An efficient molten-salt electro-deoxidation strategy enabling fast-kinetics and long-life aluminum–selenium batteries

Jiguo Tu , Zheng Huang , Cheng Chang , Haiping Lei , Shuai Wang , Shuqiang Jiao

SusMat ›› 2024, Vol. 4 ›› Issue (1) : 126 -139.

PDF
SusMat ›› 2024, Vol. 4 ›› Issue (1) : 126 -139. DOI: 10.1002/sus2.183
RESEARCH ARTICLE

An efficient molten-salt electro-deoxidation strategy enabling fast-kinetics and long-life aluminum–selenium batteries

Author information +
History +
PDF

Abstract

Aluminum–selenium (Al–Se) batteries have been considered as one of the most promising energy storage systems owing to their high capacity, energy density, and cost effectiveness, but Se falls challenges in addressing the shuttle effect of soluble intermediate product and sluggish reaction kinetics in the solid–solid conversion process during cycling. Herein, we propose an unprecedented design concept for fabricating uniform Se/C hollow microspheres with controllable morphologies through low-temperature electro-deoxidation in neutral NaCl–AlCl3 molten salt system. Such Se/C hollow microspheres are demonstrated to hold a favorable hollow structure for hosting Se, which can not only suppress the dissolution of soluble intermediate products into the electrolyte, thereby maintaining the structural integrity and maximizing Se utilization of the active material, but also promote the electrical/ionic conductivity, thus facilitating the rapid reaction kinetics during cycling. Accordingly, the as-prepared Se/C hollow microspheres exhibit a high reversible capacity of 720.1 mAh g−1 at 500 mA g−1. Even at the high current density of 1000 mA g−1, Se/C delivers a high discharge capacity of 564.0 mAh g−1, long-term stability over 1100 cycles and high Coulombic efficiency of 98.6%. This present work provides valuable insights into short-process recovery of advanced Se-containing materials and value-added utilization for energy storage.

Keywords

aluminum-ion batteries / hollow Se/C microspheres / long-term cycling stability / low-temperature electro-deoxidation / NaCl–AlCl 3 molten salt

Cite this article

Download citation ▾
Jiguo Tu, Zheng Huang, Cheng Chang, Haiping Lei, Shuai Wang, Shuqiang Jiao. An efficient molten-salt electro-deoxidation strategy enabling fast-kinetics and long-life aluminum–selenium batteries. SusMat, 2024, 4(1): 126-139 DOI:10.1002/sus2.183

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li J, Hui KS, Ji S, et al. Electrodeposition of a dendrite-free 3D Al anode for improving cycling of an aluminum–graphite battery. Carbon Energy. 2022;4(2):155-169.

[2]

Tu J, Song W-L, Lei H, et al. Nonaqueous rechargeable aluminum batteries: progresses, challenges, and perspectives. Chem Rev. 2021;121(8):4903-4961.

[3]

Tu J, Wang W, Lei H, Wang M, Chang C, Jiao S. Design strategies of high-performance positive materials for nonaqueous rechargeable aluminum batteries: from crystal control to battery configuration. Small. 2022;18(27):202201362.

[4]

Lin M, Gong M, Lu B, et al. An ultrafast rechargeable aluminium-ion battery. Nature. 2015;520(7547):324-328.

[5]

Stadie NP, Wang S, Kravchyk KV, Kovalenko MV. Zeolite-templated carbon as an ordered microporous electrode for aluminum batteries. ACS Nano. 2017;11(2):1911-1919.

[6]

Chen H, Xu H, Wang S, et al. Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life. Sci Adv. 2017;3(12):eaao7233.

[7]

Tu J, Wang J, Li S, et al. High-efficiency transformation of amorphous carbon into graphite nanoflakes for stable aluminum-ion battery cathodes. Nanoscale. 2019;11(26):12537-12546.

[8]

Kim J, Raj MR, Lee G. High-defect-density graphite for superior-performance aluminum-ion batteries with ultra-fast charging and stable long life. Nano-Micro Lett. 2021;13(1):171.

[9]

Wang J, Tu J, Chang C, Zhu H. Enhanced intercalation behaviors of edge-rich flakes-stacked graphite for Al–graphite dual-ion battery. J Power Sources. 2021;492:229674.

[10]

Dong Y, Lu P, Ding Y, Shi H, Feng X, Wu Z-S. Advanced design of cathodes and interlayers for high-performance lithium–selenium batteries. SusMat. 2021;1(3):393-412.

[11]

Zhang F, Xiong P, Guo X, et al. A nitrogen, sulphur dual-doped hierarchical porous carbon with interconnected conductive polyaniline coating for high-performance sodium-selenium batteries. Energy Storage Mater. 2019;19:251-260.

[12]

Zhou X, Wang L, Yao Y, et al. Integrating conductivity, captivity, and immobility ability into n/o dual-doped porous carbon nanocage anchored with CNT as an effective Se host for advanced K–Se battery. Adv Funct Mater. 2020;30(43):2003871.

[13]

Liu S, Zhang X, He S, et al. An advanced high energy-efficiency rechargeable aluminum–selenium battery. Nano Energy. 2019;66:104159.

[14]

Song Z, Zhang T, Liu S, et al. Sulfur polymerization strategy based on the intrinsic properties of polymers for advanced binder-free and high-sulfur-content Li–S batteries. SusMat. 2023;3(1):111-127.

[15]

Wu S-C, Ai Y, Chen Y-Z, et al. High-performance rechargeable aluminum–selenium battery with a new deep eutectic solvent electrolyte: thiourea–AlCl3. ACS Appl Mater Interfaces. 2020;12(24):27064-27073.

[16]

Lei H, Jiao S, Tu J, et al. Modified separators for rechargeable high-capacity selenium–aluminium batteries. Chem Eng J. 2020;385:123452.

[17]

Huang X, Liu Y, Liu C, Zhang J, Noonan O, Yu C. Rechargeable aluminum–selenium batteries with high capacity. Chem Sci. 2018;9(23):5178-5182.

[18]

Li Z, Wang X, Li X, Zhang W. Reduced graphene oxide (rGO) coated porous nanosphere TiO2@Se composite as cathode material for high-performance reversible Al–Se batteries. Chem Eng J. 2020;400:126000.

[19]

Lei H, Li S, Tu J. Enhanced storage behavior of quasi-solid-state aluminum–selenium battery. RSC Adv. 2021;11(62):39484-39492.

[20]

Pang Q, Meng J, Gupta S, et al. Fast-charging aluminium–chalcogen batteries resistant to dendritic shorting. Nature. 2022;608(7924):704-711.

[21]

Li X, Ma M, Lv W, et al. CMK-3 modified separator for ultra-high stability performance Cu1.8Se aluminum batteries. Nano Res. 2022;15(9):8136-8145.

[22]

Hu L, Li L, Zhang Y, et al. Construction of cobalt vacancies in cobalt telluride to induce fast ionic/electronic diffusion kinetics for lithium-ion half/full batteries. J Mater Sci Technol. 2022;127:124-132.

[23]

Hong H, Liu J, Huang H, et al. Ordered macro–microporous metal–organic framework single crystals and their derivatives for rechargeable aluminum-ion batteries. J Am Chem Soc. 2019;141(37):14764-14771.

[24]

Du Y, Zhang B, Zhang W, et al. Interfacial engineering of Bi2Te3/Sb2Te3 heterojunction enables high-energy positive for aluminum batteries. Energy Storage Mater. 2021;38:231-240.

[25]

Liu Y, Shi Y, Gao C, et al. Low-temperature potassium batteries enabled by electric and thermal field regulation. Angew Chem Int Ed. 2023;62(16):e202300016.

[26]

Yang X, Gao Y, Fan L, Rao AM, Zhou J, Lu B. Skin-inspired conversion anodes for high-capacity and stable potassium ion batteries. Adv Energy Mater. 2023;13(43):2302589.

[27]

Sakamura Y, Murakami T, Uozumi K. Extraction of selenium and tellurium from CaCl2–LiCl-based molten chlorides containing Na2Se, Na2Te, and CaO. J Electrochem Soc. 2021;168(5):052503.

[28]

Lv T, Xiao J, Weng W, Xiao W. Electrochemical fixation of carbon dioxide in molten salts on liquid zinc cathode to zinc@graphitic carbon spheres for enhanced energy storage. Adv Energy Mater. 2020;10(39):2002241.

[29]

Sylvie RS, Gérard SP. Chalcogenide chemistry in molten salts. I. Selenium(IV) acido-basic and redox properties in the LiCl–KCl eutectic melt at 450, 500, 550 and 600°C. J Electroanal Chem. 2004;572(1):173-183.

[30]

Tu J, Chang C, Wang J, et al. Fundamental understanding on selenium electrochemistry: from electrolytic cell to advanced energy storage. Energy Environ Mater. 2023.

[31]

Chang C, Tu J, Chen Y, Wang M, Jiao S. Electro-deoxidation behavior of solid SeO2 in low-temperature molten salt. Chem Commun. 2022;58(65):9108-9111.

[32]

Lei H, Tu J, Yu Z, Jiao S. Exfoliation mechanism of graphite cathode in ionic liquids. ACS Appl Mater Interfaces. 2017;9(42):36702-36707.

[33]

Li X, Liang J, Li X, et al. High-performance all-solid-state Li–Se batteries induced by sulfide electrolytes. Energy Environ Sci. 2018;11(10):2828-2832.

[34]

Zeng C, Duan C, Guo Z, et al. Ultrafastly activated needle coke as electrode material for supercapacitors. Prog Nat Sci. 2022;32(6):786-792.

[35]

Tu J, Chang C, Wang M, Guan W, Jiao S. Stable and low-voltage-hysteresis zinc negative electrode promoting aluminum dual-ion batteries. Chem Eng J. 2022;430:132743.

[36]

Luo C, Xu Y, Zhu Y, et al. Selenium@mesoporous carbon composite with superior lithium and sodium storage capacity. ACS Nano. 2013;7(9):8003-8010.

[37]

Ding J, Zhou H, Zhang H, et al. Exceptional energy and new insight with a sodium–selenium battery based on a carbon nanosheet cathode and a pseudographite anode. Energy Environ Sci. 2017;10(1):153-165.

[38]

Guo B, Wang Z, Chen J, et al. Cryo-EM revealing the origin of excessive capacity of the Se cathode in sulfide-based all-solid-state Li–Se batteries. ACS Nano. 2022;16(10):17414-17423.

[39]

Zhang Q, Wang L, Wang J, et al. Low-temperature synthesis of edge-rich graphene paper for high-performance aluminum batteries. Energy Storage Mater. 2018;15:361-367.

[40]

Kong Y, Tang C, Huang X, et al. Thermal reductive perforation of graphene cathode for high-performance aluminum-ion batteries. Adv Funct Mater. 2021;31(17):2010569.

[41]

Meng W, Dang Z, Li D, Jiang L, Fang D. Efficient sodium storage in selenium electrodes achieved by selenium doping and copper current collector induced displacement redox mechanisms. Adv Funct Mater. 2022;32(39):2204364.

[42]

Jing P, Xu C, Zhang Y, et al. Oriented loading and enduring confinement endow long-life-span Se cathode based on chemical affinity. Energy Storage Mater. 2022;52:485-494.

[43]

Lei H, Tu J, Li S, et al. Graphene-encapsulated selenium@polyaniline nanowires with three-dimensional hierarchical architecture for high-capacity aluminum–selenium batteries. J Mater Chem A. 2022;10(28):15146-15154.

[44]

Li Z, Liu J, Huo X, Li J, Kang F. Novel one-dimensional hollow carbon nanotubes/selenium composite for high-performance Al–Se batteries. ACS Appl Mater Interfaces. 2019;11(49):45709-45716.

[45]

Lee B, Lee HR, Yim T, et al. Investigation on the structural evolutions during the insertion of aluminum ions into Mo6S8 Chevrel phase. J Electrochem Soc. 2016;163(6):A1070-A1076.

[46]

Geng L, Scheifers JP, Fu C, Zhang J, Fokwa BPT, Guo J. Titanium sulfides as intercalation-type cathode materials for rechargeable aluminum batteries. ACS Appl Mater Interfaces. 2017;9(25):21251-21257.

[47]

Li H, Yang H, Sun Z, Shi Y, Cheng H-M, Li F. A highly reversible Co3S4 microsphere cathode material for aluminum-ion batteries. Nano Energy. 2019;56:100-108.

[48]

Kong Y, Nanjundan AK, Liu Y, Song H, Huang X, Yu C. Modulating ion diffusivity and electrode conductivity of carbon nanotube@mesoporous carbon fibers for high performance aluminum–selenium batteries. Small. 2019;15(51):1904310.

[49]

Zhang T, Cai T, Xing W, et al. A rechargeable 6-electron Al–Se battery with high energy density. Energy Storage Mater. 2021;41:667-676.

[50]

Mohammadnejad S, Ahadzadeh S, Rezaie MN. Tunable band gap energy of single-walled zigzag ZnO nanotubes as a potential application in photodetection. Curr Appl Phys. 2021;29:138-147.

[51]

Lv X, Li F, Gong J, Gu J, Lin S, Chen Z. Metallic FeSe monolayer as an anode material for Li and non-Li ion batteries: a DFT study. Phys Chem Chem Phys. 2020;22(16):8902-8912.

RIGHTS & PERMISSIONS

2024 The Authors. SusMat published by Sichuan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

376

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/