Functionalization design of zinc anode for advanced aqueous zinc-ion batteries

Ziyi Feng , Yang Feng , Fangfang Fan , Dezhao Deng , Han Dong , Shude Liu , Ling Kang , Seong Chan Jun , Ling Wang , Jing Zhu , Lei Dai , Zhangxing He

SusMat ›› 2024, Vol. 4 ›› Issue (2) : e184

PDF
SusMat ›› 2024, Vol. 4 ›› Issue (2) : e184 DOI: 10.1002/sus2.184
REVIEW

Functionalization design of zinc anode for advanced aqueous zinc-ion batteries

Author information +
History +
PDF

Abstract

Rechargeable aqueous zinc-ion batteries (AZIBs) offer high energy density, low cost, and are environmentally friendly, rendering them potential energy storage devices. However, dendrite growth on the zinc anode and numerous side reactions during operation challenge their commercialization. Recent advancements have introduced various materials for the functionalization of zinc anodes. These developments effectively mitigate the performance degradation of zinc anode, enhancing both its cycle stability and the overall performance of AZIBs. Herein, the construction of functionalized zinc anodes is discussed, current materials (including organic, inorganic and their composites) for modified zinc anodes are categorized, and the protective mechanism behind functionalized zinc anodes is analyzed. The study concludes by outlining the characteristics of materials suitable for dendritic-free zinc anode construction and the prospects for future development directions of functionalized zinc anodes in AZIBs.

Keywords

anode / functionalization / inorganic materials / organic materials / zinc-ion batteries

Cite this article

Download citation ▾
Ziyi Feng, Yang Feng, Fangfang Fan, Dezhao Deng, Han Dong, Shude Liu, Ling Kang, Seong Chan Jun, Ling Wang, Jing Zhu, Lei Dai, Zhangxing He. Functionalization design of zinc anode for advanced aqueous zinc-ion batteries. SusMat, 2024, 4(2): e184 DOI:10.1002/sus2.184

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Song Z, Wu J, Tu Y, et al. Photocapacitor integrating voltage-adjustable hybrid supercapacitor and silicon solar cell generating a Joule efficiency of 86%. Energy Environ Sci. 2022;15(10):4247-4258.

[2]

Zhang T, Gregoriou VG, Gasparini N, Chochos CL. Porous organic polymers in solar cells. Chem Soc Rev. 2022;51(11):4465-4483.

[3]

Sun G, Gao R, Jiao H, et al. Self-formation CoO nanodots catalyst in Co(TFSI)2-modified electrolyte for high efficient Li-O2 batteries. Adv Mater. 2022;34(40):2201838.

[4]

Yang G, Chen Y, Feng B, et al. Surface-dominated potassium storage enabled by single-atomic sulfur for high-performance K-ion battery anodes. Energy Environ Sci. 2023;16(4):1540-1547.

[5]

Sun L, Sun J, Zhai S, et al. Homologous MXene-Derived Electrodes for Potassium-Ion Full Batteries. Adv Energy Mater. 2022;12(23):2200113.

[6]

Jin Y, Le PML, Gao P, et al. Low-solvation electrolytes for high-voltage sodium-ion batteries. Nat Energy. 2022;7(8):718-725.

[7]

Wang C, Liu T, Yang X, et al. Fast charging of energy-dense lithium-ion batteries. Nature. 2022;611(7936):485-490.

[8]

Hubble D, Brown D, Zhao Y, et al. Liquid electrolyte development for low-temperature lithium-ion batteries. Energy Environ Sci. 2022;15(2):550-578.

[9]

Ma M, Chen B, Pan H. Three-dimensional heterogeneity in liquid electrolyte structures promotes Na ion transport and storage performance in Na-ion batteries. Chem Sci. 2023;14(22):5983-5991.

[10]

Han KH, Seok JY, Kim IH, et al. A 2D ultrathin nanopatterned interlayer to suppress lithium dendrite growth in high-energy lithium-metal anodes. Adv Mater. 2022;34(34):2203992.

[11]

Lee J, Jeon AR, Lee HJ, et al. Molecularly engineered linear organic carbonates as practically viable nonflammable electrolytes for safe Li-ion batteries. Energy Environ Sci. 2023;16(7):2924-2933.

[12]

Liang Y, Dong H, Aurbach D, Yao Y. Current status and future directions of multivalent metal-ion batteries. Nat Energy. 2020;5(9):646-656.

[13]

Tao R, Fu H, Gao C, et al. Tailoring interface to boost the high-performance aqueous Al ion batteries. Adv Funct Mater. 2023(48):2303072.

[14]

Park H, Lim H, Oh SH, et al. Tailoring ion-conducting interphases on magnesium metals for high-efficiency rechargeable magnesium metal batteries. ACS Energy Lett. 2020;5(12):3733-3740.

[15]

Duy Anh C, Kim YJ, Ngoc Vo T, et al. Three-dimensional electrodes in hybrid electrolytes for high-loading and long-lasting calcium-ion batteries. Chem Eng J. 2023;471:144631.

[16]

Meng H, Ran Q, Dai T, et al. Surface‑alloyed nanoporous zinc as reversible and stable anodes for high‑performance aqueous zinc‑ion battery. Nano-Micro Lett. 2022;14(1):128.

[17]

Dong N, Zhang F, Pan H. Towards the practical application of Zn metal anodes for mild aqueous rechargeable Zn batteries. Chem Sci. 2022;13(28):8243-8252.

[18]

Yan H, Zhang X, Yang Z, et al. Insight into the electrolyte strategies for aqueous zinc ion batteries. Coord Chem Rev. 2022;452:214297.

[19]

Wang X, Wang F, Wang L, et al. An Aqueous Rechargeable Zn//Co3O4 Battery with High Energy Density and Good Cycling Behavior. Adv Mater. 2016;28(24):4904-4911.

[20]

Wang L, Li N, Wang T, et al. Conductive graphite fiber as a stable host for zinc metal anodes. Electrochim Acta. 2017;244:172-177.

[21]

Kang L, Cui M, Jiang F, et al. Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv Energy Mater. 2018;8(25):1801090.

[22]

Zhao Z, Zhao J, Hu Z, et al. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ Sci. 2019;12(6):1938-1949.

[23]

Deng C, Xie X, Han J, et al. A sieve-functional and uniform-porous kaolin layer toward stable zinc metal anode. Adv Funct Mater. 2020;30(21):2000599.

[24]

Liu C, Luo Z, Deng W, et al. Liquid alloy interlayer for aqueous zinc-ion battery. ACS Energy Lett. 2021;6(2):675-683.

[25]

Wang P, Liang S, Chen C, et al. Spontaneous construction of nucleophilic carbonyl-containing interphase toward ultrastable zinc-metal anodes. Adv Mater. 2022;34(33):2202733.

[26]

Xu W, Liao X, Xu W, et al. Ion selective and water resistant cellulose nanofiber/MXene membrane enabled cycling Zn anode at high currents. Adv Energy Mater. 2023;13(14):2300283.

[27]

Khezri R, Rezaei Motlagh S, Etesami M, et al. Stabilizing zinc anodes for different configurations of rechargeable zinc-air batteries. Chem Eng J. 2022;449:137796.

[28]

Yuan L, Cai J, Xu J, et al. In situ growth of ZnO nanosheets on Ti3C2Tx MXene for superior-performance zinc-nickel secondary battery. Chem Eng J. 2023;451:139073.

[29]

Xu C, Li B, Du H, Kang F. Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew Chem Int Ed. 2012;51(4):933-935.

[30]

Natarajan S, Kim SJ, Aravindan V. Restricted lithiation into a layered V2O5 cathode towards building “rocking-chair” type Li-ion batteries and beyond. J Mater Chem A. 2020;8(19):9483-9495.

[31]

Zhao D, Chen S, Lai Y, et al. A stable “rocking-chair” zinc-ion battery boosted by low-strain Zn3V4(PO4)6 cathode. Nano Energy. 2022;100:107520.

[32]

Zhou S, Meng X, Fu C, et al. Aligned dipoles induced electric-field promoting zinc-ion de-solvation toward highly stable dendrite-free zinc-metal batteries. Small. 2023(49):2303457.

[33]

Duan Q, Xue K, Yin X, Yu DYW. A cationic polymeric interface enabling dendrite-free and highly stable aqueous Zn-metal batteries. J Power Sources. 2023;558:232356.

[34]

Wang W, Huang G, Wang Y, et al. Organic acid etching strategy for dendrite suppression in aqueous zinc-ion batteries. Adv Energy Mater. 2022;12(6):2102797.

[35]

Yan M, Huang F, Zhao X, et al. Constructing three-dimensional topological zn deposition for long-life aqueous zn-ion batteries. ACS Appl Mater Interfaces. 2022;14(45):51010-51017.

[36]

Zhang Y, Zheng X, Wang N, et al. Anode optimization strategies for aqueous zinc-ion batteries. Chem Sci. 2022;13(48):14246-14263.

[37]

Guo C, Zhou J, Chen Y, et al. Synergistic manipulation of hydrogen evolution and zinc ion flux in metal-covalent organic frameworks for dendrite-free Zn-based aqueous batteries. Angew Chem Int Ed. 2022;61(41):202210871.

[38]

Zhao X, Zhang X, Dong N, et al. Advanced buffering acidic aqueous electrolytes for ultra-long life aqueous zinc-ion batteries. Small. 2022;18(21):2200742.

[39]

Zhao J, Song C, Ma S, et al. Antifreezing polymeric-acid electrolyte for high-performance aqueous zinc-ion batteries. Energy Storage Mater. 2023;61:102880.

[40]

Ghaur A, Peschel C, Dienwiebel I, et al. Effective SEI formation via phosphazene-based electrolyte additives for stabilizing silicon-based lithium-ion batteries. Adv Energy Mater. 2023;13(26):2203503.

[41]

Tao H, Hou Z, Zhang L, Yang X, Fan L. Manipulating alloying reaction to achieve the stable and dendrite-free zinc metal anodes. Chem Eng J. 2022;450:138048.

[42]

Zou Y, Su Y, Qiao C, et al. A generic “Engraving in Aprotic Medium” strategy toward stabilized Zn anodes. Adv Energy Mater. 2023;13(27):2300932.

[43]

Li R, Du Y, Li Y, et al. Alloying strategy for high-performance zinc metal anodes. ACS Energy Lett. 2022;8(1):457-476.

[44]

Li B, Zhang X, Wang T, et al. Interfacial engineering strategy for high‑performance Zn metal anodes. Nano-Micro Lett. 2021;14(1):6.

[45]

Guo N, Huo W, Dong X, et al. A review on 3D zinc anodes for zinc ion batteries. Small Methods. 2022;6(9):e2200597.

[46]

Gopalakrishnan M, Ganesan S, Nguyen MT, et al. Critical roles of metal–organic frameworks in improving the Zn anode in aqueous zinc-ion batteries. Chem Eng J. 2023;457:141334.

[47]

Chu Y, Ren L, Hu Z, Huang C, Luo J. An in-depth understanding of improvement strategies and corresponding characterizations towards Zn anode in aqueous Zn-ions batteries. Green Energy Environ. 2023;8(4):1006-1042.

[48]

Wen Q, Fu H, Cui R-d, et al. Recent advances in interfacial modification of zinc anode for aqueous rechargeable zinc ion batteries. J Energy Chem. 2023;83:287-303.

[49]

Liu H, Zhang Y, Wang C, et al. Understanding and controlling the nucleation and growth of zn electrodeposits for aqueous zinc-ion batteries. ACS Appl Mater Interfaces. 2021;13(28):32930-32936.

[50]

Zhou W, Wu T, Chen M, et al. Wood-based electrodes enabling stable, anti-freezing, and flexible aqueous zinc-ion batteries. Energy Storage Mater. 2022;51:286-293.

[51]

Liu Z, Ren J, Wang F, et al. Tuning surface energy of Zn anodes via Sn heteroatom doping enabled by a codeposition for ultralong life span dendrite-free aqueous Zn-Ion batteries. ACS Appl Mater Interfaces. 2021;13(23):27085-27095.

[52]

Shen Y, Xu L, Wang Q, et al. Root reason for the failure of a practical Zn-Ni battery: shape changing caused by uneven current distribution and Zn dissolution. ACS Appl Mater Interfaces. 2021;13(43):51141-51150.

[53]

Qiu M, Sun P, Wang Y, et al. Anion-trap engineering toward remarkable crystallographic reorientation and efficient cation migration of Zn ion batteries. Angew Chem Int Ed. 2022;61(44):202210979.

[54]

Zhang B, Qin L, Fang Y, et al. Tuning Zn2+ coordination tunnel by hierarchical gel electrolyte for dendrite-free zinc anode. Chin Sci Bull. 2022;67(9):955-962.

[55]

Guo S, Qin L, Zhang T, et al. Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries. Energy Storage Mater. 2021;34:545-562.

[56]

Huang Z, Li Z, Wang Y, et al. Regulating Zn(002) deposition toward long cycle life for Zn metal batteries. ACS Energy Lett. 2022;8(1):372-380.

[57]

Zheng J, Cao Z, Ming F, et al. Preferred orientation of TiN coatings enables stable zinc anodes. ACS Energy Lett. 2022;7(1):197-203.

[58]

Zhou J, Xie M, Wu F, et al. Ultrathin surface coating of nitrogen-doped graphene enables stable zinc anodes for aqueous zinc-ion batteries. Adv Mater. 2021;33(33):2101649.

[59]

Zhou M, Guo S, Fang G, et al. Suppressing by-product via stratified adsorption effect to assist highly reversible zinc anode in aqueous electrolyte. J Energy Chem. 2021;55:549-556.

[60]

He H, Tong H, Song X, Song X, Liu J. Highly stable Zn metal anodes enabled by atomic layer deposited Al2O3 coating for aqueous zinc-ion batteries. J Mater Chem A. 2020;8(16):7836-7846.

[61]

Pu Z, Amiinu IS, Cheng R, et al. Single‑atom catalysts for electrochemical hydrogen evolution reaction: recent advances and future perspectives. Nano-Micro Lett. 2020;12(1):1-21.

[62]

Pan Z, Cao Q, Gong W, et al. Zincophilic 3D ZnOHF nanowire arrays with ordered and continuous Zn2+ Ion modulation layer enable long-term stable Zn metal anodes. Energy Storage Mater. 2022;50:435-443.

[63]

Xie FX, Li H, Wang XS, et al. Mechanism for zincophilic sites on zinc-metal anode hosts in aqueous batteries. Adv Energy Mater. 2021;11(9):2003419.

[64]

Yang S, Li Y, Du H, et al. Copper nanoparticle-modified carbon nanofiber for seeded zinc deposition enables stable Zn metal anode. ACS Sustainable Chem Eng. 2022;10(38):12630-12641.

[65]

Zeng Y, Sun PX, Pei Z, et al. Nitrogen-doped carbon fibers embedded with zincophilic Cu nanoboxes for stable Zn-metal anodes. Adv Mater. 2022;34(18):2200342.

[66]

Cui M, Xiao Y, Kang L, et al. Quasi-isolated Au particles as heterogeneous seeds to guide uniform Zn deposition for aqueous zinc-ion batteries. ACS Appl Energy Mater. 2019;2(9):6490-6496.

[67]

Chen T, Wang Y, Yang Y, et al. Heterometallic seed-mediated zinc deposition on inkjet printed silver nanoparticles toward foldable and heat-resistant zinc batteries. Adv Funct Mater. 2021;31(24):2101607.

[68]

Zheng J, Huang Z, Zeng Y, et al. Electrostatic shielding regulation of magnetron sputtered Al-based alloy protective coatings enables highly reversible zinc anodes. Nano Lett. 2022;22(3):1017-1023.

[69]

Li P, Ren J, Li C, et al. MOF-derived defect-rich CeO2 as ion-selective smart artificial SEI for dendrite-free Zn-ion battery. Chem Eng J. 2023;451:138769.

[70]

Xu P, Wang C, Zhao B, Zhou Y, Cheng H. An interfacial coating with high corrosion resistance based on halloysite nanotubes for anode protection of zinc-ion batteries. J Colloid Interface Sci. 2021;602:859-867.

[71]

Yang Q, Li L, Hussain T, et al. Stabilizing interface pH by N-modified graphdiyne for dendrite-free and high-rate aqueous Zn-Ion batteries. Angew Chem Int Ed. 2022;61(6):202112304.

[72]

Wang C, Pei Z, Meng Q, et al. Toward flexible zinc-ion hybrid capacitors with superhigh energy density and ultralong cycling life: the pivotal role of ZnCl2 salt-based electrolytes. Angew Chem Int Ed. 2021;60(2):990-997.

[73]

Yang W, Yang Y, Yang H, Zhou H. Regulating water activity for rechargeable zinc-ion batteries: progress and perspective. ACS Energy Lett. 2022;7(8):2515-2530.

[74]

Yan M, Xu C, Sun Y, Pan H, Li H. Manipulating Zn anode reactions through salt anion involving hydrogen bonding network in aqueous electrolytes with PEO additive. Nano Energy. 2021;82:105739.

[75]

Yan M, Dong N, Zhao X, Sun Y, Pan H. Tailoring the stability and kinetics of Zn anodes through trace organic polymer additives in dilute aqueous electrolyte. ACS Energy Lett. 2021;6(9):3236-3243.

[76]

Tao S, Zhang C, Zhang J, et al. A hydrophobic and fluorophilic coating layer for stable and reversible aqueous zinc metal anodes. Chem Eng J. 2022;446:136607.

[77]

Liu H, Wang J, Hua W, et al. Navigating fast and uniform zinc deposition via a versatile metal–organic complex interphase. Energy Environ Sci. 2022;15(5):1872-1881.

[78]

Peng H, Liu C, Wang N, et al. Intercalation of organics into layered structures enables superior interface compatibility and fast charge diffusion for dendrite-free Zn anodes. Energy Environ Sci. 2022;15(4):1682-1693.

[79]

Chen J, Zhou Y, Islam MS, et al. Carbon fiber reinforced Zn–MnO2 structural composite batteries. Compos Sci Technol. 2021;209:108787.

[80]

Dong W, Shi J, Wang T, et al. 3D zinc@carbon fiber composite framework anode for aqueous Zn–MnO2 batteries. RSC Adv. 2018;8(34):19157-19163.

[81]

Ying H, Huang P, Zhang Z, et al. Freestanding and flexible interfacial layer enables bottom-up Zn deposition toward dendrite-free aqueous Zn-ion batteries. Nano-Micro Lett. 2022;14(1):180.

[82]

Li H, Xu C, Han C, et al. Enhancement on cycle performance of Zn anodes by activated carbon modification for neutral rechargeable zinc ion batteries. J Electrochem Soc. 2015;162(8):A1439-1444.

[83]

Wang X, Yang K, Ma C, et al. N-Rich carbon as Zn2+ modulation layers for dendrite-free, highly reversible zinc anodes. Chem Eng J. 2023;452:139257.

[84]

Deng W, Zhang N, Wang X. Hybrid interlayer enables dendrite-free and deposition-modulated zinc anodes. Chem Eng J. 2022;432:134378.

[85]

Fayette M, Chang HJ, Li X, Reed D. High-performance InZn alloy anodes toward practical aqueous zinc batteries. ACS Energy Lett. 2022;7(6):1888-1895.

[86]

Dong N, Zhao X, Yan M, Li H, Pan H. Synergetic control of hydrogen evolution and ion-transport kinetics enabling Zn anodes with high-areal-capacity. Nano Energy. 2022;104:107903.

[87]

Hong L, Wang L, Wang Y, et al. Toward hydrogen-free and dendrite-free aqueous zinc batteries: formation of zincophilic protective layer on Zn anodes. Adv Sci (Weinheim, Ger). 2022;9(6):2104866.

[88]

Han X, Leng H, Qi Y, et al. Hydrophilic silica spheres layer as ions shunt for enhanced Zn metal anode. Chem Eng J. 2022;431:133931.

[89]

Li B, Xue J, Lv X, et al. A facile coating strategy for high stability aqueous zinc ion batteries: porous rutile nano-TiO2 coating on zinc anode. Surf Coat Technol. 2021;421:127367.

[90]

Wang B, Yan J, Zhang Y, et al. In situ carbon insertion in laminated molybdenum dioxide by interlayer engineering toward ultrastable “rocking-chair” zinc-ion batteries. Adv Funct Mater. 2021;31(30):2102827.

[91]

So S, Ahn YN, Ko J, Kim IT, Hur J. Uniform and oriented zinc deposition induced by artificial Nb2O5 Layer for highly reversible Zn anode in aqueous zinc ion batteries. Energy Storage Mater. 2022;52:40-51.

[92]

Jiao Q, Zhou T, Zhang N, et al. High-surface-area titanium nitride nanosheets as zinc anode coating for dendrite-free rechargeable aqueous batteries. Sci China Mater. 2022;65(7):1771-1778.

[93]

Li Y, Yang S, Du H, et al. A stable fluoride-based interphase for a long cycle Zn metal anode in an aqueous zinc ion battery. J Mater Chem A. 2022;10(27):14399-14410.

[94]

Yan H, Li S, Nan Y, Yang LiB. Ultrafast zinc–ion–conductor interface toward high-rate and stable zinc metal batteries. Adv Energy Mater. 2021;11(18):2100186.

[95]

Ma C, Wang X, Lu W, et al. Achieving stable Zn metal anode via a simple NiCo layered double hydroxides artificial coating for high performance aqueous Zn-ion batteries. Chem Eng J. 2022;429:132576.

[96]

Liu Y, Li Y, Huang X, et al. Copper hexacyanoferrate solid-state electrolyte protection layer on Zn metal anode for high-performance aqueous zinc-ion batteries. Small. 2022;18(38):2203061.

[97]

Deng C, Xie X, Han J, et al. Stabilization of Zn metal anode through surface reconstruction of a cerium-based conversion film. Adv Funct Mater. 2021;31(51):2103227.

[98]

Chen S, Chen Q, Ma J, et al. Interface coordination stabilizing reversible redox of zinc for high-performance zinc-iodine batteries. Small. 2022;18(22):2200168.

[99]

Zhang P, Wu Z, Zhang S, et al. Tannin acid induced anticorrosive film toward stable Zn-ion batteries. Nano Energy. 2022;102:107721.

[100]

Wen Q, Fu H, Wang Z, et al. A hydrophobic layer of amino acid enabling dendrite-free Zn anodes for aqueous zinc-ion batteries. J Mater Chem A. 2022;10(34):17501-17510.

[101]

Li J, He B, Zhang Y, et al. In situ constructing coordination compounds interphase to stabilize Zn metal anode for high-performance aqueous Zn–SeS2 batteries. Small. 2022;18(18):2200567.

[102]

Mwemezi M, Prabakar SJR, Han SC, et al. Zinc anodes modified by one-molecular-thick self-assembled monolayers for simultaneous suppression of side-reactions and dendrite-formation in aqueous zinc-ion batteries. Small. 2022;18(21):2201284.

[103]

Liu X, Han Q, Ma Q, Wang Y, Liu C. Cellulose-acetate coating by integrating ester group with zinc salt for dendrite-free Zn metal anodes. Small. 2022;18(39):2203327.

[104]

Tangthuam P, Kao-ian W, Sangsawangs J, et al. Carboxymethyl cellulose as an artificial solid electrolyte interphase for stable zinc-based anodes in aqueous electrolytes. Mater Sci Energy Technol. 2023;6:417-428.

[105]

Yang Z, Li W, Zhang Q, et al. A piece of common cellulose paper but with outstanding functions for advanced aqueous zinc-ion batteries. Mater Today Energy. 2022;28:101076.

[106]

Lu J, Yang J, Zhang Z, et al. Silk fibroin coating enables dendrite-free zinc anode for long-life aqueous zinc-ion batteries. ChemSusChem. 2022;15(15):202200656.

[107]

Liu M, Yang L, Liu H, et al. Artificial solid-electrolyte interface facilitating dendrite-free zinc metal anodes via nanowetting effect. ACS Appl Mater Interfaces. 2019;11(35):32046-32051.

[108]

Pu X, Jiang B, Wang X, et al. High‑Performance Aqueous Zinc‑Ion Batteries Realized by MOF Materials. Nano-Micro Lett. 2020;12(1):152.

[109]

Cui M, Yan B, Mo F, et al. In-situ grown porous protective layers with high binding strength for stable Zn anodes. Chem Eng J. 2022;434:134688.

[110]

He M, Shu C, Hu A, et al. Suppressing dendrite growth and side reactions on Zn metal anode via guiding interfacial anion/cation/H2O distribution by artificial multi-functional interface layer. Energy Storage Mater. 2022;44:452-460.

[111]

Lei L, Chen F, Wu Y, et al. Surface coatings of two-dimensional metal-organic framework nanosheets enable stable zinc anodes. Sci China: Chem. 2022;65(11):2205-2213.

[112]

Aupama V, Kao-Ian W, Sangsawang J, et al. Stabilizing a zinc anode via a tunable covalent organic framework-based solid electrolyte interphase. Nanoscale. 2023;15(20):9003-9013.

[113]

Wu K, Shi X, Yu F, et al. Molecularly engineered three-dimensional covalent organic framework protection films for highly stable zinc anodes in aqueous electrolyte. Energy Storage Mater. 2022;51:391-399.

[114]

Li G, Wang X, Lv S, et al. Long-life and low-polarization Zn metal anodes enabled by a covalent triazine framework coating. Chem Eng J. 2022;450:138116.

[115]

Jin Y, Han KS, Shao Y, et al. Stabilizing zinc anode reactions by polyethylene oxide polymer in mild aqueous electrolytes. Adv Funct Mater. 2020;30(43):2003932.

[116]

Jiao Y, Li F, Jin X, et al. Engineering polymer glue towards 90% zinc utilization for 1000 hours to make high-performance Zn-ion batteries. Adv Funct Mater. 2021;31(49):2107652.

[117]

Chen X, Li W, Hu S, et al. Polyvinyl alcohol coating induced preferred crystallographic orientation in aqueous zinc battery anodes. Nano Energy. 2022;98:107269.

[118]

Wang Y, Guo T, Yin J, et al. Controlled deposition of zinc-metal anodes via selectively polarized ferroelectric polymers. Adv Mater. 2022;34(4):2106937.

[119]

Ma L, Li Q, Ying Y, et al. Toward practical high-areal-capacity aqueous zinc-metal batteries: quantifying hydrogen evolution and a solid-ion conductor for stable zinc anodes. Adv Mater. 2021;33(12):2007406.

[120]

Fan H, Wang M, Yin Y, et al. Tailoring interfacial Zn2+ coordination via a robust cation conductive film enables high performance zinc metal battery. Energy Storage Mater. 2022;49:380-389.

[121]

Zhang Y, Peng C, Zhang Y, et al. In-situ crosslinked Zn2+-conducting polymer complex interphase with synergistic anion shielding and cation regulation for high-rate and dendrite-free zinc metal anodes. Chem Eng J. 2022;448:137653.

[122]

Zhou J, Xie M, Wu F, et al. Encapsulation of metallic Zn in a hybrid MXene/graphene aerogel as a stable Zn anode for foldable Zn-ion batteries. Adv Mater. 2022;34(1):2106897.

[123]

Liang Y, Wang Y, Mi H, et al. Functionalized carbon nanofiber interlayer towards dendrite-free, Zn-ion batteries. Chem Eng J. 2021;425:131862.

[124]

Ding J, Liu Y, Huang S, et al. In situ construction of a multifunctional quasi-gel layer for long-life aqueous zinc metal anodes. ACS Appl Mater Interfaces. 2021;13(25):29746-29754.

[125]

Xue P, Guo C, Li L, et al. A MOF-derivative decorated hierarchical porous host enabling ultrahigh rates and superior long-term cycling of dendrite-free Zn metal anodes. Adv Mater. 2022;34(14):2110047.

[126]

Zhang Y, Cao Z, Liu S, et al. Charge-enriched strategy based on MXene-based polypyrrole layers toward dendrite-free zinc metal anodes. Adv Energy Mater. 2022;12(13):2103979.

[127]

Liu C, Li Z, Zhang X, et al. Synergic effect of dendrite-free and zinc gating in lignin-containing cellulose nanofibers-MXene layer enabling long-cycle-life zinc metal batteries. Adv Sci (Weinheim, Ger). 2022;9(25):2202380.

[128]

Wang N, Wu Z, Long Y, et al. MXene-assisted polymer coating from aqueous monomer solution towards dendrite-free zinc anodes. J Energy Chem. 2022;73:277-284.

[129]

Gan H, Wu J, Li R, Huang B, Liu H. Ultra-stable and deeply rechargeable zinc metal anode enabled by a multifunctional protective layer. Energy Storage Mater. 2022;47:602-610.

[130]

Khamsanga S, Uyama H, Nuanwat W, Pattananuwat P. Polypyrrole/reduced graphene oxide composites coated zinc anode with dendrite suppression feature for boosting performances of zinc ion battery. Sci Rep. 2022;12(1):8689.

[131]

Guo Z, Fan L, Zhao C, et al. A dynamic and self-adapting interface coating for stable Zn-metal anodes. Adv Mater. 2022;34(2):2105133.

[132]

Zhou S, Wang Y, Lu H, et al. Anti-corrosive and Zn-ion-regulating composite interlayer enabling long-life Zn metal anodes. Adv Funct Mater. 2021;31(46):2104361.

[133]

Wang Y, Fan Y, Liao D, et al. Highly Zn2+-conductive and robust modified montmorillonite protective layer of electrodes toward high-performance rechargeable zinc-ion batteries. Energy Storage Mater. 2022;51:212-222.

[134]

Zhang J, Lei Q, Ren Z, et al. A superlattice-stabilized layered CuS anode for high-performance aqueous zinc-ion batteries. ACS Nano. 2021;15(11):17748-17756.

RIGHTS & PERMISSIONS

2024 The Authors. SusMat published by Sichuan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

262

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/