High Na-ion conductivity and mechanical integrity of anion-exchanged polymeric hydrogel electrolytes for flexible sodium ion hybrid energy storage

Jung Woo Hong , Harpalsinh H. Rana , Jeong Hee Park , Jun Su Kim , Sang Joon Lee , Gun Jang , Tae Hoon Kang , Kang Ho Shin , Sang Ha Baek , Wooseok Yang , Kwang Ho Kim , Ju-Hyuk Lee , Ho Seok Park

SusMat ›› 2024, Vol. 4 ›› Issue (1) : 140 -153.

PDF
SusMat ›› 2024, Vol. 4 ›› Issue (1) : 140 -153. DOI: 10.1002/sus2.182
RESEARCH ARTICLE

High Na-ion conductivity and mechanical integrity of anion-exchanged polymeric hydrogel electrolytes for flexible sodium ion hybrid energy storage

Author information +
History +
PDF

Abstract

The polymeric gel electrolytes are attractive owing to their higher ionic conductivities than those of dry polymer electrolytes and lowered water activity for enlarged potential window. However, the ionic conductivity and mechanical strength of the Na-ion conducting polymeric gel electrolytes are limited by below 20 mS cm−1 and 2.2 MPa. Herein, we demonstrate Na-ion conducting and flexible polymeric hydrogel electrolytes of the chemically coupled poly(diallyldimethylammonium chloride)-dextrin-N,N′-methylene-bis-acrylamide film immersed in NaClO4 solution (ex-DDA-Dex + NaClO4) for flexible sodium-ion hybrid capacitors (f-NIHC). In particular, the anion exchange reaction and synergistic interaction of ex-DDA-Dex with the optimum ClO4 enable to greatly improve the ionic conductivity up to 27.63 mS cm−1 at 25°C and electrochemical stability window up to 2.6 V, whereas the double networking structure leads to achieve both the mechanical strength (7.48 MPa) and softness of hydrogel electrolytes. Therefore, the f-NIHCs with the ex-DDA-Dex + NaClO4 achieved high specific and high-rate capacities of 192.04 F g−1 at 500 mA g−1 and 116.06 F g−1 at 10 000 mA g−1, respectively, delivering a large energy density of 120.03 W h kg−1 at 906 W kg−1 and long cyclability of 70% over 500 cycles as well as demonstrating functional operation under mechanical stresses.

Keywords

anion exchange chemistry / flexible energy storage / hybrid energy storage / hydrogel electrolytes / renewable electrolytes / sodium storage

Cite this article

Download citation ▾
Jung Woo Hong, Harpalsinh H. Rana, Jeong Hee Park, Jun Su Kim, Sang Joon Lee, Gun Jang, Tae Hoon Kang, Kang Ho Shin, Sang Ha Baek, Wooseok Yang, Kwang Ho Kim, Ju-Hyuk Lee, Ho Seok Park. High Na-ion conductivity and mechanical integrity of anion-exchanged polymeric hydrogel electrolytes for flexible sodium ion hybrid energy storage. SusMat, 2024, 4(1): 140-153 DOI:10.1002/sus2.182

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Larcher D, Tarascon JM. Towards greener and more sustainable batteries for electrical energy storage. Nat Chem. 2015;7(1):19-29.

[2]

Al Shaqsi AZ, Sopian K, Al-Hinai A. Review of energy storage services, applications, limitations, and benefits. Energy Rep. 2020;6(7):288-306.

[3]

Huang Y, Liu J, Wang J, et al. An intrinsically self-healing NiCo||Zn rechargeable battery with a self-healable ferric-ion-crosslinking sodium polyacrylate hydrogel electrolyte. Angew Chem Int Ed Engl. 2018;57(31):9810-9813.

[4]

Huang Y, Zhong M, Huang Y, et al. A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte. Nat Commun. 2015;6(1):10310.

[5]

Chan CY, Wang Z, Jia H, Ng PF, Chow L, Fei B. Recent advances of hydrogel electrolytes in flexible energy storage devices. J Mater Chem A. 2021;9(4):2043-2069.

[6]

Wang Y, Zhong W-H. Development of electrolytes towards achieving safe and high-performance energy-storage devices: a review. ChemElectroChem. 2015;2(1):22-36.

[7]

Park JH, Rana HH, Lee JY, Park HS. Renewable flexible supercapacitors based on all-lignin-based hydrogel electrolytes and nanofiber electrodes. J Mater Chem A. 2019;7(28):16962-16968.

[8]

Forsyth M, Porcarelli L, Wang X, Goujon N, Mecerreyes D. Innovative electrolytes based on ionic liquids and polymers for next-generation solid-state batteries. Acc Chem Res. 2019;52(3):686-694.

[9]

Bashir S, Hina M, Iqbal J, et al. Fundamental concepts of hydrogels: synthesis, properties, and their applications. Polymers (Basel). 2020;12(11):2702.

[10]

Mahdavinia GR, Pourjavadi A, Hosseinzadeh H, Zohuriaan MJ. Modified chitosan 4. Superabsorbent hydrogels from poly(acrylic acid-co-acrylamide) grafted chitosan with salt- and pH-responsiveness properties. Eur Polym J. 2004;40(7):1399-1407.

[11]

Rasool N, Yasin T, Heng JYY, Akhter Z. Synthesis and characterization of novel pH-, ionic strength and temperature-sensitive hydrogel for insulin delivery. Polymer. 2010;51(8):1687-1693.

[12]

Wu C-J, Gaharwar AK, Schexnailder PJ, Schmidt G. Development of biomedical polymer–silicate nanocomposites: a materials science perspective. Materials. 2010;3(5):2986-3005.

[13]

Wang Y, Yang Q, Zhao Y, Du S, Zhi C. Recent advances in electrode fabrication for flexible energy-storage devices. Adv Mater Technol. 2019;4(7):1900083.

[14]

Rana HH, Park JH, Ducrot E, et al. Extreme properties of double networked ionogel electrolytes for flexible and durable energy storage devices. Energy Storage Mater. 2019;19(22):197-205.

[15]

Sahay R, Tu Y-C, Aziz I, et al. Investigation of the reliability of nano-nickel/niobium oxide-based multilayer thin films deposited on polymer substrates for flexible electronic applications. Mater Adv. 2023;4(15):3257-3269.

[16]

Goikolea E, Palomares V, Wang S, et al. Na-ion batteries—approaching old and new challenges. Adv Energy Mater. 2020;10(44):2002055.

[17]

Jana M, Park JM, Kota M, et al. Surface redox-active organosulfur-tethered carbon nanotubes for high power and long cyclability of Na–organosulfur hybrid energy storage. ACS Energy Lett. 2020;6(1):280-289.

[18]

Dou Q, Park HS. Perspective on high-energy carbon-based supercapacitors. Energy Environ Mater. 2020;3(3):286-305.

[19]

Qi X, Ma Q, Liu L, et al. Sodium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolytes for sodium-ion batteries. ChemElectroChem. 2016;3(11):1741-1745.

[20]

Thangavel R, Ganesan BK, Thangavel V, Yoon W-S, Lee Y-S. Emerging materials for sodium-ion hybrid capacitors: a brief review. ACS Appl Energy Mater. 2021;4(12):13376-13394.

[21]

Liang Y, Jing Y, Gheytani S, et al. Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat Mater. 2017;16(8):841-848.

[22]

Zuo W, Li R, Zhou C, Li Y, Xia J, Liu J. Battery-supercapacitor hybrid devices: recent progress and future prospects. Adv Sci (Weinh). 2017;4(7):1600539.

[23]

Sivakumar P, Jana M, Jung MG, Gedanken A, Park HS. Hexagonal plate-like Ni–Co–Mn hydroxide nanostructures to achieve high energy density of hybrid supercapacitors. J Mater Chem A. 2019;7(18):11362-11369.

[24]

Choi C, Ashby DS, Butts DM, et al. Achieving high energy density and high power density with pseudocapacitive materials. Nat Rev Mater. 2019;5(1):5-19.

[25]

Shao Y, El-Kady MF, Sun J, et al. Design and mechanisms of asymmetric supercapacitors. Chem Rev. 2018;118(18):9233-9280.

[26]

Ding J, Hu W, Paek E, Mitlin D. Review of hybrid ion capacitors: from aqueous to lithium to sodium. Chem Rev. 2018;118(14):6457-6498.

[27]

Zhou C, Zhang Y, Li Y, Liu J. Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett. 2013;13(5):2078-2085.

[28]

Wang Z, Li H, Tang Z, et al. Hydrogel electrolytes for flexible aqueous energy storage devices. Adv Funct Mater. 2018;28(48):1804560.

[29]

Alipoori S, Mazinani S, Aboutalebi SH, Sharif F. Review of PVA-based gel polymer electrolytes in flexible solid-state supercapacitors: opportunities and challenges. J Energy Storage. 2020;27(100):101072.

[30]

Ozdemir O, Celik MS, Nickolov ZS, Miller JD. Water structure and its influence on the flotation of carbonate and bicarbonate salts. J Colloid Interface Sci. 2007;314(2):545-551.

[31]

Mehta A, Pandey JP, Sen G. Synthesis of diallyl dimethyl ammonium chloride grafted polyvinyl pyrrolidone (PVP-g-DADMAC) and its applications. Mater Sci Eng B. 2021;263(3):114750.

[32]

Mwangi IW, Ngila JC, Ndungu P, Msagati TA. Method development for the determination of diallyldimethylammonium chloride at trace levels by epoxidation process. Water Air Soil Poll. 2013;224(9):1638.

[33]

Yi J, Ahn Y, Hong M, et al. Comparison between OCl-injection and in situ electrochlorination in the formation of chlorate and perchlorate in seawater. Appl Sci. 2019;9(2):229.

[34]

Zapata F, Ortega-Ojeda F, Garcia-Ruiz C, Gonzalez-Herraez M. Selective monitoring of oxyanion mixtures by a flow system with Raman detection. Sensors (Basel). 2018;18(7):2196.

[35]

Mwangi IW, Ngila JC, Ndungu P. A new spectrophotometric method for determination of residual polydiallyldimethylammonium chloride flocculant in treated water based on a diazotization-coupled ion pair. Water SA. 2012;38(5):707-714.

[36]

Valade D, Boschet F, Roualdès S, Ameduri B. Preparation of solid alkaline fuel cell binders based on fluorinated poly(diallyldimethylammonium chloride)s [poly(DADMAC)] or poly(chlorotrifluoroethylene-co-DADMAC) copolymers. J Polym Sci Part A Polym Chem. 2009;47(8):2043-2058.

[37]

Shi H-Y, Huang Y-L, Sun J-K, et al. Assembly of BF4−, PF6−, ClO4− and F− with trinuclear copper(i) acetylide complexes bearing amide groups: structural diversity, photophysics and anion binding properties. RSC Adv. 2015;5(109):89669-89681.

[38]

Francis S, Varshney L, Sabharwal S. Thermal degradation behavior of radiation synthesized polydiallyldimethylammonium chloride. Eur Polym J. 2007;43(6):2525-2531.

[39]

Kim SK, Kim HJ, Lee JC, Braun PV, Park HS. Extremely durable, flexible supercapacitors with greatly improved performance at high temperatures. ACS Nano. 2015;9(8):8569-8577.

[40]

Xie J, Liang Z, Lu YC. Molecular crowding electrolytes for high-voltage aqueous batteries. Nat Mater. 2020;19(9):1006-1011.

[41]

Bresser D, Lyonnard S, Iojoiu C, Picard L, Passerini S. Decoupling segmental relaxation and ionic conductivity for lithium-ion polymer electrolytes. Mol Syst Des Eng. 2019;4(4):779-792.

[42]

Tominaga Y, Yamazaki K. Fast Li-ion conduction in poly(ethylene carbonate)-based electrolytes and composites filled with TiO2 nanoparticles. Chem Commun (Camb). 2014;50(34):4448-4450.

[43]

Dong D, Choudhary A, Bedrov D. Coupling–decoupling transition between Li+ transport and segmental relaxation in solid polymer electrolytes. ACS Appl Polym Mater. 2020;2(12):5358-5364.

[44]

Simotwo SK, Chinnam PR, Wunder SL, Kalra V. Highly durable, self-standing solid-state supercapacitor based on an ionic liquid-rich ionogel and porous carbon nanofiber electrodes. ACS Appl Mater Interfaces. 2017;9(39):33749-33757.

[45]

Dong J, He Y, Jiang Y, et al. Intercalation pseudocapacitance of FeVO4·nH2O nanowires anode for high-energy and high-power sodium-ion capacitor. Nano Energy. 2020;73(63):104838.

[46]

Dong S, Shen L, Li H, et al. Pseudocapacitive behaviours of Na2Ti3O7@CNT coaxial nanocables for high-performance sodium-ion capacitors. J Mater Chem A. 2015;3(42):21277-21283.

[47]

Ding C, Huang T, Tao Y, et al. Identifying the origin and contribution of pseudocapacitive sodium ion storage in tungsten disulphide nanosheets for application in sodium-ion capacitors. J Mater Chem A. 2018;6(42):21010-21017.

[48]

Chen H, Dai C, Li Y, et al. An excellent full sodium-ion capacitor derived from a single Ti-based metal–organic framework. J Mater Chem A. 2018;6(48):24860-24868.

[49]

Wei Q, Jiang Y, Qian X, et al. Sodium ion capacitor using pseudocapacitive layered ferric vanadate nanosheets cathode. iScience. 2018;6(16):212-221.

[50]

Hou R, Gund GS, Qi K, et al. Hybridization design of materials and devices for flexible electrochemical energy storage. Energy Storage Mater. 2019;19(4):212-241.

[51]

Gund GS, Park JH, Harpalsinh R, et al. MXene/polymer hybrid materials for flexible AC-filtering electrochemical capacitors. Joule. 2019;3(1):164-176.

[52]

Wang Y, Yi J, Xia Y. Recent progress in aqueous lithium-ion batteries. Adv Energy Mater. 2012;2(7):830-840.

[53]

Song W, Ji X, Zhu Y, et al. Aqueous sodium-ion battery using a Na3V2(PO4)3electrode. ChemElectroChem. 2014;1(5):871-876.

[54]

Shin KH, Park SK, Nakhanivej P, et al. Biomimetic composite architecture achieves ultrahigh rate capability and cycling life of sodium ion battery cathodes. Appl Phys Rev. 2020;7(4):041410.

RIGHTS & PERMISSIONS

2024 The Authors. SusMat published by Sichuan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

235

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/