chem Eng J. 2021;417:129158.

[134]

Duan H, Chen WP, Fan M, et al. Building an air stable and lithium deposition regulable garnet interface from moderate-temperature conversion chemistry. Angew Chem Int Ed. 2020;59(29):12069-12075.

[135]

Yang X, Tang S, Zheng C, et al. From contaminated to highly lithiated interfaces: a versatile modification strategy for garnet solid electrolytes. Adv Funct Mater. 2022;33(3):2209120.

[136]

Huang X, Lu Y, Niu Y, et al. From protonation & Li-rich contamination to grain-boundary segregation: evaluations of solvent-free vs. wet routes on preparing Li7La3Zr2O12 solid electrolyte. J Energy Chem. 2022;73:223-239.

[137]

Wang S, Xu H, Li W, et al. Interfacial chemistry in solid-state batteries: formation of interphase and its consequences. J Am Chem Soc. 2017;140(1):250-257.

[138]

Zhang J, Wang C, Zheng M, et al. Rational design of air-stable and intact anode-electrolyte interface for garnet-type solid-state batteries. Nano Energy. 2022;102:107672.

[139]

Bi Z, Sun Q, Jia M, et al. Molten salt driven conversion reaction enabling lithiophilic and air-stable garnet surface for solid-state lithium batteries. Adv Funct Mater. 2022;32(52):2208751.

[140]

Liu Y, Lei M, Lai C, et al. Enable high reversibility of Fe/Cu based fluoride conversion batteries via interfacial gas release and detergency of garnet electrolytes. Mater Today. 2022;61:65-77.

[141]

Feng W, Dong X, Li P, et al. Interfacial modification of Li/garnet electrolyte by a lithiophilic and breathing interlayer. J Power Sources. 2019;419:91-98.

[142]

Lu Y, Huang X, Song Z, et al. Highly stable garnet solid electrolyte-based Li-S battery with modified anodic and cathodic interfaces. Energy Storage Mater. 2018;15:282-290.

[143]

Gupta A, Kazyak E, Dasgupta NP, et al. Electrochemical and surface chemistry analysis of lithium lanthanum zirconium tantalum oxide (LLZTO)/liquid electrolyte (LE) interfaces. J Power Sources. 2020;474:228598.

[144]

Xu B, Duan H, Liu H, et al. Stabilization of garnet/liquid electrolyte interface using superbase additives for hybrid Li batteries. ACS Appl Mater Interfaces. 2017;9(25):21077-21082.

[145]

Huang L, Fu H, Duan J, et al. Negating Li+ transfer barrier at solid-liquid electrolyte interface in hybrid batteries. Chem. 2022;8(7):1928-1943.

[146]

Zhou W, Wang S, Li Y, et al. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J Am Chem Soc. 2016;138(30):9385-9388.

[147]

Zhang X, Xiang Q, Tang S, et al. Long cycling life solid-state Li metal batteries with stress self-adapted Li/garnet interface. Nano Lett. 2020;20(4):2871-2878.

[148]

Huo H, Gao J, Zhao N, et al. A flexible electron-blocking interfacial shield for dendrite-free solid lithium metal batteries. Nat Commun. 2021;12(1):176.

[149]

Guo C, Shen Y, Mao P, et al. Grafting of lithiophilic and electron-blocking interlayer for garnet-based solid-state Li metal batteries via one-step anhydrous poly-phosphoric acid post-treatment. Adv Funct Mater. 2022;33(10):2213443.

[150]

Xiong B-Q, Nian Q, Zhao X, et al. Transforming interface chemistry throughout garnet electrolyte for dendrite-free solid-state batteries. ACS Energy Lett. 2022;8(1):537-544.

[151]

Zheng C, Lu Y, Chang Q, et al. High-performance garnet-type solid-state lithium metal batteries enabled by scalable elastic and Li+-conducting interlayer. Adv Funct Mater. 2023;33(33):2302729.

[152]

Bi Z, Huang W, Mu S, et al. Dual-interface reinforced flexible solid garnet batteries enabled by in-situ solidified gel polymer electrolytes. Nano Energy. 2021;90:106498.

[153]

Tang Y, Zhang L, Chen J, et al. Electro-chemo-mechanics of lithium in solid state lithium metal batteries. Energy Environ Sci. 2021;14(2):602-642.

[154]

Jäckle M, Groß A. Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth. J Chem Phys. 2014;141(17):174710.

[155]

Wang C, Xie H, Zhang L, et al. Universal soldering of lithium and sodium alloys on various substrates for batteries. Adv Energy Mater. 2017;8(6):1701963.

[156]

Jin S, Ye Y, Niu Y, et al. Solid-solution-based metal alloy phase for highly reversible lithium metal anode. J Am Chem Soc. 2020;142(19):8818-8826.

[157]

Fu X, Wang T, Shen W, et al. A high-performance carbonate-free lithium|garnet interface enabled by a trace amount of sodium. Adv Mater. 2020;32(26):2000575.

[158]

Krauskopf T, Mogwitz B, Rosenbach C, et al. Diffusion limitation of lithium metal and Li-Mg alloy anodes on LLZO type solid electrolytes as a function of temperature and pressure. Adv Energy Mater. 2019;9(44):1902568.

[159]

Dai Q, Zhao J, Ye H, et al. Ultrastable anode/electrolyte interface in solid-state lithium-metal batteries using LiCux nanowire network host. ACS Appl Mater Interfaces. 2021;13(36):42822-42831.

[160]

Duan J, Wu W, Nolan AM, et al. Lithium-graphite paste: an interface compatible anode for solid-state batteries. Adv Mater. 2019;31(10):1807243.

[161]

Wen J, Huang Y, Duan J, et al. Highly adhesive Li-BN nanosheet composite anode with excellent interfacial compatibility for solid-state Li metal batteries. ACS Nano. 2019;13(12):14549-14556.

[162]

Du M, Sun Y, Liu B, et al. Smart construction of an intimate lithium | garnet interface for all-solid-state batteries by tuning the tension of molten lithium. Adv Funct Mater. 2021;31(31):2101556.

[163]

Wang T, Duan J, Zhang B, et al. A self-regulated gradient interphase for dendrite-free solid-state Li batteries. Energy Environ Sci. 2022;15(3):1325-1333.

[164]

Kim JS, Yoon G, Kim S, et al. Surface engineering of inorganic solid-state electrolytes via interlayers strategy for developing long-cycling quasi-all-solid-state lithium batteries. Nat Commun. 2023;14(1):782.

[165]

Lee Y-G, Fujiki S, Jung C, et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nat Energy. 2020;5(4):299-308.

[166]

Xiang L, Jiang D, Gao Y, et al. Self-formed fluorinated interphase with Fe valence gradient for dendrite-free solid-state sodium-metal batteries. Adv Funct Mater. 2023;34:2301670.

[167]

Spencer-Jolly D, Agarwal V, Doerrer C, et al. Structural changes in the silver-carbon composite anode interlayer of solid-state batteries. Joule. 2023;7(3):503-514.

[168]

Wu C, Emley B, Zhao L, et al. Understanding the chemomechanical function of the silver–carbon interlayer in sheet-type all-solid-state lithium–metal batteries. Nano Lett. 2023;23(10):4415-4422.

[169]

Li S, Wang H, Cuthbert J, et al. A semiliquid lithium metal anode. Joule. 2019;3(7):1637-1646.

[170]

Zhang Y, Han Z, Huang Z, et al. Dendrite-free non-newtonian semisolid lithium metal anode. ACS Energy Lett. 2021;6(11):3761-3768.

[171]

Sun H, Liu Q, Chen J, et al. In situ visualization of lithium penetration through solid electrolyte and dead lithium dynamics in solid-state lithium metal batteries. ACS Nano. 2021;15(12):19070-19079.

[172]

Zhao J, Tang Y, Dai Q, et al. In situ observation of Li deposition-induced cracking in garnet solid electrolytes. Energy Environ Mater. 2021;5(2):524-532.

[173]

Krauskopf T, Hartmann H, Zeier WG, et al. Toward a fundamental understanding of the lithium metal anode in solid-state batteries—an electrochemo-mechanical study on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12. ACS Appl Mater Interfaces. 2019;11(15):14463-14477.

[174]

Wang P, Qu W, Song W, et al. Electro-chemo-mechanical issues at the interfaces in solid-state lithium metal batteries. Adv Funct Mater. 2019;29(27):1900950.

[175]

Ruan Y, Lu Y, Li Y, et al. A 3D cross-linking lithiophilic and electronically insulating interfacial engineering for garnet-type solid-state lithium batteries. Adv Funct Mater. 2020;31(5):2007815.

[176]

Cai M, Jin J, Xiu T, et al. In-situ constructed lithium-salt lithiophilic layer inducing bi-functional interphase for stable LLZO/Li interface. Energy Storage Mater. 2022;47:61-69.

[177]

Huo H, Liang J, Zhao N, et al. Dynamics of the garnet/Li interface for dendrite-free solid-state batteries. ACS Energy Lett. 2020;5(7):2156-2164.

[178]

Chen B, Zhang J, Zhang T, et al. Constructing a superlithiophilic 3D burr-microsphere interface on garnet for high-rate and ultra-stable solid-state Li batteries. Adv Sci. 2023;10(11):2207056.

[179]

Duan J, Huang L, Wang T, et al. Shaping the contact between Li metal anode and solid-state electrolytes. Adv Funct Mater. 2020;30(15):1908701.

[180]

Wan Z, Shi K, Huang Y, et al. Three-dimensional alloy interface between Li6.4La3Zr1.4Ta0.6O12 and Li metal to achieve excellent cycling stability of all-solid-state battery. J Power Sources. 2021;505:230062.

[181]

Xu R, Liu F, Ye Y, et al. A morphologically stable Li/electrolyte interface for all-solid-state batteries enabled by 3D-micropatterned garnet. Adv Mater. 2021;33(49):2104009.

[182]

Fu K, Gong Y, Hitz GT, et al. Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries. Energy Environ Sci. 2017;10(7):1568-1575.

[183]

Yang C, Zhang L, Liu B, et al. Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework. Proc Natl Acad Sci U S A. 2018;115(15):3770-3775.

[184]

Alexander GV, Shi C, O'Neill J, et al. Extreme lithium-metal cycling enabled by a mixed ion- and electron-conducting garnet three-dimensional architecture. Nat Mater. 2023;22:1136-1143.

[185]

Kravchyk KV, Zhang H, Okur F, et al. Li–garnet solid-state batteries with LLZO scaffolds. Acc Mater Res. 2022;3(4):411-415.

[186]

Dai J, Fu K, Gong Y, et al. Flexible solid-state electrolyte with aligned nanostructures derived from wood. ACS Mater Lett. 2019;1(3):354-361.

[187]

Kato T, Hamanaka T, Yamamoto K, et al. In-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid-state battery. J Power Sources. 2014;260:292-298.

[188]

Vardar G, Bowman WJ, Lu Q, et al. Structure, chemistry, and charge transfer resistance of the interface between Li7La3Zr2O12 electrolyte and LiCoO2 cathode. Chem Mater. 2018;30(18):6259-6276.

[189]

Ohta S, Komagata S, Seki J, et al. All-solid-state lithium ion battery using garnet-type oxide and Li3BO3 solid electrolytes fabricated by screen-printing. J Power Sources. 2013;238:53-56.

[190]

Liu T, Zhang Y, Zhang X, et al. Enhanced electrochemical performance of bulk type oxide ceramic lithium batteries enabled by interface modification. J Mater Chem A. 2018;6(11):4649-4657.

[191]

Liu T, Ren Y, Shen Y, et al. Achieving high capacity in bulk-type solid-state lithium ion battery based on Li6.75La3Zr1.75Ta0.25O12 electrolyte: interfacial resistance. J Power Sources. 2016;324:349-357.

[192]

Han F, Yue J, Chen C, et al. Interphase engineering enabled all-ceramic lithium battery. Joule. 2018;2(3):497-508.

[193]

Kim Y, Waluyo I, Hunt A, et al. Avoiding CO2 improves thermal stability at the interface of Li7La3Zr2O12 electrolyte with layered oxide cathodes. Adv Energy Mater. 2022;12(13):2102741.

[194]

Van den Broek J, Afyon S, Rupp JLM. Interface-engineered all-solid-state Li-ion batteries based on garnet-type fast Li+ conductors. Adv Energy Mater. 2016;6(19):1600736.

[195]

Park C, Lee S, Kim K, et al. Electrochemical properties of composite cathode using bimodal sized electrolyte for all-solid-state batteries. J Electrochem Soc. 2019;166(3):A5318-A5322.

[196]

Shi T, Tu Q, Tian Y, et al. High active material loading in all-solid-state battery electrode via particle size optimization. Adv Energy Mater. 2019;10(1):1902881.

[197]

Naguib M, Sharafi A, Self EC, et al. Interfacial reactions and performance of Li7La3Zr2O12-stabilized Li-sulfur hybrid cell. ACS Appl Mater Interfaces. 2019;11(45):42042-42048.

[198]

Liu J, Gao X, Hartley GO, et al. The interface between Li6.5La3Zr1.5Ta0.5O12 and liquid electrolyte. Joule. 2020;4(1):101-108.

[199]

Sebastian Scheld W, Charlotte Hoff L, Vedder C, et al. Enabling metal substrates for garnet-based composite cathodes by laser sintering. Appl Energy. 2023;345:121335.

[200]

Zhang H, An X, Yang Y, et al. Vertical aligned solid-state electrolyte templated by nanostructured “upright” cellulose film layers for advanced cell performance. EcoMat. 2022;5(4):e12317.

[201]

Li L, Deng Y, Chen G. Status and prospect of garnet/polymer solid composite electrolytes for all-solid-state lithium batteries. J Energy Chem. 2020;50:154-177.

[202]

Wang S, Sun Q, Peng W, et al. Ameliorating the interfacial issues of all-solid-state lithium metal batteries by constructing polymer/inorganic composite electrolyte. J Energy Chem. 2021;58:85-93.

[203]

Umeshbabu E, Zheng B, Zhu J, et al. Stable cycling lithium-sulfur solid batteries with enhanced Li/Li10GeP2S12 solid electrolyte interface stability. ACS Appl Mater Interfaces. 2019;11(20):18436-18447.

[204]

Zhao C, Zhao B, Yan C, et al. Liquid phase therapy to solid electrolyte–electrode interface in solid-state Li metal batteries: a review. Energy Storage Mater. 2020;24:75-84.

[205]

Kim HW, Manikandan P, Lim YJ, et al. Hybrid solid electrolyte with the combination of Li7La3Zr2O12 ceramic and ionic liquid for high voltage pseudo-solid-state Li-ion batteries. J Mater Chem A. 2016;4(43):17025-17032.

[206]

Bi Z, Zhao N, Ma L, et al. Interface engineering on cathode side for solid garnet batteries. Chem Eng J. 2020;387:124089.

[207]

Huang W, Bi Z, Zhao N, et al. Chemical interface engineering of solid garnet batteries for long-life and high-rate performance. Chem Eng J. 2021;424:130423.

[208]

Pervez SA, Kim G, Vinayan BP, et al. Overcoming the interfacial limitations imposed by the solid-solid interface in solid-state batteries using ionic liquid-based interlayers. Small. 2020;16(14):e2000279.

[209]

Zhang QH, Vigier KD, Royer S, et al. Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev. 2012;41(21):7108-7146.

[210]

Zha W, Ruan Y, Wen Z. A Janus Li1.5Al0.5Ge1.5(PO4)3 with high critical current density for high-voltage lithium batteries. Chem Eng J. 2022;429:132506.

[211]

Zha W, Li W, Ruan Y, et al. In situ fabricated ceramic/polymer hybrid electrolyte with vertically aligned structure for solid-state lithium batteries. Energy Storage Mater. 2021;36:171-178.

[212]

Zha W, Li J, Li W, et al. Anchoring succinonitrile by solvent-Li+ associations for high-performance solid-state lithium battery. Chem Eng J. 2021;406:126754.

[213]

Zhou D, He Y, Liu R, et al. In situ synthesis of a hierarchical all-solid-state electrolyte based on nitrile materials for high-performance lithium-ion batteries. Adv Energy Mater. 2015;5(15):1500353.

[214]

Lu Z, Yu J, Wu J, et al. Enabling room-temperature solid-state lithium-metal batteries with fluoroethylene carbonate-modified plastic crystal interlayers. Energy Storage Mater. 2019;18:311-319.

[215]

Yang Y, Jiang F, Li Y, et al. A surface coordination interphase stabilizes a solid-state battery. Angew Chem Int Ed. 2021;60(45):24162-24170.

[216]

He M, Cui Z, Han F, et al. Construction of conductive and flexible composite cathodes for room-temperature solid-state lithium batteries. J Alloys Compd. 2018;762:157-162.

[217]

Wang D, Sun Q, Luo J, et al. Mitigating the interfacial degradation in cathodes for high-performance oxide-based solid-state lithium batteries. ACS Appl Mater Interfaces. 2019;11(5):4954-4961.

[218]

Kim KH, Iriyama Y, Yamamoto K, et al. Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery. J Power Sources. 2011;196(2):764-767.

RIGHTS & PERMISSIONS

2024 The Authors. SusMat published by Sichuan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

173

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/