Multi-scale structure engineering of covalent organic framework for electrochemical charge storage

Xiaofang Zhang , Fangling Li , Shuangqiao Yang , Baiqi Song , Richu Luo , Rui Xiong , Weilin Xu

SusMat ›› 2024, Vol. 4 ›› Issue (1) : 4 -33.

PDF
SusMat ›› 2024, Vol. 4 ›› Issue (1) : 4 -33. DOI: 10.1002/sus2.180
REVIEW

Multi-scale structure engineering of covalent organic framework for electrochemical charge storage

Author information +
History +
PDF

Abstract

Covalent organic frameworks (COFs), which are constructed by linking organic building blocks via dynamic covalent bonds, are newly emerged and burgeoning crystalline porous copolymers with features including programmable topological architecture, pre-designable periodic skeleton, well-defined micro-/meso-pore, large specific surface area, and customizable electroactive functionality. Those benefits make COFs as promising candidates for advanced electrochemical energy storage. Especially, for now, structure engineering of COFs from multi-scale aspects has been conducted to enable optimal overall electrochemical performance in terms of structure durability, electrical conductivity, redox activity, and charge storage. In this review, we give a fundamental and insightful study on the correlations between multi-scale structure engineering and eventual electrochemical properties of COFs, started with introducing their basic chemistries and charge storage principles. The careful discussion on the significant achievements in structure engineering of COFs from linkages, redox sites, polygon skeleton, crystal nanostructures, and composite microstructures, and further their effects on the electrochemical behavior of COFs are presented. Finally, the timely cutting-edge perspectives and in-depth insights into COF-based electrode materials to rationally screen their electrochemical behaviors for addressing future challenges and implementing electrochemical energy storage applications are proposed.

Keywords

covalent organic frameworks / electrochemical energy storage / multi-scale structure engineering / structure–performance correlation

Cite this article

Download citation ▾
Xiaofang Zhang, Fangling Li, Shuangqiao Yang, Baiqi Song, Richu Luo, Rui Xiong, Weilin Xu. Multi-scale structure engineering of covalent organic framework for electrochemical charge storage. SusMat, 2024, 4(1): 4-33 DOI:10.1002/sus2.180

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang Q, Uchaker E, Candelaria S, Cao G. Nanomaterials for energy conversion and storage. Chem Soc Rev. 2013;42(7):3127-3171.

[2]

Cheng XB, Liu H, Yuan H, et al. A perspective on sustainable energy materials for lithium batteries. SusMat. 2021;1(1):38-50.

[3]

Shao C, Zhao Y, Qu L. Recent advances in highly integrated energy conversion and storage system. SusMat. 2022;2(2):142-160.

[4]

Winter M, Brodd RJ. What are batteries, fuel cells, and supercapacitors? Chem Rev. 2004;104(10):4245-4270.

[5]

Jiang FN, Yang SJ, Liu H, et al. Mechanism understanding for stripping electrochemistry of Li metal anode. SusMat. 2021;1(4):506-536.

[6]

Fan M, Chang X, Meng Q, Wan LJ, Guo YG. Progress in the sustainable recycling of spent lithium-ion batteries. SusMat. 2021;1(2):241-254.

[7]

Chu X, Wang Y, Cai L, et al. Boosting the energy density of aqueous MXene-based supercapacitor by integrating 3D conducting polymer hydrogel cathode. SusMat. 2022;2(3):379-390.

[8]

Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev. 2012;41(2):797-828.

[9]

Dong Y, Lu P, Ding Y, Shi H, Feng X, Wu ZS. Advanced design of cathodes and interlayers for high-performance lithium-selenium batteries. SusMat. 2021;1(3):393-412.

[10]

Jiang Y, Guo F, Liu Y, Xu Z, Gao C. Three-dimensional printing of graphene-based materials for energy storage and conversion. SusMat. 2021;1(3):304-323.

[11]

Luo X, Chen S, Hu T, Chen Y, Li F. Renewable biomass-derived carbons for electrochemical capacitor applications. SusMat. 2021;1(2):211-240.

[12]

Zhang C, Lv W, Tao Y, Yang QH. Towards superior volumetric performance: design and preparation of novel carbon materials for energy storage. Energy Environ Sci. 2015;8(5):1390-1403.

[13]

Wu ZS, Zhou G, Yin LC, Ren W, Li F, Cheng HM. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy. 2012;1(1):107-131.

[14]

Tirado JL. Inorganic materials for the negative electrode of lithium-ion batteries: state-of-the-art and future prospects. Mater Sci Eng R. 2003;40(3):103-136.

[15]

Zhang X, Xiao Z, Liu X, Mei P, Yang Y. Redox-active polymers as organic electrode materials for sustainable supercapacitors. Renew Sust Energ Rev. 2021;147:111247.

[16]

Liang Y, Yao Y. Positioning organic electrode materials in the battery landscape. Joule. 2018;2(9):1690-1706.

[17]

Chu X, Wang Y, Cai L, et al. Boosting the energy density of aqueous MXene-based supercapacitor by integrating 3D conducting polymer hydrogel cathode. SusMat. 2022;2(3):379-390.

[18]

Meng Q, Cai K, Chen Y, Chen L. Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy. 2017;36:268-285.

[19]

Waller PJ, Gándara F, Yaghi OM. Chemistry of covalent organic frameworks. Acc Chem Res. 2015;48(12):3053-3063.

[20]

Li J, Jing X, Li Q, et al. Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chem Soc Rev. 2020;49(11):3565-3604.

[21]

Tao Y, Ji W, Ding X, Han BH. Exfoliated covalent organic framework nanosheets. J Mater Chem A. 2021;9(12):7336-7365.

[22]

Geng K, He T, Liu R, et al. Covalent organic frameworks: design, synthesis, and functions. Chem Rev. 2020;120(16):8814-8933.

[23]

Huang N, Wang P, Jiang D. Covalent organic frameworks: a materials platform for structural and functional designs. Nat Rev Mater. 2016;1(10):1-19.

[24]

Kuhn P, Antonietti M, Thomas A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew Chem Int Ed. 2008;47(18):3450-3453.

[25]

de la Peña Ruigómez A, Rodríguez-San-Miguel D, Stylianou KC, et al. Direct on-surface patterning of a crystalline laminar covalent organic framework synthesized at room temperature. Chem Eur J. 2015;21(30):10666-10670.

[26]

CÔTÉ AP, El-Kaderi HM, Furukawa H, Hunt JR, Yaghi OM. Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks. J Am Chem Soc. 2007;129(43):12914-12915.

[27]

Fang Q, Zhuang Z, Gu S, et al. Designed synthesis of large-pore crystalline polyimide covalent organic frameworks. Nat Commun. 2014;5(1):4503.

[28]

Dalapati S, Addicoat M, Jin S, et al. Rational design of crystalline supermicroporous covalent organic frameworks with triangular topologies. Nat Commun. 2015;6(1):7786.

[29]

Spitler EL, Dichtel WR. Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks. Nat Chem. 2010;2(8):672-677.

[30]

Dalapati S, Jin E, Addicoat M, Heine T, Jiang D. Highly emissive covalent organic frameworks. J Am Chem Soc. 2016;138(18):5797-5800.

[31]

Pang ZF, Xu SQ, Zhou TY, Liang RR, Zhan TG, Zhao X. Construction of covalent organic frameworks bearing three different kinds of pores through the heterostructural mixed linker strategy. J Am Chem Soc. 2016;138(14):4710-4713.

[32]

Xu SQ, Zhan TG, Wen Q, Pang ZF, Zhao X. Diversity of covalent organic frameworks (COFs): a 2D COF containing two kinds of triangular micropores of different sizes. ACS Macro Lett. 2016;5(1):99-102.

[33]

Jackson KT, Reich TE, El-Kaderi HM. Targeted synthesis of a porous borazine-linked covalent organic framework. Chem Commun. 2012;48(70):8823-8825.

[34]

CÔTÉ AP, Benin AI, Ockwig NW, et al. Porous, crystalline, covalent organic frameworks. Science. 2005;310(5751):1166-1170.

[35]

Dalapati S, Jin S, Gao J, Xu Y, Nagai A, Jiang D. An azine-linked covalent organic framework. J Am Chem Soc. 2013;135(46):17310-17313.

[36]

Uribe-Romo FJ, Doonan CJ, Furukawa H, Oisaki K, Yaghi OM. Crystalline covalent organic frameworks with hydrazone linkages. J Am Chem Soc. 2011;133(30):11478-11481.

[37]

Ranjeesh KC, Illathvalappil R, Veer SD, et al. Imidazole-linked crystalline two dimensional polymer with ultrahigh protonconductivity. J Am Chem Soc. 2019;141(38):14950-14954.

[38]

Uribe-Romo FJ, Hunt JR, Furukawa H, Klock C, O'Keeffe M, Yaghi OM. A crystalline imine-linked 3-D porous covalent organic framework. J Am Chem Soc. 2009;131(13):4570-4571.

[39]

Vitaku E, Gannett CN, Carpenter KL, Shen L, Abruña HD, Dichtel WR. Phenazine-based covalent organic framework cathode materials with high energy and power densities. J Am Chem Soc. 2020;142(1):16-20.

[40]

Jin E, Asada M, Xu Q, et al. Two-dimensional sp2 carbon-conjugated covalent organic frameworks. Science. 2017;357(6352):673-676.

[41]

Li Z, Hsueh C, Tang Z, et al. Rational design of imine-linked three-dimensional mesoporous covalent organic frameworks with bor topology. SusMat. 2022;2(2):197-205.

[42]

Zhang T, Zhang G, Chen L. 2D conjugated covalent organic frameworks: defined synthesis and tailor-made functions. Acc Chem Res. 2022;55(6):795-808.

[43]

Guan X, Fang Q, Yan Y, Qiu S. Functional regulation and stability engineering of three-dimensional covalent organic frameworks. Acc Chem Res. 2022;55(14):1912-1927.

[44]

Wang Y, Liu Y, Li H, et al. Three-dimensional mesoporous covalent organic frameworks through steric hindrance engineering. J Am Chem Soc. 2020;142(8):3736-3741.

[45]

Guan X, Chen F, Fang Q, Qiu S. Design and applications of three dimensional covalent organic frameworks. Chem Soc Rev. 2020;49(5):1357-1384.

[46]

El-Kaderi HM, Hunt JR, Mendoza-Cortés JL, et al. Designed synthesis of 3D covalent organic frameworks. Science. 2007;316(5822):268-272.

[47]

Sun T, Xie J, Guo W, Li DS, Zhang Q. Covalent-organic frameworks: advanced organic electrode materials for rechargeable batteries. Adv Energy Mater. 2020;10(19):1904199.

[48]

Kandambeth S, Kale VS, Shekhah O, Alshareef HN, Eddaoudi M. 2D covalent-organic framework electrodes for supercapacitors and rechargeable metal-ion batteries. Adv Energy Mater. 2022;12(4):2100177.

[49]

Yao L, Ma C, Sun L, et al. Highly crystalline polyimide covalent organic framework as dual-active-center cathode for high-performance lithium-ion batteries. J Am Chem Soc. 2022;144(51):23534-23542.

[50]

Xu J, He Y, Bi S, et al. An olefin-linked covalent organic framework as a flexible thin-film electrode for a high-performance micro-supercapacitor. Angew Chem Int Ed. 2019;131(35):12193-12197.

[51]

Zhao Q, Zhu Z, Chen J. Molecular engineering with organic carbonyl electrode materials for advanced stationary and redox flow rechargeable batteries. Adv Mater. 2017;29(48):1607007.

[52]

Xie J, Cheng XF, Cao X, et al. Nanostructured metal-organic conjugated coordination polymers with ligand tailoring for superior rechargeable energy storage. Small. 2019;15(49):1903188.

[53]

Song Z, Zhou H. Towards sustainable and versatile energy storage devices: an overview of organic electrode materials. Energy Environ Sci. 2013;6(8):2280-2301.

[54]

Lu Y, Chen J. Prospects of organic electrode materials for practical lithium batteries. Nat Rev Chem. 2020;4(3):127-142.

[55]

Yin X, Sarkar S, Shi S, et al. Recent progress in advanced organic electrode materials for sodium-ion batteries: synthesis, mechanisms, challenges and perspectives. Adv Funct Mater. 2020;30(11):1908445.

[56]

López-Herraiz M, Castillo-Martínez E, Carretero-González J, Carrasco J, Rojo T, Armand M. Oligomeric-Schiff bases as negative electrodes for sodium ion batteries: unveiling the nature of their active redox centers. Energy Environ Sci. 2015;8(11):3233-3241.

[57]

Hong J, Lee M, Lee B, Seo DH, Park CB, Kang K. Biologically inspired pteridine redox centres for rechargeable batteries. Nat Commun. 2014;5(1):5335.

[58]

Matsumoto M, Dasari RR, Ji W, et al. Rapid, low temperature formation of imine-linked covalent organic frameworks catalyzed by metal triflates. J Am Chem Soc. 2017;139(14):4999-5002.

[59]

Wang X, Han X, Zhang J, Wu X, Liu Y, Cui Y. Homochiral 2D porous covalent organic frameworks for heterogeneous asymmetric catalysis. J Am Chem Soc. 2016;138(38):12332-12335.

[60]

Zha Z, Xu L, Wang Z, et al. 3D graphene functionalized by covalent organic framework thin film as capacitive electrode in alkaline media. ACS Appl Mater Interfaces. 2015;7(32):17837-17843.

[61]

Halder A, Ghosh M, Khayum MA, et al. Interlayer hydrogen-bonded covalent organic frameworks as high-performance supercapacitors. J Am Chem Soc. 2018;140(35):10941-10945.

[62]

El-Mahdy AF, Young C, Kim J, You J, Yamauchi Y, Kuo SW. Hollow microspherical and microtubular [3+3] carbazole-based covalent organic frameworks and their gas and energy storage applications. ACS Appl Mater Interfaces. 2019;11(9):9343-9354.

[63]

Patra BC, Bhattacharya S. New covalent organic square lattice based on porphyrin and tetraphenyl ethylene building blocks toward high-performance supercapacitive energy storage. Chem Mater. 2021;33(21):8512-8523.

[64]

Wolfson ER, Xiao N, Schkeryantz L, Haug WK, Wu Y, McGrier PL. A dehydrobenzoannulene-based two-dimensional covalent organic framework as an anode material for lithium-ion batteries. Mol Syst Des Eng. 2020;5(1):97-101.

[65]

Zhao H, Luo D, Xu H, et al. A novel covalent organic framework with high-density imine groups for lithium storage as anode material in lithium-ion batteries. J Mater Sci. 2022;57(22):9980-9991.

[66]

Wolfson ER, Schkeryantz L, Moscarello EM, et al. Alkynyl-based covalent organic frameworks as high-performance anode materials for potassium-ion batteries. ACS Appl Mater Interfaces. 2021;13(35):41628-41636.

[67]

Kandambeth S, Mallick A, Lukose B, Mane MV, Heine T, Banerjee R. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J Am Chem Soc. 2012;134(48):19524-19527.

[68]

DeBlase CR, Silberstein KE, Truong TT, Abruna HD, Dichtel WR. β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage. J Am Chem Soc. 2013;135(45):16821-16824.

[69]

DeBlase CR, Hernández-Burgos K, Silberstein KE, et al. Rapid and efficient redox processes within 2D covalent organic framework thin films. ACS Nano. 2015;9(3):3178-3183.

[70]

Mulzer CR, Shen L, Bisbey RP, et al. Superior charge storage and power density of a conducting polymer-modified covalent organic framework. ACS Cent Sci. 2016;2(9):667-673.

[71]

Geng Q, Wang H, Wang J, et al. Boosting the capacity of aqueous Li-ion capacitors via pinpoint surgery in nanocoral-like covalent organic frameworks. Small Methods. 2022;6(8):2200314.

[72]

Khayum MA, Vijayakumar V, Karak S, et al. Convergent covalent organic framework thin sheets as flexible supercapacitor electrodes. ACS Appl Mater Interfaces. 2018;10(33):28139-28146.

[73]

Zhao G, Zhang Y, Gao Z, et al. Dual active site of the azo and carbonyl-modified covalent organic framework for high-performance Li storage. ACS Energy Lett. 2020;5(4):1022-1031.

[74]

Yang X, Hu Y, Dunlap N, et al. A truxenone-based covalent organic framework as an all-solid-state lithium-ion battery cathode with high capacity. Angew Chem Int Ed. 2020;59(46):20385-20389.

[75]

Zhu D, Xu G, Barnes M, et al. Covalent organic frameworks for batteries. Adv Funct Mater. 2021;31(32):2100505.

[76]

Zhang J, You C, Lin H, Wang J. Electrochemical kinetic modulators in lithium-sulfur batteries: from defect-rich catalysts to single atomic catalysts. Energy Environ Mater. 2022;5(3):731-750.

[77]

Gu S, Wu S, Cao L, et al. Tunable redox chemistry and stability of radical intermediates in 2D covalent organic frameworks for high performance sodium ion batteries. J Am Chem Soc. 2019;141(24):9623-9628.

[78]

Khayum A, Ghosh M, Vijayakumar V, et al. Zinc ion interactions in a two-dimensional covalent organic framework based aqueous zinc ion battery. Chem Sci. 2019;10(38):8889-8894.

[79]

Kuhn P, Antonietti M, Thomas A. Ionothermalsynthese von porösen kovalenten triazin-polymernetzwerken. Angew Chem Int Ed. 2008;120(18):3499-3502.

[80]

Liu M, Guo L, Jin S, Tan B. Covalent triazine frameworks: synthesis and applications. J Mater Chem A. 2019;7(10):5153-5172.

[81]

Kamiya K, Kamai R, Hashimoto K, Nakanishi S. Platinum-modified covalent triazine frameworks hybridized with carbon nanoparticles as methanol-tolerant oxygen reduction electrocatalysts. Nat Commun. 2014;5(1):5040.

[82]

Hao L, Ning J, Luo B, et al. Structural evolution of 2D microporous covalent triazine-based framework toward the study of high-performance supercapacitors. J Am Chem Soc. 2015;137(1):219-225.

[83]

Li Y, Zheng S, Liu X, et al. Conductive microporous covalent triazine-based framework for high-performance electrochemical capacitive energy storage. Angew Chem Int Ed. 2018;130(27):8124-8128.

[84]

Wu C, Zhang H, Hu M, et al. In situ nitrogen-doped covalent triazine-based multiporous cross-linking framework for high-performance energy storage. Adv Electron Mater. 2020;6(7):2000253.

[85]

Li SY, Li WH, Wu XL, Tian Y, Yue J, Zhu G. Pore-size dominated electrochemical properties of covalent triazine frameworks as anode materials for K-ion batteries. Chem Sci. 2019;10(33):7695-7701.

[86]

Jiang F, Wang Y, Qiu T, et al. Synthesis of biphenyl-linked covalent triazine frameworks with excellent lithium storage performance as anode in lithium ion battery. J Power Sources. 2022;523:231041.

[87]

Ding X, Guo J, Feng X, et al. Synthesis of metallophthalocyanine covalent organic frameworks that exhibit high carrier mobility and photoconductivity. Angew Chem Int Ed. 2011;50(6):1289.

[88]

Xu H, Gao J, Jiang D. Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nat Chem. 2015;7:11, 905-912.

[89]

Kandambeth S, Jia J, Wu H, et al. Covalent organic frameworks as negative electrodes for high-performance asymmetric supercapacitors. Adv Energy Mater. 2020;10(38):2001673.

[90]

Li X, Wang H, Chen H, et al. Dynamic covalent synthesis of crystalline porous graphitic frameworks. Chem. 2020;6(4):933-944.

[91]

Yang Z, Liu J, Li Y, Zhang G, Xing G, Chen L. Arylamine-linked 2D covalent organic frameworks for efficient pseudocapacitive energy storage. Angew Chem Int Ed. 2021;133(38):20922-20927.

[92]

Greenham NC, Moratti SC, Bradley DDC, Friend RH, Holmes AB. Efficient light-emitting diodes based on polymers with high electron affinities. Nature. 1993;365(6447):628-630.

[93]

Xu J, He Y, Bi S, et al. An olefin-linked covalent organic framework as a flexible thin-film electrode for a high-performance micro-supercapacitor. Angew Chem Int Ed. 2019;131(35):12193-12197.

[94]

Xu S, Wang G, Biswal BP, et al. A nitrogen-rich 2D sp2-carbon-linked conjugated polymer framework as a high-performance cathode for lithium-ion batteries. Angew Chem Int Ed. 2019;131(3):859-863.

[95]

Khattak AM, Ghazi ZA, Liang B, et al. A redox-active 2D covalent organic framework with pyridine moieties capable of faradaic energy storage. J Mater Chem A. 2016;4(42):16312-16317.

[96]

Li L, Lu F, Xue R, et al. Ultrastable triazine-based covalent organic framework with an interlayer hydrogen bonding for supercapacitor applications. ACS Appl Mater Interfaces. 2019;11(29):26355-26363.

[97]

Yang H, Zhang S, Han L, et al. High conductive two-dimensional covalent organic framework for lithium storage with large capacity. ACS Appl Mater Interfaces. 2016;8(8):5366-5375.

[98]

Bai L, Gao Q, Zhao Y. Two fully conjugated covalent organic frameworks as anode materials for lithium ion batteries. J Mater Chem A. 2016;4(37):14106-14110.

[99]

Wu M, Zhao Y, Sun B, et al. A 2D covalent organic framework as a high-performance cathode material for lithium-ion batteries. Nano Energy. 2020;70:104498.

[100]

Shi R, Liu L, Lu Y, et al. Nitrogen-rich covalent organic frameworks with multiple carbonyls for high-performance sodium batteries. Nat Commun. 2020;11(1):178.

[101]

Sun R, Hou S, Luo C, et al. A covalent organic framework for fast-charge and durable rechargeable Mg storage. Nano Lett. 2020;20(5):3880-3888.

[102]

Tian Z, Kale VS, Wang Y, et al. High-capacity NH4+ charge storage in covalent organic frameworks. J Am Chem Soc. 2021;143(45):19178-19186.

[103]

Liang Y, Zhang P, Chen J. Function-oriented design of conjugated carbonyl compound electrodes for high energy lithium batteries. Chem Sci. 2013;4(3):1330-1337.

[104]

Li M, Liu J, Li Y, et al. Skeleton engineering of isostructural 2D covalent organic frameworks: orthoquinone redox-active sites enhanced energy storage. CCS Chem. 2021;3(2):696-706.

[105]

Xu F, Jin S, Zhong H, et al. Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage. Sci Rep. 2015;5(1):8225.

[106]

Muench S, Wild A, Friebe C, Häupler B, Janoschka T, Schubert US. Polymer-based organic batteries. Chem Rev. 2016;116(16):9438-9484.

[107]

Yang DH, Yao ZQ, Wu D, Zhang YH, Zhou Z, Bu XH. Structure-modulated crystalline covalent organic frameworks as high-rate cathodes for Li-ion batteries. J Mater Chem A. 2016;4(47):18621-18627.

[108]

Luo Z, Liu L, Ning J, et al. A microporous covalent-organic framework with abundant accessible carbonyl groups for lithium-ion batteries. Angew Chem Int Ed. 2018;57(30):9443-9446.

[109]

Wang G, Chandrasekhar N, Biswal BP, et al. A crystalline, 2D polyarylimide cathode for ultrastable and ultrafast Li storage. Adv Mater. 2019;31(28):1901478.

[110]

Lin Z, Lin L, Zhu J, Wu W, Yang X, Sun X. An anti-aromatic covalent organic framework cathode with dual-redox centers for rechargeable aqueous zinc batteries. ACS Appl Mater Interfaces. 2022;14(34):38689-38695.

[111]

Wang W, Kale VS, Cao Z, et al. Molecular engineering of covalent organic framework cathodes for enhanced zinc-ion batteries. Adv Mater. 2021;33(39):2103617.

[112]

Yu M, Chandrasekhar N, Raghupathy RKM, et al. A high-rate two-dimensional polyarylimide covalent organic framework anode for aqueous Zn-ion energy storage devices. J Am Chem Soc. 2020;142(46):19570-19578.

[113]

Mi Z, Yang P, Wang R, et al. Stable radical cation-containing covalent organic frameworks exhibiting remarkable structure-enhanced photothermal conversion. J Am Chem Soc. 2019;141(36):14433-14442.

[114]

Xu F, Xu H, Chen X, et al. Radical covalent organic frameworks: a general strategy to immobilize open-accessible polyradicals for high-performance capacitive energy storage. Angew Chem Int Ed. 2015;127(23):6918-6922.

[115]

Wang J, Chen M, Lu Z, Chen Z, Si L. Radical covalent organic frameworks associated with liquid Na-K toward dendrite-free alkali metal anodes. Adv Sci. 2022;9(26):2203058.

[116]

Li S, Li L, Li Y, et al. Fully conjugated donor–acceptor covalent organic frameworks for photocatalytic oxidative amine coupling and thioamide cyclization. ACS Catal. 2020;10(15):8717-8726.

[117]

Luo R, Lv H, Liao Q, et al. Intrareticular charge transfer regulated electrochemiluminescence of donor–acceptor covalent organic frameworks. Nat Commun. 2021;12(1):6808.

[118]

Li T, Yan X, Zhang WD, et al. A 2D donor-acceptor covalent organic framework with charge transfer for supercapacitors. Chem Commun. 2020;56(91):14187-14190.

[119]

Li N, Jiang K, Rodríguez-Hernández F, et al. Polyarylether-based 2D covalent-organic frameworks with in-plane D–A structures and tunable energy levels for energy storage. Adv Sci. 2022;9(6):2104898.

[120]

Chatterjee A, Sun J, Rawat KS, Van Speybroeck V, Van Der Voort P. Exploring the charge storage dynamics in donor-acceptor covalent organic frameworks based supercapacitors by employing ionic liquid electrolyte. Small. 2023;46:2303189.

[121]

Wang W, Zhang X, Lin J, et al. A photoresponsive battery based on a redox-coupled covalent-organic-framework hybrid photoelectrochemical cathode. Angew Chem Int Ed. 2022;61(50):e202214816.

[122]

Zhu R, Ding J, Jin L, Pang H. Interpenetrated structures appeared in supramolecular cages, MOFs, COFs. Coord Chem Rev. 2019;389:119-140.

[123]

Liu YY, Li XC, Wang S, et al. Self-templated synthesis of uniform hollow spheres based on highly conjugated three-dimensional covalent organic frameworks. Nat Commun. 2020;11(1):5561.

[124]

Liu W, Gong L, Liu Z, et al. Conjugated three-dimensional high-connected covalent organic frameworks for lithium–sulfur batteries. J Am Chem Soc. 2022;144(37):17209-17218.

[125]

Sasmal HS, Kumar Mahato A, Majumder P, Banerjee R. Landscaping covalent organic framework nanomorphologies. J Am Chem Soc. 2022;144(26):11482-11498.

[126]

Colson JW, Woll AR, Mukherjee A. Oriented 2D covalent organic framework thin films on single-layer graphene. Science. 2011;332(6026):228-231.

[127]

Xu L, Zhou X, Tian WQ, et al. Surface-confined single-layer covalent organic framework on single-layer graphene grown on copper foil. Angew Chem Int Ed. 2014;53(36):9564-9568.

[128]

Bunck DN, Dichtel WR. Bulk synthesis of exfoliated two-dimensional polymers using hydrazone-linked covalent organic frameworks. J Am Chem Soc. 2013;135 (40):14952-14955.

[129]

Medina DD, Werner V, Auras F, et al. Oriented thin films of a benzodithiophene covalent organic framework. ACS Nano. 2014;8(4):4042-4052.

[130]

Li BQ, Zhang SY, Kong L, Peng HJ, Zhang Q. Porphyrin organic framework hollow spheres and their applications in lithium-sulfur batteries. Adv Mater. 2018;30(23):1707483.

[131]

Lee M, Kim MS, Oh JM, Park JK, Paek SM. Hybridization of layered titanium oxides and covalent organic nanosheets into hollow spheres for high-performance sodium-ion batteries with boosted electrical/ionic conductivity and ultralong cycle life. ACS Nano. 2323;17(3):3019-3036.

[132]

Sun J, Tian R, Man Y, Fei Y, Zhou X. Templated synthesis of imine-based covalent organic framework hollow nanospheres for stable potassium-ion batteries. Chinese Chem Lett. 2023;34(7):108233.

[133]

Xiong S, Liu J, Wang Y, et al. Solvothermal synthesis of triphenylamine-based covalent organic framework nanofibers with excellent cycle stability for supercapacitor electrodes. J Appl Polym Sci. 2022;139(3):51510.

[134]

Dong Y, Zhang X, Wang Y, Tang L, Yang Y. Engineering building blocks of covalent organic frameworks for boosting capacitive charge storage. J Power Sources. 2023;564:232873.

[135]

Zhang F, Wei S, Wei W, et al. Trimethyltriazine-derived olefin-linked covalent organic framework with ultralong nanofibers. Sci Bull. 2020;65(19):1659-1666.

[136]

Al Hassan MR, Sen A, Zaman T, Mostari MS. Emergence of graphene as a promising anode material for rechargeable batteries: a review. Mater Today Chem. 2019;11:225-243.

[137]

Chen X, Li Y, Wang L, et al. High-lithium-affinity chemically exfoliated 2D covalent organic frameworks. Adv Mater. 2019;3:29, 1901640.

[138]

Wang S, Wang Q, Shao P, et al. Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries. J Am Chem Soc. 2017;139(12):4258-4261.

[139]

Zhao G, Li H, Gao Z, et al. Dual-active-center of polyimide and triazine modified atomic-layer covalent organic frameworks for high-performance Li storage. Adv Funct Mater. 2021;31(29):2101019.

[140]

Duan H, Li K, Xie M, et al. Scalable synthesis of ultrathin polyimide covalent organic framework nanosheets for high-performance lithium-sulfur batteries. J Am Chem Soc. 2021;143(46):19446-19453.

[141]

Yusran Y, Li H, Guan X, et al. Exfoliated mesoporous 2D covalent organic frameworks for high-rate electrochemical double-layer capacitors. Adv Mater. 2020;32(8):1907289.

[142]

Haldar S, Roy K, Kushwaha R, Ogale S, Vaidhyanathan R. Chemical exfoliation as a controlled route to enhance the anodic performance of COF in LIB. Adv Energy Mater. 2019;9(48):1902428.

[143]

He Y, An N, Meng C, et al. High-density active site COFs with a flower-like morphology for energy storage applications. J Mater Chem A. 2022;10(20):11030-11038.

[144]

Wang W, Zhao W, Chen T, et al. All-in-one hollow flower-like covalent organic frameworks for flexible transparent devices. Adv Funct Mater. 2021;31(29):2010306.

[145]

Hu X, Jian J, Fang Z, et al. Hierarchical assemblies of conjugated ultrathin COF nanosheets for high-sulfur-loading and long-lifespan lithium–sulfur batteries: fully-exposed porphyrin matters. Energy Stor Mater. 2019;22:40-47.

[146]

Kong X, Zhou S, Strømme M, Xu C. Redox active covalent organic framework-based conductive nanofibers for flexible energy storage device. Carbon. 2021;171:248-256.

[147]

Gao H, Neale AR, Zhu Q, et al. A pyrene-4,5,9,10-tetraone-based covalent organic framework delivers high specific capacity as a Li-ion positive electrode. J Am Chem Soc. 2022;144(21):9434-9442.

[148]

Chen X, Zhang H, Ci C, Sun W, Wang Y. Few-layered boronic ester based covalent organic frameworks/carbon nanotube composites for high-performance K-organic batteries. ACS Nano. 2019;13(3):3600-3607.

[149]

Luo XX, Li WH, Liang HJ, et al. Covalent organic framework with highly accessible carbonyls and π-cation effect for advanced potassium-ion batteries. Angew Chem Int Ed. 2022;134(10):e202117661.

[150]

Sun J, Klechikov A, Moise C, Prodana M, Enachescu M, Talyzin AV. A molecular pillar approach to grow vertical covalent organic framework nanosheets on graphene: hybrid materials for energy storage. Angew Chem Int Ed. 2018;130(4):1046-1050.

[151]

Li C, Yang J, Pachfule P, et al. Ultralight covalent organic framework/graphene aerogels with hierarchical porosity. Nat Commun. 2020;11(1):4712.

[152]

Dong Y, Wang Y, Zhang X, Lai Q, Yang Y. Carbon-based elastic foams supported redox-active covalent organic frameworks for flexible supercapacitors. Chem Eng J. 2022;449:137858.

[153]

He Y, An N, Meng C, et al. COF-based electrodes with vertically supported tentacle array for ultrahigh stability flexible energy storage. ACS Appl Mater Interfaces. 2022;14(51):57328-57339.

RIGHTS & PERMISSIONS

2023 The Authors. SusMat published by Sichuan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

179

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/