Lithium sulfide: a promising prelithiation agent for high-performance lithium-ion batteries

Junkang Huang , Weifeng Li , Wenli Zhang , Bixia Lin , Yang Wang , Siu Wing Or , Shuhui Sun , Zhenyu Xing

SusMat ›› 2024, Vol. 4 ›› Issue (1) : 34 -47.

PDF
SusMat ›› 2024, Vol. 4 ›› Issue (1) : 34 -47. DOI: 10.1002/sus2.177
REVIEW

Lithium sulfide: a promising prelithiation agent for high-performance lithium-ion batteries

Author information +
History +
PDF

Abstract

Lithium-ion batteries are widely used in portable electronics and electric vehicles due to their high energy density, stable cycle life, and low self-discharge. However, irreversible lithium loss during the formation of the solid electrolyte interface greatly impairs energy density and cyclability. To compensate for the lithium loss, introducing an external lithium source, that is, a prelithiation agent, is an effective strategy to solve the above problems. Compared with other prelithiation strategies, cathode prelithiation is more cost-effective with simpler operation. Among various cathode prelithiation agents, we first systematically summarize the recent progress of Li2S-based prelithiation agents, and then propose some novel strategies to tackle the current challenges. This review provides a comprehensive understanding of Li2S-based prelithiation agents and new research directions in the future.

Keywords

Li-ion batteries / prelithiation / Li 2S / prelithiation agent / metallothermic reduction reaction

Cite this article

Download citation ▾
Junkang Huang, Weifeng Li, Wenli Zhang, Bixia Lin, Yang Wang, Siu Wing Or, Shuhui Sun, Zhenyu Xing. Lithium sulfide: a promising prelithiation agent for high-performance lithium-ion batteries. SusMat, 2024, 4(1): 34-47 DOI:10.1002/sus2.177

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yang L, Li Q, Wang Y, et al. A review of cathode materials in lithium–sulfur batteries. Ionics. 2020;26(11):5299-5318.

[2]

Xing ZY, Li G, Sy S, Chen Z. Recessed deposition of TiN into N-doped carbon as a cathode host for superior Li–S batteries performance. Nano Energy. 2018;54:1-9.

[3]

Tan G, Xu R, Xing ZY, et al. Burning lithium in CS2 for high-performing compact Li2S–graphene nanocapsules for Li–S batteries. Nature Energy. 2017;2(7):1-10.

[4]

Su D, Zhou D, Wang C, Wang G. Toward high performance lithium–sulfur batteries based on Li2S cathodes and beyond: status, challenges, and perspectives. Adv Funct Mater. 2018;28(38):1800154.

[5]

Liang X, Yun J, Wang Y, et al. A new high-capacity and safe energy storage system: lithium-ion sulfur batteries. Nanoscale. 2019;11(41):19140-19157.

[6]

Ding R, Tian S, Zhang K, et al. Recent advances in cathode prelithiation additives and their use in lithium-ion batteries. J Electroanal Chem. 2021;893:115325.

[7]

Benítez A, Amaro-Gahete J, Chien Y-C, Caballero Á, Morales J, Brandell D. Recent advances in lithium-sulfur batteries using biomass-derived carbons as sulfur host. Renew Sust Energy Rev. 2022;154:111783.

[8]

Chen ZL, Zhang H, Xing ZY, et al. Aqueous-solution-processed hybrid solar cells with good thermal and morphological stability. Sol Energy Mater Sol Cells. 2013;109:254-261.

[9]

Zhou L, Zhang W, Wang Y, et al. Lithium sulfide as cathode materials for lithium-ion batteries: advances and challenges. J Chem. 2020;2020:1-17.

[10]

Yuan K, Yuan L, Chen J, et al. Methods and cost estimation for the synthesis of nanosized lithium sulfide. Small Structures. 2021;2(3):2000059.

[11]

Li S, Leng D, Li W, et al. Recent progress in developing Li2S cathodes for Li–S batteries. Energy Storage Materials. 2020;27:279-296.

[12]

Li F, Liu Q, Hu J, Feng Y, He P, Ma J. Recent advances in cathode materials for rechargeable lithium–sulfur batteries. Nanoscale. 2019;11(33):15418-15439.

[13]

Kang W, Deng N, Ju J, et al. A review of recent developments in rechargeable lithium–sulfur batteries. Nanoscale. 2016;8(37):16541-16588.

[14]

Lin B, Zhang Y, Li W, et al. Recent advances in rare earth compounds for lithium–sulfur batteries. eScience. 2023;33.

[15]

Yin Y, Yao H-R, Guo Y. Scientific and technological challenges toward application of lithium–sulfur batteries. Chin Phys B. 2015;25(1):018801.

[16]

Pang P, Wang Z, Tan X, et al. LiCoO2@LiNi0.45Al0.05Mn0.5O2 as high-voltage lithium-ion battery cathode materials with improved cycling performance and thermal stability. Electrochim Acta. 2019;327(9):135018.

[17]

Pang PP, Wang Z, Deng Y, Nan JM, Xing ZY, Li H. Delayed phase transition and improved cycling/thermal stability by spinel LiNi0.5Mn1.5O4 modification for LiCoO2 cathode at high voltages. ACS Appl Mater Interfaces. 2020;12(24):27339-27349.

[18]

Fang R, Zhao S, Sun Z, Wang DW, Cheng HM, Li F. More reliable lithium–sulfur batteries: status, solutions and prospects. Adv Mater. 2017;29(48):1606823.

[19]

Eftekhari A, Kim D-W. Cathode materials for lithium–sulfur batteries: a practical perspective. J Mater Chem A. 2017;5(34):17734-17776.

[20]

Ye H, Li M, Liu T, Li Y, Lu J. Activating Li2S as the lithium-containing cathode in lithium–sulfur batteries. ACS Energy Lett. 2020;5(7):2234-2245.

[21]

Wild M, O'neill L, Zhang T, et al. Lithium sulfur batteries, a mechanistic review. Energy Environ Sci. 2015;8(12):3477-3494.

[22]

Son Y, Lee JS, Son Y, Jang JH, Cho J. Recent advances in lithium sulfide cathode materials and their use in lithium sulfur batteries. Adv Energy Mater. 2015;5(16):1500110.

[23]

Luo S, Wu F, Yushin G. Strategies for fabrication, confinement and performance boost of Li2S in lithium–sulfur, silicon–sulfur & related batteries. Mater Today. 2021;49:253-270.

[24]

Li C, Wang Z-B, Wang Q, Gu D-M. Recent advances in cathode materials for Li–S battery: structure and performance. Rare Met. 2017;36(5):365-380.

[25]

Jiang JC, Fan QN, Chou SL, et al. Li2S-based Li-ion sulfur batteries: progress and prospects. Small. 2021;17(9):1903934.

[26]

Lou S, Zhang F, Fu C, et al. Interface issues and challenges in all-solid-state batteries: lithium, sodium, and beyond. Adv Mater. 2020;33(6):2000721.

[27]

Zhang C, Wang F, Han J, et al. Challenges and recent progress on silicon-based anode materials for next-generation lithium-ion batteries. Small Structures. 2021;2(6):2100009.

[28]

Zhu L, Yan C-Q, Ni T-l. Research status quo of prelithiation technology for Li-ion battery. Battery Bimonthly. 2018;48(3):206-209.

[29]

Li SP, Zeng ZQ, Yang JQ, et al. High performance room temperature sodium–sulfur battery by eutectic acceleration in tellurium-doped sulfurized polyacrylonitrile. ACS Appl Energy Mater. 2019;2(4):2956-2964.

[30]

Mu TS, Zuo PJ, Lou SF, et al. A two-dimensional nitrogen-rich carbon/silicon composite as high performance anode material for lithium ion batteries. Chem Eng J. 2018;341:37-46.

[31]

Marom R, Amalraj SF, Leifer N, Jacob D, Aurbach D. A review of advanced and practical lithium battery materials. J Mater Chem. 2011;21(27):9938-9954.

[32]

Li JY, Xu Q, Li G, Yin YX, Wan LJ, Guo YG. Research progress regarding Si-based anode materials towards practical application in high energy density Li-ion batteries. Mat Chem Front. 2017;1(9):1691-1708.

[33]

Jia HP, Li XL, Song JH, et al. Hierarchical porous silicon structures with extraordinary mechanical strength as high-performance lithium-ion battery anodes. Nat Commun. 2020;11(1):9.

[34]

Huang G, Han JH, Lu Z, et al. Ultrastable silicon anode by three-dimensional nanoarchitecture design. Acs Nano. 2020;14(4):4374-4382.

[35]

Qian H, Ren H, Zhang Y, et al. Surface doping vs. bulk doping of cathode materials for lithium-ion batteries: a review. Electrochem Energy Rev. 2022;5(4):2.

[36]

Zhao S, Wang B, Zhang Z, Zhang X, He S, Yu H. First-principles computational insights into lithium battery cathode materials. Electrochem Energy Rev. 2022;5(1):1-31.

[37]

Zhang J, Chen X, Shao G, Wang H, Dong Y, Wang C-A. Activated nanolithia as an effective prelithiation additive for lithium-ion batteries. J Mater Chem A. 2023;11(16):8757-8765.

[38]

Zhang H, Cheng J, Liu H, et al. Prelithiation: a critical strategy towards practical application of high-energy-density batteries. Adv Energy Mater. 2023;13(27):2300466.

[39]

Pan Y, Qi X, Du H, et al. Li2Se as a cathode prelithiation additive for lithium-ion batteries. ACS Appl Mater Interfaces. 2023;15(15):18763-18770.

[40]

Liu X, Wu Z, Xie L, et al. Prelithiation enhances cycling life of lithium-ion batteries: a mini review. review; early access. Energy Environ Mater. 2023;9.

[41]

Li F, Cao Y, Wu W, Wang G, Qu D. Prelithiation bridges the gap for developing next-generation lithium-ion batteries/capacitors. Small Methods. 2022;6(7):2200411.

[42]

Kuo C-y, Hsu H-p, Cw L. Scalable chemical prelithiation of SiO/C anode material for lithium-ion batteries. J Power Sources. 2023;558:232599.

[43]

Jiang J-M, Li Z-W, Zhang Z-T, et al. Recent advances and perspectives on prelithiation strategies for lithium-ion capacitors. Rare Met. 2022;41(10):3322-3335.

[44]

Huang Z, Deng Z, Zhong Y, et al. Progress and challenges of prelithiation technology for lithium-ion battery. Carbon Energy. 2022;4(6):1107-1132.

[45]

Chen S, Wang Z, Zhang M, et al. Practical evaluation of prelithiation strategies for next-generation lithium-ion batteries. Carbon Energy. 2023;5(8):23.

[46]

Bhujbal AV, Ng KL, Khazraei S, Bekou J, Riahi AR. Recent advances in prelithiation of silicon anode: enhanced strategy for boosting practicability of Li-ion battery. J Electrochem Soc. 2023;170(8):080506.

[47]

Zhan Y, Yu H, Ben L, Chen Y, Huang X. Using Li2S to compensate for the loss of active lithium in Li-ion batteries. Electrochim Acta. 2017;255:212-219.

[48]

Zhao Y, Li W, Wu J, Zhou X, Liu Z. A scalable and controllable Li-powder-coating prelithiation method toward ultralong-life and high-energy-density LiFePO4 battery. Energy Technol. 2023;11(8):7.

[49]

Zhang X, Hou X, Hou Y, Zhang R, Xu S, Mann M. Insights into chemical prelithiation of SiOx/graphite composite anodes through scanning electron microscope imaging. ACS Appl Energy Mater. 2023;6(15):7996-8005.

[50]

Yang C, Ma H, Yuan R, et al. Roll-to-roll prelithiation of lithium-ion battery anodes by transfer printing. Nature Energy. 2023;8(7):703-713.

[51]

Wu Y, Zhang W, Li S, et al. Li2Cu0.1Ni0.9O2 with copper substitution: a new cathode prelithiation additive for lithium-ion batteries. ACS Sustain Chem Eng. 2023;11(3):1044-1053.

[52]

Wang Y, Lu J, Qiao Y, et al. The efficient solid electrochemical corrosion prelithiation of graphite and SiOx/C anodes for longer-lasting lithium ion batteries. J Power Sources. 2023;580:233402.

[53]

Zou KY, Deng W, Cai P, et al. Prelithiation/presodiation techniques for advanced electrochemical energy storage systems: concepts, applications, and perspectives. Adv Funct Mater. 2021;31(5):2005581.

[54]

Jin L, Shen C, Wu Q, et al. Pre-lithiation strategies for next-generation practical lithium-ion batteries. Adv Sci. 2021;8(12):2005031.

[55]

Jia T, Zhong G, Lv Y, et al. Prelithiation strategies for silicon-based anode in high energy density lithium-ion battery. Green Energy Environ. 2023;8(5):1325-1340.

[56]

He X, Mu X, Wang Y, Wang P, He P. Fast and scalable complete chemical prelithiation strategy for Si/C anodes enabling high-performance LixSi–S full cells. ACS Appl Energy Mater. 2023;7.

[57]

He W, Xu H, Chen Z, et al. Regulating the solvation structure of Li+ enables chemical prelithiation of silicon-based anodes toward high-energy lithium-ion batteries. Nano-Micro Lett. 2023;15(1):107.

[58]

Esen E, Mohrhardt M, Lennartz P, et al. Effect of prelithiation with passivated lithium metal powder on passivation films on high-energy NMC-811 and SiCx electrodes. Mater Today Chem. 2023;30:101587.

[59]

Deng R, Wang Z, Chen K. Dual function high-efficiency silicon electrode prelithiation strategy. Ionics. 2023;29(6):2241-2248.

[60]

Xu H, Zhang C. Mechanical prelithiation of Sn/C@ZrO2 yolk–shell anode for full cell cycling. Mater Chem Phys. 2022;276:125303.

[61]

Xu H, Li S, Chen X, et al. Sn-alloy foil electrode with mechanical prelithiation: full-cell performance up to 200 cycles. Adv Energy Mater. 2019;9(42):1902150.

[62]

Liang N, Xu H, Fan H, Li Z, Li S. Cryogenic mechanical prelithiation reduces porosity and improves battery performance of an alloy foil anode. ACS Appl Mater Interfaces. 2022;14(11):13326-13334.

[63]

Domi Y, Usui H, Iwanari D, Sakaguchi H. Effect of mechanical pre-lithiation on electrochemical performance of silicon negative electrode for lithium-ion batteries. J Electrochem Soc. 2017;164(7):A1651-A1654.

[64]

Alaboina PK, Cho J-S, Uddin M-J, Cho S-J. Mechanically prelithiated silicon nano alloy as highly engineered anode material. Electrochim Acta. 2017;258:623-630.

[65]

Cheng XB, Huang JQ, Zhang Q. Li metal anode in working lithium–sulfur batteries. J Electrochem Soc. 2018;165(1):A6058-A6072.

[66]

Heine J, Krueger S, Hartnig C, Wietelmann U, Winter M, Bieker P. Coated lithium powder (CLiP) electrodes for lithium–metal batteries. Adv Energy Mater. 2014;4(5):1300815.

[67]

Zou K, Deng W, Cai P, et al. Prelithiation/presodiation techniques for advanced electrochemical energy storage systems: concepts, applications, and perspectives. Adv Funct Mater. 2021;31(5):2005581.

[68]

Zhou HT, Wang XH, Chen D. Li-metal-free prelithiation of Si-based negative electrodes for full Li-ion batteries. ChemSusChem. 2015;8(16):2737-2744.

[69]

Yang S-Y, Yue X-Y, Dai W-Q, et al. Graphite prelithiation by solid electrochemical corrosion of lithium metal with a superficial mosaic structure. Chem Commun. 2021;57(80):10371-10374.

[70]

Shen C, Fu R, Xia Y, Liu Z. New perspective to understand the effect of electrochemical prelithiation behaviors on silicon monoxide. RSC Adv. 2018;8(26):14473-14478.

[71]

Kopuklu BB, Esen E, Gomez-Martin A, et al. Practical implementation of magnetite-based conversion-type negative electrodes via electrochemical prelithiation. ACS Appl Mater Interfaces. 2022;14(30):34665-34677.

[72]

Obrovac M, Dahn J. Electrochemically active lithia/metal and lithium sulfide/metal composites. Electrochem Solid-State Lett. 2002;5(4):A70.

[73]

Xin C, Gao J, Luo R, Zhou W. Prelithiation reagents and strategies on high energy lithium-ion batteries. Chem Eur J. 2022;28(23):e202104282.

[74]

Yue H, Zhang S, Feng T, et al. Understanding of the mechanism enables controllable chemical prelithiation of anode materials for lithium-ion batteries. ACS Appl Mater Interfaces. 2021;13(45):53996-54004.

[75]

Wang G, Li F, Liu D, et al. Chemical prelithiation of negative electrodes in ambient air for advanced lithium-ion batteries. ACS Appl Mater Interfaces. 2019;11(9):8699-8703.

[76]

Su Y-S, Chang J-K. Polycyclic aromatic hydrocarbon-enabled wet chemical prelithiation and presodiation for batteries. Batteries. 2022;8(8):99.

[77]

Shen Y, Zhang J, Pu Y, et al. Effective chemical prelithiation strategy for building a silicon/sulfur Li-ion battery. ACS Energy Lett. 2019;4(7):1717-1724.

[78]

Liu Z, Ma S, Mu X, Li R, Yin G, Zuo P. A scalable cathode chemical prelithiation strategy for advanced silicon-based lithium ion full batteries. ACS Appl Mater Interfaces. 2021;13(10):11985-11994.

[79]

Jang J, Kang I, Choi J, et al. Molecularly tailored lithium–arene complex enables chemical prelithiation of high-capacity lithium-ion battery anodes. Angew Chem Int Ed. 2020;59(34):14473-14480.

[80]

Hong J. Chemical prelithiation toward lithium-ion batteries with higher energy density. J Korean Electrochem So. 2021;24(4):77-92.

[81]

Choi J, Jeong H, Jang J, et al. Weakly solvating solution enables chemical prelithiation of graphite–SiOx anodes for high-energy Li-ion batteries. J Am Chem Soc. 2021;143(24):9169-9176.

[82]

Zhao J, Lu Z, Wang H, et al. Artificial solid electrolyte interphase-protected LixSi nanoparticles: an efficient and stable prelithiation reagent for lithium-ion batteries. J Am Chem Soc. 2015;137(26):8372-8375.

[83]

Zhao J, Lu Z, Liu N, Lee H-W, McDowell MT, Cui Y. Dry-air–stable lithium silicide–lithium oxide core–shell nanoparticles as high-capacity prelithiation reagents. Nat Commun. 2014;5(1):55088.

[84]

Zhao J, Liao L, Shi F, et al. Surface fluorination of reactive battery anode materials for enhanced stability. J Am Chem Soc. 2017;139(33):11550-11558.

[85]

Zhao J, Lee H-W, Sun J, et al. Metallurgically lithiated SiOx anode with high capacity and ambient air compatibility. Proc Natl Acad Sci USA. 2016;113(27):7408-7413.

[86]

Yang Z, Qin X, Lin K, Cai Q, Fu Y, Li B. Surface passivated LixSi with improved storage stability as a prelithiation reagent in anodes. Electrochem Commun. 2022;138:107272.

[87]

Yang M-Y, Li G, Zhang J, et al. Enabling SiOx/C anode with high initial coulombic efficiency through a chemical pre-lithiation strategy for high-energy-density lithium-ion batteries. ACS Appl Mater Interfaces. 2020;12(24):27202-27209.

[88]

Wang C, Han Y, Li S, Chen T, Yu J, Lu Z. Thermal lithiated-TiO2: a robust and electron-conducting protection layer for Li–Si alloy anode. ACS Appl Mater Interfaces. 2018;10(15):12750-12758.

[89]

Lin X, Dong Y, Liu X, Chen X, Li A, Song H. In-situ pre-lithiated onion-like SiOC/C anode materials based on metallasilsesquioxanes for Li-ion batteries. Chem Eng J. 2022;428:132125.

[90]

Li S, Wang C, Yu J, Han Y, Lu Z. Understanding the role of conductive polymer in thermal lithiation and battery performance of Li–Sn alloy anode. Energy Storage Mater. 2019;20:7-13.

[91]

Guo L, Xin C, Gao J, et al. The electrolysis of anti-perovskite Li2OHCl for prelithiation of high-energy-density batteries. Angew Chem Int Ed. 2021;60(23):13013-13020.

[92]

Zhan Y, Yu H, Ben L, et al. Application of Li2S to compensate for loss of active lithium in a Si–C anode. J Mater Chem A. 2018;6(15):6206-6211.

[93]

Sun Y, Li Y, Sun J, Li Y, Pei A, Cui Y. Stabilized Li3N for efficient battery cathode prelithiation. Energy Storage Mater. 2017;6:119-124.

[94]

Sun Y, Lee H-W, Zheng G, et al. Situ chemical synthesis of lithium fluoride/metal nanocomposite for high capacity prelithiation of cathodes. Nano Lett. 2016;16(2):1497-1501.

[95]

Sun Y, Lee H-W, Seh ZW, et al. High-capacity battery cathode prelithiation to offset initial lithium loss. Nature Energy. 2016;1(1):1-7.

[96]

Du J, Wang W, Eng AYS, et al. Metal/LiF/Li2O nanocomposite for battery cathode prelithiation: trade-off between capacity and stability. Nano Lett. 2020;20(1):546-552.

[97]

Bie Y, Yang J, Wang J, Zhou J, Nuli Y. Li2O2 as a cathode additive for the initial anode irreversibility compensation in lithium-ion batteries. Chem Commun. 2017;53(59):8324-8327.

[98]

Xing ZY, Tan GQ, Yuan YF, et al. Consolidating lithiothermic-ready transition metals for Li2S-based cathodes. Adv Mater. 2020;32(31):11.

[99]

Ding R, Zheng Y, Liang G. Li2S as a cathode additive to compensate for the irreversible capacity loss of lithium iron phosphate batteries. Ionics. 2022;28(4):1573-1581.

[100]

Sun Y, Lee HW, Seh ZW, et al. Lithium sulfide/metal nanocomposite as a high-capacity cathode prelithiation material. Adv Energy Mater. 2016;6(12):1600154.

[101]

Xing ZY, Wang B, Halsted JK, Subashchandrabose R, Stickle WF, Ji X. Direct fabrication of nanoporous graphene from graphene oxide by adding a gasification agent to a magnesiothermic reaction. Chem Commun. 2015;51(10):1969-1971.

[102]

Xing ZY, Luo XY, Qi Y, et al. Nitrogen-doped nanoporous graphenic carbon: an efficient conducting support for O2 cathode. Chemnanomat. 2016;2(7):692-697.

[103]

Xing ZY, Lu J, Ji X. A brief review of metallothermic reduction reactions for materials preparation. Small Methods. 2018;2(12):1800062.

[104]

Chen Y-X, Kaghazchi P. Metalization of Li2S particle surfaces in Li–S batteries. Nanoscale. 2014;6(22):13391-13395.

[105]

Pan Y. Insight into sulfur vacancy-induced insulator to metal transition of Li2S. Funct Mater Lett. 2017;10(05):1750067.

[106]

Pan Y, Guan W, Mao P. Insulator-to-metal transition of lithium–sulfur battery. RSC Adv. 2017;7(70):44326-44332.

RIGHTS & PERMISSIONS

2023 The Authors. SusMat published by Sichuan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

995

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/