Understanding the multifaceted role of ABA signaling in orchestrating plant developmental transition

Yupeng Jiang, Shiyu Jiang, Lu Liu

Stress Biology ›› 2025, Vol. 5 ›› Issue (1) : 5.

Stress Biology ›› 2025, Vol. 5 ›› Issue (1) : 5. DOI: 10.1007/s44154-024-00203-8
Review

Understanding the multifaceted role of ABA signaling in orchestrating plant developmental transition

Author information +
History +

Abstract

Abscisic acid (ABA), a pivotal plant hormone once primarily associated with stress response, is now increasingly acknowledged for its indispensable role in plant development. This comprehensive review delves into the multifaceted functions of ABA in regulating various aspects of plant growth and development. From inhibiting germination to orchestrating seedling establishment, flowering time, and dormancy induction, ABA emerges as a central player in shaping plant developmental transitions. Unraveling the intricate regulatory mechanisms governing the ABA signaling pathway provides valuable insights into how plants adapt to environmental challenges while effectively managing their growth and reproductive strategies. This expanding knowledge not only highlights the significance of ABA in plant biology but also has profound implications for enhancing agricultural practices.

Cite this article

Download citation ▾
Yupeng Jiang, Shiyu Jiang, Lu Liu. Understanding the multifaceted role of ABA signaling in orchestrating plant developmental transition. Stress Biology, 2025, 5(1): 5 https://doi.org/10.1007/s44154-024-00203-8

References

[]
Aguilar-Martínez JA, Poza-Carrión C, Cubas P (2007) Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell 19:458–472. https://doi.org/10.1105/tpc.106.048934
[]
Ali F, Qanmber G, Li F, Wang Z (2021) Updated role of ABA in seed maturation, dormancy, and germination. J Adv Res 35:199–214. https://doi.org/10.1016/j.jare.2021.03.011
[]
Ali A, Zareen S, Park J, Khan HA, Lim CJ, Bader ZE, Hussain S, Chung WS, Gechev T, Pardo JM, Yun DJ (2024) ABA INSENSITIVE 2 promotes flowering by inhibiting OST1/ABI5-dependent FLOWERING LOCUS C transcription in Arabidopsis. J Exp Bot 75:2481–2493. https://doi.org/10.1093/jxb/erae029
[]
Azeez A, Miskolczi P, Tylewicz S, Bhalerao RP (2014) A tree ortholog of APETALA1 mediates photoperiodic control of seasonal growth. Curr Biol 24:717–724. https://doi.org/10.1016/j.cub.2014.02.037
[]
Baek D, Kim WY, Cha JY, Park HJ, Shin G, Park J, Lim CJ, Chun HJ, Li N, Kim DH, Lee SY, Pardo JM, Kim MC, Yun DJ (2020) The GIGANTEA-ENHANCED EM LEVEL Complex Enhances Drought Tolerance via Regulation of Abscisic Acid Synthesis. Plant Physiol 184:443–458. https://doi.org/10.1104/pp.20.00779
[]
Bao Y, Aggarwal P, Robbins NE 2nd, Sturrock CJ, Thompson MC, Tan HQ, Tham C, Duan L, Rodriguez PL, Vernoux T, Mooney SJ, Bennett MJ, Dinneny JR (2014) Plant roots use a patterning mechanism to position lateral root branches toward available water. Proc Natl Acad Sci U S A 111:9319–9324. https://doi.org/10.1073/pnas.1400966111
[]
Bao S, Hua C, Shen L, Yu H (2020) New insights into gibberellin signaling in regulating flowering in Arabidopsis. J Integr Plant Biol 62:118–131. https://doi.org/10.1111/jipb.12892
[]
Bäurle I, Dean C (2006) The timing of developmental transitions in plants. Cell 125:655–664. https://doi.org/10.1016/j.cell.2006.05.005
[]
Bentsink L, Koornneef M (2008) Seed dormancy and germination. The Arabidopsis Book 6:e0119. https://doi.org/10.1199/tab.0119
[]
Bloch D, Puli MR, Mosquna A, Yalovsky S (2019) Abiotic stress modulates root patterning via ABA-regulated microRNA expression in the endodermis initials. Development 146(17):dev177097. https://doi.org/10.1242/dev.177097
[]
Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040–1043. https://doi.org/10.1126/science.1126038
[]
Brocard IM, Lynch TJ, Finkelstein RR (2002) Regulation and role of the Arabidopsis abscisic acid-insensitive 5 gene in abscisic acid, sugar, and stress response. Plant Physiol 129:1533–1543. https://doi.org/10.1104/pp.005793
[]
Carles C, Bies-Etheve N, Aspart L, Léon-Kloosterziel KM, Koornneef M, Echeverria M, Delseny M (2002) Regulation of Arabidopsis thaliana Em genes: role of ABI5. Plant J 30:373–383. https://doi.org/10.1046/j.1365-313x.2002.01295.x
[]
Chen H, Zhang J, Neff MM, Hong SW, Zhang H, Deng XW, Xiong L (2008) Integration of light and abscisic acid signaling during seed germination and early seedling development. Proc Natl Acad Sci U S A 105:4495–4500. https://doi.org/10.1073/pnas.0710778105
[]
Chen K, Li G-J, Bressan RA, Song C-P, Zhu J-K, Zhao Y (2020) Abscisic acid dynamics, signaling, and functions in plants. J Integr Plant Biol 62:25–54. https://doi.org/10.1111/jipb.12899
[]
Cheng ZJ, Zhao XY, Shao XX, Wang F, Zhou C, Liu YG, Zhang Y, Zhang XS (2014) Abscisic acid regulates early seed development in Arabidopsis by ABI5-mediated transcription of SHORT HYPOCOTYL UNDER BLUE1. Plant Cell 26:1053–1068. https://doi.org/10.1105/tpc.113.121566
[]
Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679. https://doi.org/10.1146/annurev-arplant-042809-112122
[]
Domagalska MA, Sarnowska E, Nagy F, Davis SJ (2010) Genetic analyses of interactions among gibberellin, abscisic acid, and brassinosteroids in the control of flowering time in Arabidopsis thaliana. PLoS ONE 5:e14012. https://doi.org/10.1371/journal.pone.0014012
[]
Finkelstein RR (1994) Mutations at two new Arabidopsis ABA response loci are similar to the abi3 mutations. Plant J 5:765–771. https://doi.org/10.1046/j.1365-313X.1994.5060765.x
[]
Finkelstein RR, Lynch TJ (2000) The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12:599–609. https://doi.org/10.1105/tpc.12.4.599
[]
Frey A, Effroy D, Lefebvre V, Seo M, Perreau F, Berger A, Sechet J, To A, North HM, Marion-Poll A (2012) Epoxycarotenoid cleavage by NCED5 fine-tunes ABA accumulation and affects seed dormancy and drought tolerance with other NCED family members. Plant J 70:501–512. https://doi.org/10.1111/j.1365-313x.2011.04887.x
[]
Fujii H, Verslues PE, Zhu JK (2007) Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell 19:485–494. https://doi.org/10.1105/tpc.106.048538
[]
Gommers CMM, Monte E (2018) Seedling Establishment: A dimmer switch-regulated process between dark and light signaling. Plant Physiol 176:1061–1074. https://doi.org/10.1104/pp.17.01460
[]
González-Grandío E, Pajoro A, Franco-Zorrilla JM, Tarancón C, Immink RG, Cubas P (2017) Abscisic acid signaling is controlled by a BRANCHED1/HD-ZIP I cascade in Arabidopsis axillary buds. Proc Natl Acad Sci U S A 114:E245–e254. https://doi.org/10.1073/pnas.1613199114
[]
Gu Y, Innes RW (2012) The KEEP ON GOING protein of Arabidopsis regulates intracellular protein trafficking and is degraded during fungal infection. Plant Cell 24:4717–4730. https://doi.org/10.1105/tpc.112.105254
[]
Han X, Huang X, Deng XW (2020) The photomorphogenic central repressor COP1: conservation and functional diversification during evolution. Plant Commun 1:100044. https://doi.org/10.1016/j.xplc.2020.100044
[]
Hsu CY, Adams JP, Kim H, No K, Ma C, Strauss SH, Drnevich J, Vandervelde L, Ellis JD, Rice BM, Wickett N, Gunter LE, Tuskan GA, Brunner AM, Page GP, Barakat A, Carlson JE, DePamphilis CW, Luthe DS, Yuceer C (2011) FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar. Proc Natl Acad Sci U S A 108:10756–10761. https://doi.org/10.1073/pnas.1104713108
[]
Hu Y, Yu D (2014) BRASSINOSTEROID INSENSITIVE2 interacts with ABSCISIC ACID INSENSITIVE5 to mediate the antagonism of brassinosteroids to abscisic acid during seed germination in Arabidopsis. Plant Cell 26:4394–4408. https://doi.org/10.1105/tpc.114.130849
[]
Huang T, Qu B, Li H-P, Zuo D-Y, Zhao Z-X, Liao Y-C (2012) A maize viviparous 1 gene increases seed dormancy and preharvest sprouting tolerance in transgenic wheat. J Cereal Sci 55:166–173. https://doi.org/10.1016/j.jcs.2011.11.003
[]
Huang Y, Sun M-M, Ye Q, Wu X-Q, Wu W-H, Chen Y-F (2017) Abscisic Acid modulates seed germination via ABA INSENSITIVE5-mediated PHOSPHATE1. Plant Physiol 175:1661–1668. https://doi.org/10.1104/pp.17.00164
[]
Hubbard KE, Nishimura N, Hitomi K, Getzoff ED, Schroeder JI (2010) Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Genes Dev 24:1695–1708. https://doi.org/10.1101/gad.1953910
[]
Hwang K, Susila H, Nasim Z, Jung JY, Ahn JH (2019) Arabidopsis ABF3 and ABF4 transcription factors act with the NF-YC complex to regulate SOC1 expression and mediate drought-accelerated flowering. Mol Plant 12:489–505. https://doi.org/10.1016/j.molp.2019.01.002
[]
Kang J, Yim S, Choi H, Kim A, Lee KP, Lopez-Molina L, Martinoia E, Lee Y (2015) Abscisic acid transporters cooperate to control seed germination. Nat Commun 6:8113. https://doi.org/10.1038/ncomms9113
[]
Karlberg A, Bako L, Bhalerao RP (2011) Short day-mediated cessation of growth requires the downregulation of AINTEGUMENTALIKE1 transcription factor in hybrid aspen. PLoS Genet 7:e1002361. https://doi.org/10.1371/journal.pgen.1002361
[]
Kavi Kishor PB, Tiozon RN, Fernie AR, Sreenivasulu N (2022) Abscisic acid and its role in the modulation of plant growth, development, and yield stability. Trends Plant Sci 27:1283–1295. https://doi.org/10.1016/j.tplants.2022.08.013
[]
Kulik A, Wawer I, Krzywińska E, Bucholc M, Dobrowolska G (2011) SnRK2 protein kinases–key regulators of plant response to abiotic stresses. OMICS 15:859–872. https://doi.org/10.1089/omi.2011.0091
[]
Lee JH, Yoon HJ, Terzaghi W, Martinez C, Dai M, Li J, Byun MO, Deng XW (2010a) DWA1 and DWA2, two Arabidopsis DWD protein components of CUL4-based E3 ligases, act together as negative regulators in ABA signal transduction. Plant Cell 22:1716–1732. https://doi.org/10.1105/tpc.109.073783
[]
Lee KP, Piskurewicz U, Turecková V, Strnad M, Lopez-Molina L (2010b) A seed coat bedding assay shows that RGL2-dependent release of abscisic acid by the endosperm controls embryo growth in Arabidopsis dormant seeds. Proc Natl Acad Sci U S A 107:19108–19113. https://doi.org/10.1105/tpc.109.073783
[]
Lefebvre V, North H, Frey A, Sotta B, Seo M, Okamoto M, Nambara E, Marion-Poll A (2006) Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy. Plant J 45:309–319. https://doi.org/10.1111/j.1365-313x.2005.02622.x
[]
Léon-Kloosterziel KM, Gil MA, Ruijs GJ, Jacobsen SE, Olszewski NE, Schwartz SH, Zeevaart JA, Koornneef M (1996) Isolation and characterization of abscisic acid-deficient Arabidopsis mutants at two new loci. Plant J 10:655–661. https://doi.org/10.1046/j.1365-313x.1996.10040655.x
[]
Li X, Lai M, Li K, Yang L, Liao J, Gao Y, Wang Y, Gao C, Shen W, Luo M, Yang C (2024) FLZ13 interacts with FLC and ABI5 to negatively regulate flowering time in Arabidopsis. New Phytol 241:1334–1347. https://doi.org/10.1111/nph.19445
[]
Lin Z, Li Y, Wang Y, Liu X, Ma L, Zhang Z, Mu C, Zhang Y, Peng L, Xie S, Song CP, Shi H, Zhu JK, Wang P (2020) A RAF-SnRK2 kinase cascade mediates early osmotic stress signaling in higher plants. Nat Commun 11:613. https://doi.org/10.1038/s41467-020-14477-9
[]
Lin Z, Li Y, Wang Y, Liu X, Ma L, Zhang Z, Mu C, Zhang Y, Peng L, Xie S, Song CP, Shi H, Zhu JK, Wang P (2021) Initiation and amplification of SnRK2 activation in abscisic acid signaling. Nat Commun 12:2456. https://doi.org/10.1038/s41467-021-22812-x
[]
Liu X, Hou X (2018) Antagonistic regulation of ABA and GA in metabolism and signaling pathways. Front Plant Sci 9:251. https://doi.org/10.3389/fpls.2018.00251
[]
Liu H, Stone SL (2013) Cytoplasmic degradation of the Arabidopsis transcription factor abscisic acid insensitive 5 is mediated by the RING-type E3 ligase KEEP ON GOING. J Biol Chem 288:20267–20279. https://doi.org/10.1074/jbc.m113.465369
[]
Liu X, Zhang H, Zhao Y, Feng Z, Li Q, Yang HQ, Luan S, Li J, He ZH (2013) Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis. Proc Natl Acad Sci U S A 110:15485–15490. https://doi.org/10.1073/pnas.1304651110
[]
Liu H, Lin R, Deng XW (2020) Photobiology: Light signal transduction and photomorphogenesis. J Integr Plant Biol 62:1267–1269. https://doi.org/10.1111/jipb.13004
[]
Liu L, Xuan L, Jiang Y, Yu H (2021) Regulation by FLOWERING LOCUS T and TERMINAL FLOWER 1 in flowering time and plant architecture. Small Structures 2:2000125. https://doi.org/10.1002/sstr.202000125
[]
Lopez-Molina L, Mongrand S, Chua NH (2001) A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc Natl Acad Sci U S A 98:4782–4787. https://doi.org/10.1073/pnas.081594298
[]
Lopez-Molina L, Mongrand S, McLachlin DT, Chait BT, Chua NH (2002) ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant J 32:317–328. https://doi.org/10.1046/j.1365-313x.2002.01430.x
[]
Lopez-Molina L, Mongrand S, Kinoshita N, Chua NH (2003) AFP is a novel negative regulator of ABA signaling that promotes ABI5 protein degradation. Genes Dev 17:410–418. https://doi.org/10.1101/gad.1055803
[]
Luo X, Chen Z, Gao J, Gong Z (2014) Abscisic acid inhibits root growth in Arabidopsis through ethylene biosynthesis. Plant J 79:44–55. https://doi.org/10.1111/tpj.12534
[]
Maurya JP, Singh RK, Miskolczi PC, Prasad AN, Jonsson K, Wu F, Bhalerao RP (2020) Branching regulator BRC1 mediates photoperiodic control of seasonal growth in hybrid aspen. Curr Biol 30:122–126.e122. https://doi.org/10.1016/j.cub.2019.11.001
[]
McCarty DR, Hattori T, Carson CB, Vasil V, Lazar M, Vasil IK (1991) The Viviparous-1 developmental gene of maize encodes a novel transcriptional activator. Cell 66:895–905. https://doi.org/10.1016/0092-8674(91)90436-3
[]
Mehra P, Pandey BK, Melebari D, Banda J, Leftley N, Couvreur V, Rowe J, Anfang M, De Gernier H, Morris E, Sturrock CJ, Mooney SJ, Swarup R, Faulkner C, Beeckman T, Bhalerao RP, Shani E, Jones AM, Dodd IC, Sharp RE, Sadanandom A, Draye X, Bennett MJ (2022) Hydraulic flux-responsive hormone redistribution determines root branching. Science 378:762–768. https://doi.org/10.1126/science.add3771
[]
Miyashima S, Koi S, Hashimoto T, Nakajima K (2011) Non-cell-autonomous microRNA165 acts in a dose-dependent manner to regulate multiple differentiation status in the Arabidopsis root. Development 138:2303–2313. https://doi.org/10.1242/dev.060491
[]
Nakashima K, Fujita Y, Kanamori N, Katagiri T, Umezawa T, Kidokoro S, Maruyama K, Yoshida T, Ishiyama K, Kobayashi M, Shinozaki K, Yamaguchi-Shinozaki K (2009) Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol 50:1345–1363. https://doi.org/10.1093/pcp/pcp083
[]
Orman-Ligeza B, Morris EC, Parizot B, Lavigne T, Babé A, Ligeza A, Klein S, Sturrock C, Xuan W, Novák O, Ljung K, Fernandez MA, Rodriguez PL, Dodd IC, De Smet I, Chaumont F, Batoko H, Périlleux C, Lynch JP, Bennett MJ, Beeckman T, Draye X (2018) The xerobranching response represses lateral root formation when roots are not in contact with water. Curr Biol 28:3165-3173.e3165. https://doi.org/10.1016/j.cub.2018.07.074
[]
Penfield S (2017) Seed dormancy and germination. Curr Biol 27:R874-r878. https://doi.org/10.1016/j.cub.2017.05.050
[]
Peng J, Wang M, Wang X, Qi L, Guo C, Li H, Li C, Yan Y, Zhou Y, Terzaghi W, Li Z, Song CP, Qin F, Gong Z, Li J (2022) COP1 positively regulates ABA signaling during Arabidopsis seedling growth in darkness by mediating ABA-induced ABI5 accumulation. Plant Cell 34:2286–2308. https://doi.org/10.1093/plcell/koac073
[]
Qi L, Liu S, Li C, Fu J, Jing Y, Cheng J, Li H, Zhang D, Wang X, Dong X, Han R, Li B, Zhang Y, Li Z, Terzaghi W, Song CP, Lin R, Gong Z, Li J (2020) PHYTOCHROME-INTERACTING FACTORS interact with the ABA receptors PYL8 and PYL9 to orchestrate ABA signaling in darkness. Mol Plant 13:414–430. https://doi.org/10.1016/j.molp.2020.02.001
[]
Qin P, Zhang G, Hu B, Wu J, Chen W, Ren Z, Liu Y, Xie J, Yuan H, Tu B, Ma B, Wang Y, Ye L, Li L, Xiang C, Li S (2021) Leaf-derived ABA regulates rice seed development via a transportermediated and temperature-sensitive mechanism. Sci Adv 7:eabc8873. https://doi.org/10.1126/sciadv.abc8873
[]
Ramachandran P, Wang G, Augstein F, de Vries J, Carlsbecker A (2018) Continuous root xylem formation and vascular acclimation to water deficit involves endodermal ABA signalling via miR165. Development 145:dev159202. https://doi.org/10.1242/dev.159202
[]
Ramachandran P, Augstein F, Mazumdar S, Nguyen TV, Minina EA, Melnyk CW, Carlsbecker A (2021) Abscisic acid signaling activates distinct VND transcription factors to promote xylem differentiation in Arabidopsis. Curr Biol 31:3153–3161.e3155. https://doi.org/10.1016/j.cub.2021.04.057
[]
Raz V, Bergervoet JH, Koornneef M (2001) Sequential steps for developmental arrest in Arabidopsis seeds. Development 128:243–252. https://doi.org/10.1242/dev.128.2.243
[]
Riboni M, Galbiati M, Tonelli C, Conti L (2013) GIGANTEA Enables drought escape response via abscisic acid-dependent activation of the florigens and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1. Plant Physiol 162:1706–1719. https://doi.org/10.1104/pp.113.217729
[]
Riboni M, Robustelli Test A, Galbiati M, Tonelli C, Conti L (2016) ABA-dependent control of GIGANTEA signalling enables drought escape via up-regulation of FLOWERING LOCUS T in Arabidopsis thaliana. J Exp Bot 67:6309–6322. https://doi.org/10.1093/jxb/erw384
[]
Rinne PL, Welling A, Vahala J, Ripel L, Ruonala R, Kangasjärvi J, van der Schoot C (2011) Chilling of dormant buds hyperinduces FLOWERING LOCUS T and recruits GA-inducible 1,3-beta-glucanases to reopen signal conduits and release dormancy in Populus. Plant Cell 23:130–146. https://doi.org/10.1105/tpc.110.081307
[]
Rohde A, Kurup S, Holdsworth M (2000) ABI3 emerges from the seed. Trends Plant Sci 5:418–419. https://doi.org/10.1016/s1360-1385(00)01736-2
[]
Ruttink T, Arend M, Morreel K, Storme V, Rombauts S, Fromm J, Bhalerao RP, Boerjan W, Rohde A (2007) A molecular timetable for apical bud formation and dormancy induction in poplar. Plant Cell 19:2370–2390. https://doi.org/10.1105/tpc.107.052811
[]
Sajeev N, Koornneef M, Bentsink L (2024) A commitment for life: Decades of unraveling the molecular mechanisms behind seed dormancy and germination. Plant Cell 36(5):1358–1376. https://doi.org/10.1093/plcell/koad328
[]
Seo KI, Lee JH, Nezames CD, Zhong S, Song E, Byun MO, Deng XW (2014) ABD1 is an Arabidopsis DCAF substrate receptor for CUL4-DDB1-based E3 ligases that acts as a negative regulator of abscisic acid signaling. Plant Cell 26:695–711. https://doi.org/10.1105/tpc.113.119974
[]
Shavrukov Y, Kurishbayev A, Jatayev S, Shvidchenko V, Zotova L, Koekemoer F, de Groot S, Soole K, Langridge P (2017) Early flowering as a drought escape mechanism in plants: how can it aid wheat production? Front Plant Sci 8:1950. https://doi.org/10.3389/fpls.2017.01950
[]
Shu K, Chen Q, Wu Y, Liu R, Zhang H, Wang S, Tang S, Yang W, Xie Q (2015) ABSCISIC ACID-INSENSITIVE 4 negatively regulates flowering through directly promoting Arabidopsis FLOWERING LOCUS C transcription. J Exp Bot 67:195–205. https://doi.org/10.1093/jxb/erv459
[]
Shu K, Liu XD, Xie Q, He ZH (2016) Two faces of one seed: hormonal regulation of dormancy and germination. Mol Plant 9:34–45. https://doi.org/10.1016/j.molp.2015.08.010
[]
Shu K, Luo X, Meng Y, Yang W (2018) Toward a molecular understanding of abscisic acid actions in floral transition. Plant Cell Physiol 59:215–221. https://doi.org/10.1093/pcp/pcy007
[]
Singh RK, Maurya JP, Azeez A, Miskolczi P, Tylewicz S, Stojkovič K, Delhomme N, Busov V, Bhalerao RP (2018) A genetic network mediating the control of bud break in hybrid aspen. Nat Commun 9:4173. https://doi.org/10.1038/s41467-018-06696-y
[]
Singh RK, Miskolczi P, Maurya JP, Bhalerao RP (2019) A tree ortholog of SHORT VEGETATIVE PHASE floral repressor mediates photoperiodic control of bud dormancy. Curr Biol 29:128-133.e122. https://doi.org/10.1016/j.cub.2018.11.006
[]
Skubacz A, Daszkowska-Golec A, Szarejko I (2016) The role and regulation of ABI5 in plant development, abiotic stress responses and phytohormone crosstalk. Front Plant Sci 7:1884. https://doi.org/10.3389/fpls.2016.01884
[]
Soma F, Takahashi F, Kidokoro S, Kameoka H, Suzuki T, Uga Y, Shinozaki K, Yamaguchi-Shinozaki K (2023) Constitutively active B2 Raf-like kinases are required for drought-responsive gene expression upstream of ABA-activated SnRK2 kinases. Proc Natl Acad Sci U S A 120:e2221863120. https://doi.org/10.1073/pnas.2221863120
[]
Stone SL, Williams LA, Farmer LM, Vierstra RD, Callis J (2006) KEEP ON GOING, a RING E3 ligase essential for Arabidopsis growth and development, is involved in abscisic acid signaling. Plant Cell 18:3415–3428. https://doi.org/10.1105/tpc.106.046532
[]
Takahashi F, Suzuki T, Osakabe Y, Betsuyaku S, Kondo Y, Dohmae N, Fukuda H, Yamaguchi-Shinozaki K, Shinozaki K (2018) A small peptide modulates stomatal control via abscisic acid in long-distance signalling. Nature 556:235–238. https://doi.org/10.1140/epjds/s13688-023-00420-7https://doi.org/10.1038/s41586-018-0009-2
[]
Takahashi Y, Zhang J, Hsu PK, Ceciliato PHO, Zhang L, Dubeaux G, Munemasa S, Ge C, Zhao Y, Hauser F, Schroeder JI (2020) MAP3Kinase-dependent SnRK2-kinase activation is required for abscisic acid signal transduction and rapid osmotic stress response. Nat Commun 11:12. https://doi.org/10.1038/s41467-019-13875-y
[]
Tylewicz S, Petterle A, Marttila S, Miskolczi P, Azeez A, Singh RK, Immanen J, Mähler N, Hvidsten TR, Eklund DM, Bowman JL, Helariutta Y, Bhalerao RP (2018) Photoperiodic control of seasonal growth is mediated by ABA acting on cell-cell communication. Science 360:212–215. https://doi.org/10.1126/science.aan8576
[]
Umezawa T, Sugiyama N, Takahashi F, Anderson JC, Ishihama Y, Peck SC, Shinozaki K (2013) Genetics and phosphoproteomics reveal a protein phosphorylation network in the abscisic acid signaling pathway in Arabidopsis thaliana. Sci Signal 6:rs8. https://doi.org/10.1126/scisignal.2003509
[]
Waadt R, Hitomi K, Nishimura N, Hitomi C, Adams SR, Getzoff ED, Schroeder JI (2014) FRET-based reporters for the direct visualization of abscisic acid concentration changes and distribution in Arabidopsis. eLife 3:e01739. https://doi.org/10.7554/elife.01739
[]
Wang P, Xue L, Batelli G, Lee S, Hou Y-J, Van Oosten MJ, Zhang H, Tao WA, Zhu J-K (2013a) Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action. Proc Natl Acad Sci U S A 110:11205–11210. https://doi.org/10.1073/pnas.1308974110
[]
Wang Y, Li L, Ye T, Lu Y, Chen X, Wu Y (2013b) The inhibitory effect of ABA on floral transition is mediated by ABI5 in Arabidopsis. J Exp Bot 64:675–684. https://doi.org/10.1093/jxb/ers361
[]
Wang Z, Wang F, Hong Y, Yao J, Ren Z, Shi H, Zhu J-K (2018) The flowering repressor SVP confers drought resistance in Arabidopsis by regulating abscisic acid catabolism. Mol Plant 11:1184–1197. https://doi.org/10.1016/j.molp.2018.06.009
[]
Xu X, Wan W, Jiang G, Xi Y, Huang H, Cai J, Chang Y, Duan CG, Mangrauthia SK, Peng X et al (2019) Nucleocytoplasmic trafficking of the Arabidopsis WD40 repeat protein XIW1 regulates ABI5 stability and abscisic acid responses. Mol Plant 12:1598–1611. https://doi.org/10.1016/j.molp.2019.07.001
[]
Yadukrishnan P, Datta S (2021) Light and abscisic acid interplay in early seedling development. New Phytol 229:763–769. https://doi.org/10.1111/nph.16963
[]
Yadukrishnan P, Rahul PV, Ravindran N, Bursch K, Johansson H, Datta S (2020) CONSTITUTIVELY PHOTOMORPHOGENIC1 promotes ABA-mediated inhibition of post-germination seedling establishment. Plant J 103:481–496. https://doi.org/10.1111/tpj.14844
[]
Yang Q, Gao Y, Wu X, Moriguchi T, Bai S, Teng Y (2021) Bud endodormancy in deciduous fruit trees: advances and prospects. Hortic Res 8:139. https://doi.org/10.1038/s41438-021-00575-2
[]
Yang C, Li X, Chen S, Liu C, Yang L, Li K, Liao J, Zheng X, Li H, Li Y et al (2023) ABI5–FLZ13 module transcriptionally represses growth-related genes to delay seed germination in response to ABA. Plant Commun 4:100636. https://doi.org/10.1016/j.xplc.2023.100636
[]
Yu F, Wu Y, Xie Q (2015) Precise protein post-translational modifications modulate ABI5 activity. Trends Plant Sci 20:569–575. https://doi.org/10.1016/j.tplants.2015.05.004
[]
Zhang H, Han W, De Smet I, Talboys P, Loya R, Hassan A, Rong H, Jürgens G, Paul Knox J, Wang MH (2010) ABA promotes quiescence of the quiescent centre and suppresses stem cell differentiation in the Arabidopsis primary root meristem. Plant J 64:764–774. https://doi.org/10.1111/j.1365-313x.2010.04367.x
[]
Zhang DP (2014) Abscisic Acid: Metabolism, Transport and Signaling. Springer. https://doi.org/10.1007/978-94-017-9424-4
[]
Zhang J, Zhao P, Chen S, Sun L, Mao J, Tan S, Xiang C (2023) The ABI3-ERF1 module mediates ABA-auxin crosstalk to regulate lateral root emergence. Cell Rep 42:112809. https://doi.org/10.1016/j.celrep.2023.112809
[]
Zhao Y, Xing L, Wang X, Hou Y-J, Gao J, Wang P, Duan C-G, Zhu X, Zhu J-K (2014) The ABA Receptor PYL8 Promotes Lateral Root Growth by Enhancing MYB77-Dependent Transcription of Auxin-Responsive Genes. Sci Signal7:ra53. https://doi.org/10.1126/scisignal.2005051
[]
Zhao H, Nie K, Zhou H, Yan X, Zhan Q, Zheng Y, Song C-P (2020) ABI5 modulates seed germination via feedback regulation of the expression of the PYR/PYL/RCAR ABA receptor genes. New Phytol 228:596–608. https://doi.org/10.1111/nph.16713

Accesses

Citations

Detail

Sections
Recommended

/