Design of high-performance and sustainable Co-free Ni-rich cathodes for next-generation lithium-ion batteries

Hao Ge , Zhiwen Shen , Yanhong Wang , Zhijia Sun , Xiaoman Cao , Chaoyue Wang , Xinyue Fan , Jinsong Bai , Rundong Li , Tianhua Yang , Gang Wu

SusMat ›› 2024, Vol. 4 ›› Issue (1) : 48 -71.

PDF
SusMat ›› 2024, Vol. 4 ›› Issue (1) : 48 -71. DOI: 10.1002/sus2.176
REVIEW

Design of high-performance and sustainable Co-free Ni-rich cathodes for next-generation lithium-ion batteries

Author information +
History +
PDF

Abstract

Great attention has been given to high-performance and inexpensive lithium-ion batteries (LIBs) in response to the ever-increasing demand for the explosive growth of electric vehicles (EVs). High-performance and low-cost Co-free Ni-rich layered cathodes are considered one of the most favorable candidates for next-generation LIBs because the current supply chain of EVs relies heavily on scarce and expensive Co. Herein, we review the recent research progress on Co-free Ni-rich layered cathodes, emphasizing on analyzing the necessity of replacing Co and the popular improvment methods. The current advancements in the design strategies of Co-free Ni-rich layered cathodes are summarized in detail. Despite considerable improvements achieved so far, the main technical challenges contributing to the deterioration of Co-free Ni-rich cathodes such as detrimental phase transitions, crack formation, and severe interfacial side reactions, are difficult to resolve by a single technique. The cooperation of multiple modification strategies is expected to accelerate the industrialization of Co-free Ni-rich layered cathodes, and the corresponding synergistic mechanisms urgently need to be studied. More effects will be aroused to explore high-performance Co-free Ni-rich layered cathodes to promote the sustainable development of LIBs.

Keywords

Co-free cathodes / electrochemical performance / lithium-ion batteries / modification strategies / Ni-rich layered cathodes

Cite this article

Download citation ▾
Hao Ge, Zhiwen Shen, Yanhong Wang, Zhijia Sun, Xiaoman Cao, Chaoyue Wang, Xinyue Fan, Jinsong Bai, Rundong Li, Tianhua Yang, Gang Wu. Design of high-performance and sustainable Co-free Ni-rich cathodes for next-generation lithium-ion batteries. SusMat, 2024, 4(1): 48-71 DOI:10.1002/sus2.176

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Manthiram A. A reflection on lithium-ion battery cathode chemistry. Nat Commun. 2020;11(1):1550.

[2]

Manthiram A, Song B, Li W. A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries. Energy Storage Mater. 2017;6:125-139.

[3]

Kim J, Lee H, Cha H, Yoon M, Park M, Cho J. Prospect and reality of Ni-rich cathode for commercialization. Adv Energy Mater. 2018;8(6):1702028.

[4]

Kim Y, Seong WM, Manthiram A. Cobalt-free, high-nickel layered oxide cathodes for lithium-ion batteries: progress, challenges, and perspectives. Energy Storage Mater. 2021;34:250-259.

[5]

Gourley SWD, Or T, Chen Z. Breaking free from cobalt reliance in lithium-ion batteries. iScience. 2020;23(9):101505.

[6]

Cazzola P, Gorner M, Tattini J, Schuitmaker R, Bunsen T. Global EV Outlook 2019—Scaling up the Transition to Electric Mobility. London, UK: IEA; 2019.

[7]

Noerochim L, Suwarno S, Idris NH, Dipojono HK. Recent development of nickel-rich and cobalt-free cathode materials for lithium-ion batteries. Batteries. 2021;7(4):84.

[8]

Murdock BE, Toghill KE, Tapia-Ruiz N. A perspective on the sustainability of cathode materials used in lithium-ion batteries. Adv Energy Mater. 2021;11(39):2102028.

[9]

Ceder G, Chiang YM, Sadoway DR, Aydinol MK, Jang YI, Huang BJN. Identification of cathode materials for lithium batteries guided by first-principles calculations. Nature. 1998;392(6677):694-696.

[10]

Zhang S, Gao P, Wang Y, Li J, Zhu Y. Cobalt-free concentration-gradient Li[Ni0.9Mn0.1]O2 cathode material for lithium-ion batteries. J Alloys Compd. 2021;885:161005.

[11]

Li M, Lu J, Chen Z, Amine K. 30 years of lithium-ion batteries. Adv Mater. 2018;30(33):1800561.

[12]

Manthiram A. An outlook on lithium ion battery technology. ACS Cent Sci. 2017;3(10):1063-1069.

[13]

Pender JP, Jha G, Youn DH, et al. Electrode degradation in lithium-ion batteries. ACS Nano. 2020;14(2):1243-1295.

[14]

Zhao H, Lam WAY, Sheng L, et al. Cobalt-free cathode materials: families and their prospects. Adv Energy Mater. 2022;12(16):2103894.

[15]

Cheng XB, Liu H, Yuan H, et al. A perspective on sustainable energy materials for lithium batteries. SusMat. 2021;1(1):38-50.

[16]

Muralidharan N, Essehli R, Hermann RP, et al. Lithium iron aluminum nickelate, LiNixFeyAlzO2—new sustainable cathodes for next-generation cobalt-free Li-ion batteries. Adv Mater. 2020;32(34):2002960.

[17]

Lv H, Zhu X, Mei J, Xia Y, Wang B. Recent progress of in-situ characterization of LiNi1–xyCoxMnyO2 cathodes for lithium metal batteries: a mini review. Nano Res. 2023.

[18]

Li BQ, Kong L, Zhao CX, et al. Expediting redox kinetics of sulfur species by atomic-scale electrocatalysts in lithium–sulfur batteries. InfoMat. 2019;1(4):533-541.

[19]

Li W, Lee S, Manthiram A. High-nickel NMA: a cobalt-free alternative to NMC and NCA cathodes for lithium-ion batteries. Adv Mater. 2020;32(33):2002718.

[20]

Thackeray MM, Amine K. Layered Li–Ni–Mn–Co oxide cathodes. Nat Energy. 2021;6(9):933-933.

[21]

Lu J, Chen Z, Ma Z, Pan F, Curtiss LA, Amine K. The role of nanotechnology in the development of battery materials for electric vehicles. Nat Nanotechnol. 2016;11(12):1031-1038.

[22]

Bai Y, Muralidharan N, Sun YK, Passerini S, Stanley Whittingham M, Belharouak I. Energy and environmental aspects in recycling lithium-ion batteries: concept of battery identity global passport. Mater Today. 2020;41:304-315.

[23]

Chen Y, Sun XX, Sears RC, Dai MS. Writing and erasing MYC ubiquitination and SUMOylation. Genes Dis. 2019;6(4):359-371.

[24]

Liu J, Yuan Y, Zheng J, et al. Understanding the synthesis kinetics of single-crystal Co-free Ni-rich cathodes. Angew Chem Int Ed. 2023;62(20):e202302547.

[25]

Yu L, Liu T, Amine R, Wen J, Lu J, Amine K. High nickel and No cobalt—the pursuit of next-generation layered oxide cathodes. ACS Appl Mater Interfaces. 2022;14(20):23056-23065.

[26]

Kim M, Kang S, Gyu Park H, Park K, Min K. Maximizing the energy density and stability of Ni-rich layered cathode materials with multivalent dopants via machine learning. Chem Eng J. 2023;452:139254.

[27]

Schmidt O, Hawkes A, Gambhir A, Staffell I. The future cost of electrical energy storage based on experience rates. Nat Energy. 2017;2(8):1-8.

[28]

Muralidharan N, Self EC, Dixit M, et al. Next-generation cobalt-free cathodes—a prospective solution to the battery industry's cobalt problem. Adv Energy Mater. 2022;12(9):2103050.

[29]

Ryu HH, Sun HH, Myung ST, Yoon CS, Sun YK. Reducing cobalt from lithium-ion batteries for the electric vehicle era. Energy Environ Sci. 2021;14(2):844-852.

[30]

Lv Y, Huang S, Zhao Y, et al. A review of nickel-rich layered oxide cathodes: synthetic strategies, structural characteristics, failure mechanism, improvement approaches and prospects. Appl Energy. 2022;305:117849.

[31]

Choi JW, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater. 2016;1(4):16013.

[32]

Sun YK, Myung ST, Park BC, Prakash J, Belharouak I, Amine K. High-energy cathode material for long-life and safe lithium batteries. Nat Mater. 2009;8(4):320-324.

[33]

Kim JM, Xu Y, Engelhard MH, et al. Facile dual-protection layer and advanced electrolyte enhancing performances of cobalt-free/nickel-rich cathodes in lithium-ion batteries. ACS Appl Mater Interfaces. 2022;14(15):17405-17414.

[34]

Zheng J, Teng G, Xin C, et al. Role of superexchange interaction on tuning of Ni/Li disordering in layered Li(NixMnyCoz)O2. J Phys Chem Lett. 2017;8(22):5537-5542.

[35]

Li M, Lu J. Cobalt in lithium-ion batteries. Science. 2020;367(6481):979-980.

[36]

Xiao Y, Liu T, Liu J, et al. Insight into the origin of lithium/nickel ions exchange in layered Li(NixMnyCoz)O2 cathode materials. Nano Energy. 2018;49:77-85.

[37]

Liu T, Yu L, Liu J, et al. Understanding Co roles towards developing Co-free Ni-rich cathodes for rechargeable batteries. Nat Energy. 2021;6(3):277-286.

[38]

Zheng J, Ye Y, Liu T, et al. Ni/Li disordering in layered transition metal oxide: electrochemical impact, origin, and control. Acc Chem Res. 2019;52(8):2201-2209.

[39]

Wang D, Xin C, Zhang M, et al. Intrinsic role of cationic substitution in tuning Li/Ni mixing in high-Ni layered oxides. Chem Mater. 2019;31(8):2731-2740.

[40]

Goodenough JB, Park KS. The Li-ion rechargeable battery: a perspective. J Am Chem Soc. 2013;135(4):1167-1176.

[41]

Wang R, Wang L, Fan Y, Yang W, Zhan C, Liu G. Controversy on necessity of cobalt in nickel-rich cathode materials for lithium-ion batteries. J Ind Eng Chem. 2022;110:120-130.

[42]

Zhang MJ, Teng G, Chen-Wiegart YCK, et al. Cationic ordering coupled to reconstruction of basic building units during synthesis of high-Ni layered oxides. J Am Chem Soc. 2018;140(39):12484-12492.

[43]

Assat G, Foix D, Delacourt C, Iadecola A, Dedryvere R, Tarascon JM. Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes. Nat Commun. 2017;8(1):2219.

[44]

Croy JR, Iddir H, Gallagher K, Johnson CS, Benedek R, Balasubramanian M. First-charge instabilities of layered-layered lithium-ion-battery materials. Phys Chem Chem Phys. 2015;17(37):24382-24391.

[45]

Gent WE, Lim K, Liang Y, et al. Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides. Nat Commun. 2017;8(1):2091.

[46]

Cao X, Li H, Qiao Y, et al. Stabilizing reversible oxygen redox chemistry in layered oxides for sodium-ion batteries. Adv Energy Mater. 2020;10(15):1903785.

[47]

Kim UH, Park NY, Park GT, Kim H, Yoon CS, Sun YK. High-energy W-doped Li[Ni0.95Co0.04Al0.01]O2 cathodes for next-generation electric vehicles. Energy Storage Mater. 2020;33:399-407.

[48]

Ryu HH, Park KJ, Yoon CS, Sun YK. Capacity fading of Ni-rich Li[NixCoyMn1–xy]O2 (0.6 ≤ x ≤ 0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation? Chem Mater. 2018;30(3):1155-1163.

[49]

Xu C, Reeves PJ, Jacquet Q, Grey CP. Phase behavior during electrochemical cycling of Ni-rich cathode materials for Li-ion batteries. Adv Energy Mater. 2021;11(7):2003404.

[50]

Kim JH, Kim SJ, Yuk T, Kim J, Yoon CS, Sun YK. Variation of electronic conductivity within secondary particles revealing a capacity-fading mechanism of layered Ni-rich cathode. ACS Energy Lett. 2018;3(12):3002-3007.

[51]

Park NY, Park GT, Kim SB, Jung W, Park BC, Sun YK. Degradation mechanism of Ni-rich cathode materials: focusing on particle interior. ACS Energy Lett. 2022;7(7):2362-2369.

[52]

Liu T, Yu L, Lu J, et al. Rational design of mechanically robust Ni-rich cathode materials via concentration gradient strategy. Nat Commun. 2021;12(1):6024.

[53]

Cui Z, Xie Q, Manthiram A. A cobalt- and manganese-free high-nickel layered oxide cathode for long-life, safer lithium-ion batteries. Adv Energy Mater. 2021;11(41):2102421.

[54]

Xu T, Du F, Wu L, Fan Z, Shen L, Zheng J. Boosting the electrochemical performance of LiNiO2 by extra low content of Mn-doping and its mechanism. Electrochim Acta. 2022;417:140345.

[55]

Wang C, Han L, Zhang R, et al. Resolving atomic-scale phase transformation and oxygen loss mechanism in ultrahigh-nickel layered cathodes for cobalt-free lithium-ion batteries. Matter. 2021;4(6):2013-2026.

[56]

Dyer Lawrence D, Borie BS, Smith GP. Alkali metal-nickel oxides of the type MNiO2. J Am Chem Soc. 1954;76(6):1499-1503.

[57]

Bianchini M, Fauth F, Hartmann P, Brezesinski T, Janek J. An in situ structural study on the synthesis and decomposition of LiNiO2. J Mater Chem A. 2020;8(4):1808-1820.

[58]

Song MY, Kwon IH, Song J, Shim S. Electrochemical properties of Li1−z(Ni1−yFey)1+zO2 synthesized by the combustion method in an air atmosphere. J Appl Electrochem. 2008;39(5):617-625.

[59]

Li W, Asl HY, Xie Q, Manthiram A. Collapse of LiNi1–xyCoxMnyO2 lattice at deep charge irrespective of nickel content in lithium-ion batteries. J Am Chem Soc. 2019;141(13):5097-5101.

[60]

Li H, Zhang N, Li J, Dahn JR. Updating the structure and electrochemistry of LixNiO2 for 0 ≤ x ≤ 1. J Electrochem Soc. 2018;165(13):A2985-A2993.

[61]

Sun YK, Chen Z, Noh HJ, et al. Nanostructured high-energy cathode materials for advanced lithium batteries. Nat Mater. 2012;11(11):942-947.

[62]

Yoon CS, Jun DW, Myung ST, Sun YK. Structural stability of LiNiO2 cycled above 4.2 V. ACS Energy Lett. 2017;2(5):1150-1155.

[63]

Li H, Liu A, Zhang N, et al. An unavoidable challenge for Ni-rich positive electrode materials for lithium-ion batteries. Chem Mater. 2019;31(18):7574-7583.

[64]

Bak SM, Hu E, Zhou Y, et al. Structural changes and thermal stability of charged LiNixMnyCozO2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy. ACS Appl Mater Interfaces. 2014;6(24):22594-22601.

[65]

Kim H, Choi A, Doo SW, Lim J, Kim Y, Lee KT. Role of Na+ in the cation disorder of [Li1–xNax]NiO2 as a cathode for lithium-ion batteries. J Electrochem Soc. 2018;165(2):A201-A205.

[66]

Li H, Cormier M, Zhang N, Inglis J, Li J, Dahn JR. Is cobalt needed in Ni-rich positive electrode materials for lithium ion batteries? J Electrochem Soc. 2019;166(4):A429-A439.

[67]

Kang K, Meng YS, Breger J, Grey CP, Ceder G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science. 2006;311(5763):977-980.

[68]

Croy JR, Long BR, Balasubramanian M. A path toward cobalt-free lithium-ion cathodes. J Power Sources. 2019;440:227113.

[69]

Cormier MME, Zhang N, Liu A, Li H, Inglis J, Dahn JR. Impact of dopants (Al, Mg, Mn, Co) on the reactivity of LixNiO2 with the electrolyte of Li-ion batteries. J Electrochem Soc. 2019;166(13):A2826-A2833.

[70]

Ahaliabadeh Z, Kong X, Fedorovskaya E, et al. Extensive comparison of doping and coating strategies for Ni-rich positive electrode materials. J Power Sources. 2022;540:231633.

[71]

Xi Y, Wang M, Xu L, et al. A new Co-free Ni-rich LiNi0.8Fe0.1Mn0.1O2 cathode for low-cost Li-ion batteries. ACS Appl Mater Interfaces. 2021;13(48):57341-57349.

[72]

Li Y, Liu X, Wang L, et al. Thermal runaway mechanism of lithium-ion battery with LiNi0.8Mn0.1Co0.1O2 cathode materials. Nano Energy. 2021;85:105878.

[73]

Spahr ME, Novák P, Schnyder B, Haas O, Nesper R. Characterization of layered lithium nickel manganese oxides synthesized by a novel oxidative coprecipitation method and their electrochemical performance as lithium insertion electrode materials. J Electrochem Soc. 1998;145(4):1113.

[74]

Sun YK, Lee DJ, Lee YJ, Chen Z, ST M. Cobalt-free nickel rich layered oxide cathodes for lithium-ion batteries. ACS Appl Mater Interfaces. 2013;5(21):11434-11440.

[75]

Aishova A, Park GT, Yoon CS, Sun YK. Cobalt-free high-capacity Ni-rich layered Li[Ni0.9Mn0.1]O2 cathode. Adv Energy Mater. 2019;10(4):1903179.

[76]

Sun HH, Choi W, Lee JK, Oh IH, Jung HG. Control of electrochemical properties of nickel-rich layered cathode materials for lithium ion batteries by variation of the manganese to cobalt ratio. J Power Sources. 2015;275:877-883.

[77]

Li J, Zhang N, Li H, et al. Impact of the synthesis conditions on the performance of LiNixCoyAlzO2 with high Ni and low Co content. J Electrochem Soc. 2018;165(14):A3544-A3557.

[78]

Majumder SB, Nieto S, Katiyar RS. Synthesis and electrochemical properties of LiNi0.80(Co0.20−xAlx)O2 (x = 0.0 and 0.05) cathodes for Li ion rechargeable batteries. J Power Sources. 2006;154(1):262-267.

[79]

Chen CH, Liu J, Stoll ME, Henriksen G, Vissers DR, Amine K. Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries. J Power Sources. 2004;128(2):278-285.

[80]

Li W, Liu X, Celio H, et al. Mn versus Al in layered oxide cathodes in lithium-ion batteries: a comprehensive evaluation on long-term cyclability. Adv Energy Mater. 2018;8(15):1703154.

[81]

Ohzuku T, Makimura Y. Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. 2001;30(7):642-643.

[82]

Lu Z, MacNeil D, Dahn JJE, Letters SS. Layered cathode materials Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 for lithium-ion batteries. Electrochem Solid-State Lett. 2001;4(11):A191-A194.

[83]

Lee S, Li W, Dolocan A, et al. In-depth analysis of the degradation mechanisms of high-nickel, low/No-cobalt layered oxide cathodes for lithium-ion batteries. Adv Energy Mater. 2021;11(31):2100858.

[84]

Mu L, Kan WH, Kuai C, et al. Structural and electrochemical impacts of Mg/Mn dual dopants on the LiNiO2 cathode in Li-metal batteries. ACS Appl Mater Interfaces. 2020;12(11):12874-12882.

[85]

Bianchini M, Roca-Ayats M, Hartmann P, Brezesinski T, Janek J. There and back again-the journey of LiNiO2 as a cathode active material. Angew Chem Int Ed. 2019;58(31):10434-10458.

[86]

Liu A, Zhang N, Li H, et al. Investigating the effects of magnesium doping in various Ni-rich positive electrode materials for lithium ion batteries. J Electrochem Soc. 2019;166(16):A4025-A4033.

[87]

Liu D, Wang Z, Chen L. Comparison of structure and electrochemistry of Al- and Fe-doped LiNi1/3Co1/3Mn1/3O2. Electrochim Acta. 2006;51(20):4199-4203.

[88]

Meng YS, Wu YW, Hwang BJ, Li Y, Ceder G. Combining ab initio computation with experiments for designing new electrode materials for advanced lithium batteries: LiNi1/3Fe1/6Co1/6Mn1/3O2. J Electrochem Soc. 2004;151(8):A1134-A1140.

[89]

Muralidharan N, Essehli R, Hermann RP, et al. LiNixFeyAlzO2, a new cobalt-free layered cathode material for advanced Li-ion batteries. J Power Sources. 2020;471:228389.

[90]

Mu L, Zhang R, Kan WH, et al. Dopant distribution in Co-free high-energy layered cathode materials. Chem Mater. 2019;31(23):9769-9776.

[91]

Zhang JN, Li Q, Ouyang C, et al. Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V. Nat Energy. 2019;4(7):594-603.

[92]

Steiner JD, Cheng H, Walsh J, et al. Targeted surface doping with reversible local environment improves oxygen stability at the electrochemical interfaces of nickel-rich cathode materials. ACS Appl Mater Interfaces. 2019;11(41):37885-37891.

[93]

Kong D, Hu J, Chen Z, et al. Ti-gradient doping to stabilize layered surface structure for high performance high-Ni oxide cathode of Li-ion battery. Adv Energy Mater. 2019;9(41):1901756.

[94]

Wu F, Xue Q, Li L, et al. The positive role of (NH4)3AlF6 coating on Li[Li0.2Ni0.2Mn0.6]O2 oxide as the cathode material for lithium-ion batteries. RSC Adv. 2017;7(2):1191-1199.

[95]

Lee YS, Shin WK, Kannan AG, Koo SM, Kim DW. Improvement of the cycling performance and thermal stability of lithium-ion cells by double-layer coating of cathode materials with Al2O3 nanoparticles and conductive polymer. ACS Appl Mater Interfaces. 2015;7(25):13944-13951.

[96]

Cho W, Kim SM, Song JH, et al. Improved electrochemical and thermal properties of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode materials by SiO2 coating. J Power Sources. 2015;282:45-50.

[97]

Feng Z, Rajagopalan R, Sun D, Tang Y, Wang H. In-situ formation of hybrid Li3PO4–AlPO4–Al(PO3)3 coating layer on LiNi0.8Co0.1Mn0.1O2 cathode with enhanced electrochemical properties for lithium-ion battery. Chem Eng J. 2020;382:122959.

[98]

Chen Y, Zhang Y, Chen B, Wang Z, Lu C. An approach to application for LiNi0.6Co0.2Mn0.2O2 cathode material at high cutoff voltage by TiO2 coating. J Power Sources. 2014;256:20-27.

[99]

Makhonina EV, Medvedeva AE, Dubasova VS, Volkov VV, Politov YA, Eremenko IL. A new coating for improving the electrochemical performance of cathode materials. Int J Hydrogen Energy. 2016;41(23):9901-9907.

[100]

Jin D, Song D, Friesen A, Lee YM, Ryou MH. Effect of Al2O3 ceramic fillers in LiNi1/3Co1/3Mn1/3O2 cathodes for improving high-voltage cycling and rate capability performance. Electrochim Acta. 2018;259:578-586.

[101]

Wang JH, Wang Y, Guo YZ, Ren ZY, Liu CW. Effect of heat-treatment on the surface structure and electrochemical behavior of AlPO4-coated LiNi1/3Co1/3Mn1/3O2 cathode materials. J Mater Chem A. 2013;1(15):4879-4884.

[102]

Yao L, Liang F, Jin J, Chowdari BVR, Yang J, Wen Z. Improved electrochemical property of Ni-rich LiNi0.6Co0.2Mn0.2O2 cathode via in-situ ZrO2 coating for high energy density lithium ion batteries. Chem Eng J. 2020;389:124403.

[103]

Liu Y, Wu H, Li K, et al. Cobalt-free core–shell structure with high specific capacity and long cycle life as an alternative to Li[Ni0.8Mn0.1Co0.1]O2. J Electrochem Soc. 2020;167(12):120533.

[104]

Zhang N, Zaker N, Li H, et al. Cobalt-free nickel-rich positive electrode materials with a core–shell structure. Chem Mater. 2019;31(24):10150-10160.

[105]

Liu Y, Wu H, Wang Y, Li K, Yin S, Dahn JR. Impact of shell composition, thickness and heating temperature on the performance of nickel-rich cobalt-free core–shell materials. J Electrochem Soc. 2021;167(16):160556.

[106]

Park GT, Sun HH, Noh TC, et al. Nanostructured Co-free layered oxide cathode that affords fast-charging lithium-ion batteries for electric vehicles. Adv Energy Mater. 2022;12(48):2202719.

[107]

Cheng X, Zheng J, Lu J, Li Y, Yan P, Zhang Y. Realizing superior cycling stability of Ni-rich layered cathode by combination of grain boundary engineering and surface coating. Nano Energy. 2019;62:30-37.

[108]

Guo S, Yuan B, Zhao H, et al. Dual-component LixTiO2@silica functional coating in one layer for performance enhanced LiNi0.6Co0.2Mn0.2O2 cathode. Nano Energy. 2019;58:673-679.

[109]

He P, Zhang M, Wang S, Yuwen L, et al. Enhanced cyclic stability of Co-free and Ni-rich LiNi0.95Mn0.05O2 cathodes by coating flexible and electronically conductive PPy layer. Electrochim Acta. 2023;470:143331.

[110]

Huang Y, Cao S, Xie X, et al. Improving the structure and cycling stability of Ni-rich layered cathodes by dual modification of yttrium doping and surface coating. ACS Appl Mater Interfaces. 2020;12(17):19483-19494.

[111]

He T, Lu Y, Su Y, et al. Sufficient utilization of zirconium ions to improve the structure and surface properties of nickel-rich cathode materials for lithium-ion batteries. ChemSusChem. 2018;11(10):1639-1648.

[112]

Schipper F, Bouzaglo H, Dixit M, et al. From surface ZrO2 coating to bulk Zr doping by high temperature annealing of nickel-rich lithiated oxides and their enhanced electrochemical performance in lithium ion batteries. Adv Energy Mater. 2018;8(4):1701682.

[113]

Xin F, Zhou H, Zong Y, et al. What is the role of Nb in nickel-rich layered oxide cathodes for lithium-ion batteries? ACS Energy Lett. 2021;6(4):1377-1382.

[114]

Wang YY, Gao MY, Liu S, Li GR, Gao XP. Yttrium surface gradient doping for enhancing structure and thermal stability of high-Ni layered oxide as cathode for Li-ion batteries. ACS Appl Mater Interfaces. 2021;13(6):7343-7354.

[115]

Yoon CS, Kim UH, Park GT, et al. Self-passivation of a LiNiO2 cathode for a lithium-ion battery through Zr doping. ACS Energy Lett. 2018;3(7):1634-1639.

[116]

Zeng X, Xu GL, Li Y, et al. Kinetic study of parasitic reactions in lithium-ion batteries: a case study on LiNi(0.6)Mn(0.2)Co(0.2)O2. ACS Appl Mater Interfaces. 2016;8(5):3446-3451.

[117]

Li J, Downie LE, Ma L, Qiu W, Dahn JR. Study of the failure mechanisms of LiNi0.8Mn0.1Co0.1O2 cathode material for lithium ion batteries. J Electrochem Soc. 2015;162(7):A1401-A1408.

[118]

Li W, Liu X, Xie Q, You Y, Chi M, Manthiram A. Long-term cyclability of NCM-811 at high voltages in lithium-ion batteries: an in-depth diagnostic study. Chem Mater. 2020;32(18):7796-7804.

[119]

Zhao W, Zheng J, Zou L, et al. High voltage operation of Ni-rich NMC cathodes enabled by stable electrode/electrolyte interphases. Adv Energy Mater. 2018;8(19):1800297.

[120]

Wang C, Tan L, Yi H, et al. Unveiling the impact of residual Li conversion and cation ordering on electrochemical performance of Co-free Ni-rich cathodes. Nano Res. 2022;15(10):9038-9046.

[121]

Cheng F, Zhang X, Qiu Y, et al. Tailoring electrolyte to enable high-rate and super-stable Ni-rich NCM cathode materials for Li-ion batteries. Nano Energy. 2021;88:106301.

[122]

Di L, Yufang C, Weiwei S, et al. Cathode electrolyte interface engineering by gradient fluorination for high-performance lithium rich cathode. Adv Energy Mater. 2023(34):2301765.

[123]

Deng T, Fan X, Cao L, et al. Designing in-situ-formed interphases enables highly reversible cobalt-free LiNiO2 cathode for Li-ion and Li-metal batteries. Joule. 2019;3(10):2550-2564.

[124]

Su L, Jo E, Manthiram A. Protection of cobalt-free LiNiO2 from degradation with localized saturated electrolytes in lithium-metal batteries. ACS Energy Lett. 2022;7(6):2165-2172.

[125]

Zhang X, Jia H, Zou L, et al. Electrolyte regulating toward stabilization of cobalt-free ultrahigh-nickel layered oxide cathode in lithium-ion batteries. ACS Energy Lett. 2021;6(4):1324-1332.

[126]

Zhang Y, Katayama Y, Tatara R, et al. Revealing electrolyte oxidation via carbonate dehydrogenation on Ni-based oxides in Li-ion batteries by in situ Fourier transform infrared spectroscopy. Energy Environ Sci. 2020;13(1):183-199.

[127]

Yu Y, Karayaylali P, Katayama Y, et al. Coupled LiPF6 decomposition and carbonate dehydrogenation enhanced by highly covalent metal oxides in high-energy Li-ion batteries. J Phys Chem C. 2018;122(48):27368-27382.

[128]

Li W, Dolocan A, Li J, Xie Q, Manthiram A. Ethylene carbonate-free electrolytes for high-nickel layered oxide cathodes in lithium-ion batteries. Adv Energy Mater. 2019;9(29):1901152.

[129]

Pan R, Cui Z, Yi M, Xie Q, Manthiram A. Ethylene carbonate-free electrolytes for stable, safer high-nickel lithium-ion batteries. Adv Energy Mater. 2022;12(19):2103806.

[130]

Xu C, Renault S, Ebadi M, et al. LiTDI: a highly efficient additive for electrolyte stabilization in lithium-ion batteries. Chem Mater. 2017;29(5):2254-2263.

[131]

Jia H, Xu Y, Burton SD, et al. Enabling ether-based electrolytes for long cycle life of lithium-ion batteries at high charge voltage. ACS Appl Mater Interfaces. 2020;12(49):54893-54903.

[132]

Zhang Y, Yang Z, Tian C. Probing and quantifying cathode charge heterogeneity in Li ion batteries. J Mater Chem A. 2019;7(41):23628-23661.

[133]

Zhu J, Chen G. Single-crystal based studies for correlating the properties and high-voltage performance of Li[NixMnyCo1−xy]O2 cathodes. J Mater Chem A. 2019;7(10):5463-5474.

[134]

Kong X, Zhang Y, Peng S, Zeng J, Zhao J. Superiority of single-crystal to polycrystalline LiNixCoyMn1–xyO2 cathode materials in storage behaviors for lithium-ion batteries. ACS Sustainable Chem Eng. 2020;8(39):14938-14948.

[135]

Xu GL, Liu X, Daali A, Amine R, Chen Z, Amine K. Challenges and strategies to advance high-energy nickel-rich layered lithium transition metal oxide cathodes for harsh operation. Adv Funct Mater. 2020;30(46):2004748.

[136]

Dai P, Kong X, Yang H, Li J, Zeng J, Zhao J. Single-crystal Ni-rich layered LiNi0.9Mn0.1O2 enables superior performance of Co-free cathodes for lithium-ion batteries. ACS Sustain Chem Eng. 2022;10(14):4381-4390.

[137]

Zhang R, Wang C, Ge M, Xin HL. Accelerated degradation in a quasi-single-crystalline layered oxide cathode for lithium-ion batteries caused by residual grain boundaries. Nano Lett. 2022;22(9):3818-3824.

[138]

Qiu L, Zhang M, Song Y, et al. Origin and regulation of interface fusion during synthesis of single-crystal Ni-rich cathodes. Angew Chem Int Ed. 2023;62(12):e202300209.

[139]

Liu A, Zhang N, Stark JE, Arab P, Li H, Dahn JR. Synthesis of Co-free Ni-rich single crystal positive electrode materials for lithium ion batteries: part I. Two-step lithiation method for Al-or Mg-doped LiNiO2. J Electrochem Soc. 2021;168(4):040531.

[140]

Liu A, Zhang N, Stark JE, Arab P, Li H, Dahn JR. Synthesis of Co-free Ni-rich single crystal positive electrode materials for lithium ion batteries: part II. One-step lithiation method of Mg-doped LiNiO2. J Electrochem Soc. 2021;168(5):050506.

[141]

Jo CH, Voronina N, Myung ST. Single-crystalline particle Ni-based cathode materials for lithium-ion batteries: strategies, status, and challenges to improve energy density and cyclability. Energy Storage Mater. 2022;51:568-587.

[142]

Xu GJ, Ke W, Yu FD, et al. Modulation of lattice oxygen boosts the electrochemical activity and stability of Co-free Li-rich cathodes. J Energy Chem. 2022;75:117-126.

[143]

Yao Z, Chen Y, Liu C, et al. Low-strain Co-free Li-rich layered cathode with excellent voltage and capacity stability. J Energy Chem. 2023;82:513-520.

[144]

Zhang Y, Wen X, Shi Z, Qiu B, Chen G, Liu Z. Oxygen-defects evolution to stimulate continuous capacity increase in Co-free Li-rich layered oxides. J Energy Chem. 2023;82:259-267.

[145]

Mabokela TE, Nwanya AC, Ndipingwi MM, et al. Review-recent advances on high-capacity Li ion-rich layered manganese oxide cathodes. J Electrochem Soc. 2021;168(7):070530.

[146]

Feng Z, Song H, Su W, et al. Improved electrochemical kinetics and interfacial stability of cobalt-free lithium-rich layered oxides via thiourea treatment. Chem Eng J. 2022;450:138114.

RIGHTS & PERMISSIONS

2023 The Authors. SusMat published by Sichuan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

268

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/