Nonstoichiometric In–S group yielding efficient carrier transfer pathway in In2S3 photoanode for solar water oxidation

Runyu Chen , Linxing Meng , Changda Wang , Weiwei Xu , Yulong Huang , Li Song , Liang Li

SusMat ›› 2024, Vol. 4 ›› Issue (1) : 154 -165.

PDF
SusMat ›› 2024, Vol. 4 ›› Issue (1) : 154 -165. DOI: 10.1002/sus2.185
RESEARCH ARTICLE

Nonstoichiometric In–S group yielding efficient carrier transfer pathway in In2S3 photoanode for solar water oxidation

Author information +
History +
PDF

Abstract

The construction of high-efficiency photoanodes is essential for developing outstanding photoelectrochemical (PEC) water splitting cells. Furthermore, insufficient carrier transport capabilities and sluggish surface water oxidation kinetics limit its application. Using a solvothermal annealing strategy, we prepared a nonstoichiometric In–S (NS) group on the surface of an In2S3 photoanode in situ and unexpectedly formed a type II transfer path of carrier, thereby reducing the interfacial recombination and promoting the bulk separation. First-principles calculations and comprehensive characterizations demonstrated NS group as an excellent oxygen evolution cocatalyst (OEC) that effectively facilitated carrier transport, lowered the surface overpotential, increased the surface active site, and accelerated the surface oxygen evolution reaction kinetics by precisely altering the rate-determining steps of * to *OH and *O to *OOH. These synergistic effects remarkably enhanced the PEC performance, with a high photocurrent density of 5.02 mA cm−2 at 1.23 V versus reversible hydrogen electrode and a negative shift in the onset potential by 310 mV. This work provides a new strategy for the in situ preparation of high-efficiency OECs and provides ideas for constructing excellent carrier transfer and transport channels.

Keywords

In 2S 3 / photoanode / water splitting

Cite this article

Download citation ▾
Runyu Chen, Linxing Meng, Changda Wang, Weiwei Xu, Yulong Huang, Li Song, Liang Li. Nonstoichiometric In–S group yielding efficient carrier transfer pathway in In2S3 photoanode for solar water oxidation. SusMat, 2024, 4(1): 154-165 DOI:10.1002/sus2.185

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Walter MG, Warren EL, McKone JR, et al. Solar water splitting cells. Chem Rev. 2010;110(11):6446-6473.

[2]

Yang W, Prabhakar RR, Tan J, Tilley SD, Moon J. Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting. Chem Soc Rev. 2019;48(19):4979-5015.

[3]

Fu J, Fan Z, Nakabayashi M, et al. Interface engineering of Ta3N5 thin film photoanode for highly efficient photoelectrochemical water splitting. Nat Commun. 2022;13(1):729.

[4]

Zhou H, Zhang D, Gong X, et al. A dual-ligand strategy to regulate the nucleation and growth of lead chromate photoanodes for photoelectrochemical water splitting. Adv Mater. 2022;34(29):2110610.

[5]

Meng L, He J, Zhou X, et al. Atomic layer deposition triggered Fe–In–S cluster and gradient energy band in ZnInS photoanode for improved oxygen evolution reaction. Nat Commun. 2021;12(1):5247.

[6]

Chen R, Meng L, Xu W, Li L. Cocatalysts-photoanode interface in photoelectrochemical water splitting: understanding and insights. Small. 2024;20(1):e2304807.

[7]

Meng L, Li L. Recent research progress on operational stability of metal oxide/sulfide photoanodes in photoelectrochemical cells. Nano Res Energy. 2022;1:9120020.

[8]

Zhang B, Yu S, Dai Y, et al. Nitrogen-incorporation activates NiFeOx catalysts for efficiently boosting oxygen evolution activity and stability of BiVO4 photoanodes. Nat Commun. 2021;12(1):6969.

[9]

Xiong Y, Yang L, Zhu Y, et al. Tuning electronic structure of 2D In2S3 via P doping and size controlling toward efficient photoelectrochemical water oxidation. Sol RRL. 2021;5(1):2000618.

[10]

Meng L, Wang S, Cao F, Tian W, Long R, Li L. Doping-induced amorphization, vacancy, and gradient energy band in SnS2 nanosheet arrays for improved photoelectrochemical water splitting. Angew Chem Int Ed. 2019;58(20):6761-6765.

[11]

Xie H, Feng Y, He X, et al. Construction of nitrogen-doped biphasic transition-metal sulfide nanosheet electrode for energy-efficient hydrogen production via urea electrolysis. Small. 2023;19(17):2207425.

[12]

Chi L-P, Niu Z-Z, Zhang X-L, et al. Stabilizing indium sulfide for CO2 electroreduction to formate at high rate by zinc incorporation. Nat Commun. 2021;12(1):5835.

[13]

Wang H, Xia Y, Li H, et al. Highly active deficient ternary sulfide photoanode for photoelectrochemical water splitting. Nat Commun. 2020;11(1):3078.

[14]

Tian Z, Guo X, Wang D, et al. Enhanced charge carrier lifetime of TiS3 photoanode by introduction of S22− vacancies for efficient photoelectrochemical hydrogen evolution. Adv Funct Mater. 2020;30(21):2001286.

[15]

Cao C, Xie X, Zeng Y, et al. Highly efficient and stable p-type ZnO nanowires with piezotronic effect for photoelectrochemical water splitting. Nano Energy. 2019;61:550-558.

[16]

Yu Y, Huang Y, Yu Y, Shi Y, Zhang B. Design of continuous built-in band bending in self-supported CdS nanorod-based hierarchical architecture for efficient photoelectrochemical hydrogen production. Nano Energy. 2018;43:236-243.

[17]

Xu W, Gao W, Meng L, Tian W, Li L. Incorporation of sulfate anions and sulfur vacancies in ZnIn2S4 photoanode for enhanced photoelectrochemical water splitting. Adv Energy Mater. 2021;11(26):2101181.

[18]

Huang Y, Meng L, Xu W, Li L. The positive versus negative effects of defect engineering for solar water splitting: a review. Adv Funct Mater. 2023;33(47):2305940.

[19]

Zhang B, Wang L, Zhang Y, Ding Y, Bi Y. Ultrathin FeOOH nanolayers with abundant oxygen vacancies on BiVO4 photoanodes for efficient water oxidation. Angew Chem Int Ed. 2018;57(8):2248-2252.

[20]

Liu C, Zhang C, Yin G, et al. A three-dimensional branched TiO2 photoanode with an ultrathin Al2O3 passivation layer and a NiOOH cocatalyst toward photoelectrochemical water oxidation. ACS Appl Mater Interfaces. 2021;13(11):13301-13310.

[21]

Zhou M, Liu Z, Song Q, Li X, Chen B, Liu Z. Hybrid 0D/2D edamame shaped ZnIn2S4 photoanode modified by Co–Pi and Pt for charge management towards efficient photoelectrochemical water splitting. Appl Catal B. 2019;244:188-196.

[22]

Hou J, Cheng H, Takeda O, Zhu H. Unique 3D heterojunction photoanode design to harness charge transfer for efficient and stable photoelectrochemical water splitting. Energy Environ Sci. 2015;8(4):1348-1357.

[23]

Meng L, Zhou X, Wang S, et al. Junction near the surface of a SnS2 nanosheet array to enable efficient solar water oxidation. Angew Chem Int Ed. 2019;58(46):16668-16675.

[24]

Ren H, Dittrich T, Ma H, et al. Manipulation of charge transport by metallic V13O16 decorated on bismuth vanadate photoelectrochemical catalyst. Adv Mater. 2019;31(8):1807204.

[25]

Wang L, Lian W, Liu B, et al. A transparent, high-performance, and stable Sb2S3 photoanode enabled by heterojunction engineering with conjugated polycarbazole frameworks for unbiased photoelectrochemical overall water splitting devices. Adv Mater. 2022;34(29):2200723.

[26]

Pan J-B, Wang B-H, Wang J-B, et al. Activity and stability boosting of an oxygen-vacancy-rich BiVO4 photoanode by NiFe-MOFs thin layer for water oxidation. Angew Chem Int Ed. 2021;60(3):1433-1440.

[27]

Yue P, She H, Zhang L, et al. Super-hydrophilic CoAl-LDH on BiVO4 for enhanced photoelectrochemical water oxidation activity. Appl Catal B. 2021;286:119875.

[28]

He W, Wang R, Zhang L, Zhu J, Xiang X, Li F. Enhanced photoelectrochemical water oxidation on a BiVO4 photoanode modified with multi-functional layered double hydroxide nanowalls. J Mater Chem A. 2015;3(35):17977-17982.

[29]

Bai S, Yang X, Liu C, et al. An integrating photoanode of WO3/Fe2O3 heterojunction decorated with NiFe-LDH to improve PEC water splitting efficiency. ACS Sustain Chem Eng. 2018;6(10):12906-12913.

[30]

Tang Y, Wang R, Yang Y, Yan D, Xiang X. Highly enhanced photoelectrochemical water oxidation efficiency based on triadic quantum dot/layered double hydroxide/BiVO4 photoanodes. ACS Appl Mater Interfaces. 2016;8(30):19446-19455.

[31]

Hu C, Hu J, Zhu Z, et al. Orthogonal charge transfer by precise positioning of silver single atoms and clusters on carbon nitride for efficient piezocatalytic pure water splitting. Angew Chem Int Ed. 2022;61(43):e202212397.

[32]

Meng L, Lv Z, Xu W, Tian W, Li L. Porphyrins-assisted cocatalyst engineering with Co−O−V bond in BiVO4 photoanode for efficient oxygen evolution reaction. Adv Sci. 2023;10(8):2206729.

[33]

Zhou Z, Wang F, Liang P, et al. Reconstructing oxygen vacancies in the bulk and nickel oxyhydroxide overlayer to promote the hematite photoanode for photoelectrochemical water oxidation. ACS Appl Energy Mater. 2022;5(7):8999-9008.

[34]

Feng J, Luo W, Fang T, et al. Highly photo-responsive LaTiO2N photoanodes by improvement of charge carrier transport among film particles. Adv Funct Mater. 2014;24(23):3535-3542.

[35]

Pihosh Y, Nandal V, Shoji R, et al. Nanostructured tantalum nitride for enhanced solar water splitting. ACS Energy Lett. 2023;8(5):2106-2112.

[36]

Zhang B, Huang X, Zhang Y, Lu G, Chou L, Bi Y. Unveiling the activity and stability origin of BiVO4 photoanodes with FeNi oxyhydroxides for oxygen evolution. Angew Chem Int Ed. 2020;59(43):18990-18995.

[37]

Lee H, Yang JW, Tan J, et al. Crystal facet-controlled efficient SnS photocathodes for high performance bias-free solar water splitting. Adv Sci. 2021;8(21):2102458.

[38]

Tan R, Sivanantham A, Jansi Rani B, Jeong YJ, Cho IS. Recent advances in surface regulation and engineering strategies of photoelectrodes toward enhanced photoelectrochemical water splitting. Coord Chem Rev. 2023;494:215362.

[39]

Wang Y, Li X, Huang Z, et al. Amorphous Mo-doped NiS0.5Se0.5 nanosheets@crystalline NiS0.5Se0.5 nanorods for high current-density electrocatalytic water splitting in neutral media. Angew Chem Int Ed. 2023;62(6):e202215256.

[40]

Zhou D, Xue X, Wang X, et al. Ni, In co-doped ZnIn2S4 for efficient hydrogen evolution: modulating charge flow and balancing H adsorption/desorption. Appl Catal B. 2022;310:121337.

[41]

Meng L, Cheng C, Long R, et al. Synergistic effect of atomic layer deposition-assisted cocatalyst and crystal facet engineering in SnS2 nanosheet for solar water oxidation. Sci Bull. 2022;67(15):1562-1571.

[42]

Monllor-Satoca D, Bärtsch M, Fàbrega C, et al. What do you do, titanium? Insight into the role of titanium oxide as a water oxidation promoter in hematite-based photoanodes. Energy Environ Sci. 2015;8(11):3242-3254.

RIGHTS & PERMISSIONS

2024 The Authors. SusMat published by Sichuan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

188

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/