Heterotrimeric G-proteins: multi-dimensional regulation in plant growth, development and abiotic stress responses

Shiyuan Guo, Yingge Wang, Jiayan Wu, Xiani Zhou, Huiling Gao

Stress Biology ›› 2025, Vol. 5 ›› Issue (1) : 3.

Stress Biology ›› 2025, Vol. 5 ›› Issue (1) : 3. DOI: 10.1007/s44154-024-00188-4
Review

Heterotrimeric G-proteins: multi-dimensional regulation in plant growth, development and abiotic stress responses

Author information +
History +

Abstract

Heterotrimeric G-proteins, comprising Gα, Gβ, and Gγ subunits, act as crucial molecular switches for signaling transduction in all eukaryotic organisms. Through precise modulation of specific receptors or effectors coupled with heterotrimeric G-proteins in signaling cascades, plants have the capability to activate or suppress unique signaling pathways necessary for plant growth, development, and stress responses. This review provides an overview of the heterotrimeric G-proteins signaling pathway obtained to date, and highlights novel areas for future exploration and agricultural application based on the emerging significance and potential of heterotrimeric G proteins in regulating plant development and responses to abiotic stress.

Cite this article

Download citation ▾
Shiyuan Guo, Yingge Wang, Jiayan Wu, Xiani Zhou, Huiling Gao. Heterotrimeric G-proteins: multi-dimensional regulation in plant growth, development and abiotic stress responses. Stress Biology, 2025, 5(1): 3 https://doi.org/10.1007/s44154-024-00188-4

References

Bai L, Liu Y, Mu Y, Anwar A, He C, Yan Y, Li Y, and Yu X (2018) Heterotrimeric G-Protein γ Subunit CsGG3.2 Positively Regulates the Expression of CBF Genes and Chilling Tolerance in Cucumber. Front Plant Sci 9:488. https://doi.org/10.3389/fpls.2018.00488
Bommert P, Je BI, Goldshmidt A, Jackson D. The maize Gα gene COMPACT PLANT2 functions in CLAVATA signalling to control shoot meristem size Nature, 2013, 502: 555-558.
CrossRef Google scholar
Brown PH, Zhao F-J, Dobermann A. What is a plant nutrient? Changing definitions to advance science and innovation in plant nutrition Plant Soil, 2021, 476: 11-23.
CrossRef Google scholar
Chakraborty N, Sharma P, Kanyuka K, Pathak RR, Choudhury D, Hooley R, Raghuram N. G-protein α-subunit (GPA1) regulates stress, nitrate and phosphate response, flavonoid biosynthesis, fruit/seed development and substantially shares GCR1 regulation in A. thaliana Plant Mol Biol, 2015, 89: 559-576.
CrossRef Google scholar
Chakravorty D, Trusov Y, Zhang W, Acharya BR, Sheahan MB, McCurdy DW, Assmann SM, Botella JR. An atypical heterotrimeric G-protein γ-subunit is involved in guard cell K +-channel regulation and morphological development in Arabidopsis thaliana Plant J, 2011, 67: 840-851.
CrossRef Google scholar
Chen Y. Overexpression of the regulator of G-protein signalling protein enhances ABA-mediated inhibition of root elongation and drought tolerance in Arabidopsis J Exp Bot, 2006, 57: 2101-2110.
CrossRef Google scholar
Chen JG, Jones AM. AtRGS1 function in Arabidopsis thaliana Methods Enzymol, 2004, 389: 338-350.
CrossRef Google scholar
Chen JG, Willard FS, Huang J, Liang J, Chasse SA, Jones AM, Siderovski DP. A seven-transmembrane RGS protein that modulates plant cell proliferation Science (New York, N.Y.), 2003, 301: 1728-1731.
CrossRef Google scholar
Chen J-G, Gao Y, Jones AM. Differential Roles of Arabidopsis Heterotrimeric G-Protein Subunits in Modulating Cell Division in Roots Plant Physiol, 2006, 141: 887-897.
CrossRef Google scholar
Chen Y, Ji F, Xie H, Liang J. Overexpression of the regulator of G-protein signalling protein enhances ABA-mediated inhibition of root elongation and drought tolerance in Arabidopsis J Exp Bot, 2006, 57: 2101-2110.
CrossRef Google scholar
Chen Z, Galli M, and Gallavotti A. (2022). Mechanisms of temperature-regulated growth and thermotolerance in crop species. Curr Opin Plant Biol 65. https://doi.org/10.1016/j.pbi.2021.102134
Choudhury SR, Pandey S. Specific Subunits of Heterotrimeric G Proteins Play Important Roles during Nodulation in Soybean Plant Physiol, 2013, 162: 522-533.
CrossRef Google scholar
Choudhury SR, Pandey S. Phosphorylation-Dependent Regulation of G-Protein Cycle during Nodule Formation in Soybean Plant Cell, 2015, 27: 3260-3276.
CrossRef Google scholar
Colaneri, Meral Tunc-Ozdemir M Fau - Huang, Ping J, Huang Jp Fau - Jones MA and Jones AM (2014) Growth attenuation under saline stress is mediated by the heterotrimeric G protein complex. BMC Plant Biol 14:129. https://doi.org/10.1186/1471-2229-14-129
Ding Y, Shi Y, Yang S. Molecular Regulation of Plant Responses to Environmental Temperatures Mol Plant, 2020, 13: 544-564.
CrossRef Google scholar
Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein Theor Appl Genet, 2006, 112: 1164-1171.
CrossRef Google scholar
Ferrero-Serrano Á, Assmann SM. The α-subunit of the rice heterotrimeric G protein, RGA1, regulates drought tolerance during the vegetative phase in the dwarf rice mutantd1 J Exp Bot, 2016, 67: 3433-3443.
CrossRef Google scholar
Ferrero-Serrano Á, Chakravorty D. Plants and heterotrimeric G proteins: Expect the unexpected Mol Plant, 2023, 16: 506-508.
CrossRef Google scholar
Ferrero-Serrano Á, Su Z, Assmann SM. Illuminating the role of the Gα heterotrimeric G protein subunit, RGA1, in regulating photoprotection and photoavoidance in rice Plant, Cell Environ, 2018, 41: 451-468.
CrossRef Google scholar
Fujisawa Y, Kato T, Ohki S, Ishikawa A, Kitano H, Sasaki T, Asahi T, Iwasaki Y. Suppression of the heterotrimeric G protein causes abnormal morphology, including dwarfism, in rice Proc Natl Acad Sci USA, 1999, 96: 7575-7580.
CrossRef Google scholar
Gong Z, Xiong L, Shi H, Yang S, Herrera-Estrella LR, Xu G, Chao D-Y, Li J, Wang P-Y, Qin F, Li J, Ding Y, Shi Y, Wang Y, Yang Y, Guo Y, Zhu J-K. Plant abiotic stress response and nutrient use efficiency Science China Life Sciences, 2020, 63: 635-674.
CrossRef Google scholar
Gupta A, Rico-Medina A, Caño-Delgado AI. The physiology of plant responses to drought Science, 2020, 368: 266-269.
CrossRef Google scholar
He Z, Zhang P, Jia H, Zhang S, Nishawy E, Sun X, and Dai M (2024) Regulatory mechanisms and breeding strategies for crop drought resistance. New Crops 1:100029. https://doi.org/10.1016/j.ncrops.2024.100029
Huang J, Taylor JP, Chen J-G, Uhrig JF, Schnell DJ, Nakagawa T, Korth KL, Jones AM. The Plastid Protein THYLAKOID FORMATION1 and the Plasma Membrane G-Protein GPA1 Interact in a Novel Sugar-Signaling Mechanism inArabidopsis Plant Cell, 2006, 18: 1226-1238.
CrossRef Google scholar
Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X. Natural variation at the DEP1 locus enhances grain yield in rice Nat Genet, 2009, 41: 494-497.
CrossRef Google scholar
Ishida T, Tabata R, Yamada M, Aida M, Mitsumasu K, Fujiwara M, Yamaguchi K, Shigenobu S, Higuchi M, Tsuji H, Shimamoto K, Hasebe M, Fukuda H, Sawa S. Heterotrimeric G proteins control stem cell proliferation through CLAVATA signaling in Arabidopsis EMBO Rep, 2014, 15: 1202-1209.
CrossRef Google scholar
Jangam AP, Pathak RR and Raghuram N (2016) Microarray Analysis of Rice d1 (RGA1) Mutant Reveals the Potential Role of G-Protein Alpha Subunit in Regulating Multiple Abiotic Stresses Such as Drought, Salinity, Heat, and Cold. Front Plant Sci 7:11. https://doi.org/10.3389/fpls.2016.00011
Je BI, Xu F, Wu Q, Liu L, Meeley R, Gallagher JP, Corcilius L, Payne RJ, Bartlett ME and Jackson D (2018) The CLAVATA receptor FASCIATED EAR2 responds to distinct CLE peptides by signaling through two downstream effectors. eLife 7:e35673. https://doi.org/10.7554/elife.35673
Jeon BW, Acharya BR, Assmann SM. The Arabidopsis heterotrimeric G-protein β subunit, AGB1, is required for guard cell calcium sensing and calcium-induced calcium release Plant J, 2019, 99: 231-244.
CrossRef Google scholar
Johnston CA, Taylor JP, Gao Y, Kimple AJ, Grigston JC, Chen JG, Siderovski DP, Jones AM, Willard FS. GTPase acceleration as the rate-limiting step in Arabidopsis G protein-coupled sugar signaling Proc Natl Acad Sci USA, 2007, 104: 17317-17322.
CrossRef Google scholar
Jones JC, Temple BRS, Jones AM, Dohlman HG. Functional Reconstitution of an Atypical G Protein Heterotrimer and Regulator of G Protein Signaling Protein (RGS1) from Arabidopsis thaliana J Biol Chem, 2011, 286: 13143-13150.
CrossRef Google scholar
Jones JC, Duffy JW, Machius M, Temple BRS, Dohlman HG and Jones AM (2011b) The Crystal Structure of a Self-Activating G Protein α Subunit Reveals Its Distinct Mechanism of Signal Initiation. Sci Signal 4:ra8. https://doi.org/10.1126/scisignal.2001446
Ju C, Wang C (2023) Gγ subunit AT1/GS3-the “code” of alkaline tolerance in main graminaceous crops. Stress Biol 3:9. https://doi.org/10.1007/s44154-023-00090-5
Kan Y, Mu X-R, Zhang H, Gao J, Shan J-X, Ye W-W, Lin H-X. TT2 controls rice thermotolerance through SCT1-dependent alteration of wax biosynthesis Nature Plants, 2021, 8: 53-67.
CrossRef Google scholar
Kan Y, Mu X-R, Gao J, Lin H-X, Lin Y. The molecular basis of heat stress responses in plants Mol Plant, 2023, 16: 1612-1634.
CrossRef Google scholar
Kansup J, Tsugama D, Liu S, Takano T. The Arabidopsis adaptor protein AP-3µ interacts with the G-protein β subunit AGB1 and is involved in abscisic acid regulation of germination and post-germination development J Exp Bot, 2013, 64: 5611-5621.
CrossRef Google scholar
Kaur J, Roy Choudhury S, Vijayakumar A, Hovis L, Rhodes Z, Polzin R, Blumenthal D and Pandey S (2018) Arabidopsis Type III Gγ Protein AGG3 Is a Positive Regulator of Yield and Stress Responses in the Model Monocot Setaria viridis. Front Plant Sci 9:109. https://doi.org/10.3389/fpls.2018.00109
Kiri IZ (2023) Mechanisms of Nutrient Uptake and Assimilation Processes in Some Plants: A Review. Dutse J Pure Appl Sci 9:223–237. https://doi.org/10.4314/dujopas.v9i2b.24
Li S, Liu Y, Zheng L, Chen L, Li N, Corke F, Lu Y, Fu X, Zhu Z, Bevan MW, Li Y. The plant-specific G protein γ subunit AGG3 influences organ size and shape in Arabidopsis thaliana New Phytol, 2012, 194: 690-703.
CrossRef Google scholar
Liang Y, Zhao X, Jones AM, Gao Y. G proteins sculp root architecture in response to nitrogen in rice and Arabidopsis Plant Sci, 2018, 274: 129-136.
CrossRef Google scholar
Liang X, Li J, Yang Y, Jiang C and Guo Y (2024) Designing salt stress‐resilient crops: Current progress and future challenges. J Integr Plant Biol 66(3):303-329. https://doi.org/10.1111/jipb.13599
Liu Y, Wang X, Dong D, Guo L, Dong X, Leng J, Zhao B, Guo YD and Zhang N (2021) Research Advances in Heterotrimeric G-Protein α Subunits and Uncanonical G-Protein Coupled Receptors in Plants. Int J Mol Sci 22:8678. https://doi.org/10.3390/ijms22168678
Luan S, Wang C. Calcium Signaling Mechanisms Across Kingdoms Annu Rev Cell Dev Biol, 2021, 37: 311-340.
CrossRef Google scholar
Luo W, Huan Q, Xu Y, Qian W, Chong K, and Zhang J (2021) Integrated global analysis reveals a vitamin E-vitamin K1 sub-network, downstream of COLD1, underlying rice chilling tolerance divergence. Cell Rep 36:109397. https://doi.org/10.1016/j.celrep.2021.109397
Ma Y-N, Chen M, Xu D-B, Fang G-N, Wang E-H, Gao S-Q, Xu Z-S, Li L-C, Zhang X-H, Min D-H, Ma Y-Z. G-protein β subunit AGB1 positively regulates salt stress tolerance in Arabidopsis J Integr Agric, 2015, 14: 314-325.
CrossRef Google scholar
Ma Y, Dai X, Xu Y, Luo W, Zheng X, Zeng D, Pan Y, Lin X, Liu H, Zhang D, Xiao J, Guo X, Xu S, Niu Y, Jin J, Zhang H, Xu X, Li L, Wang W, Qian Q, Ge S, Chong K (2015b) COLD1 Confers Chilling Tolerance in Rice. Cell 160:1209–1221. https://doi.org/10.1016/j.cell.2015.01.046
Ma M, Zhou JM and Liang X (2024) Phosphorylation-dependent regulation of plant heterotrimeric G proteins: From activation to downstream signaling. Sci Bull. https://doi.org/10.1016/j.scib.2024.04.067
Mao H, Sun S, Yao J, Wang C, Yu S, Xu C, Li X, Zhang Q. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice Proc Natl Acad Sci, 2010, 107: 19579-19584.
CrossRef Google scholar
Milligan G and Kostenis E (2009) Heterotrimeric G‐proteins: a short history. British J Pharmacol 147. https://doi.org/10.1038/sj.bjp.0706405
Misra S, Wu Y, Venkataraman G, Sopory SK, Tuteja N. Heterotrimeric G-protein complex and G-protein-coupled receptor from a legume (Pisum sativum): role in salinity and heat stress and cross-talk with phospholipase C Plant J, 2007, 51: 656-669.
CrossRef Google scholar
Mohanasundaram B, Pandey S. Moving beyond the arabidopsis-centric view of G-protein signaling in plants Trends Plant Sci, 2023, 28: 1406-1421.
CrossRef Google scholar
Mudgil Y, Uhrig JF, Zhou J, Temple B, Jiang K, Jones AM. ArabidopsisN-MYC DOWNREGULATED-LIKE1, a Positive Regulator of Auxin Transport in a G Protein-Mediated Pathway Plant Cell, 2009, 21: 3591-3609.
CrossRef Google scholar
Muhammad Aslam M, Waseem M, Jakada BH, Okal EJ, Lei Z, Saqib HSA, Yuan W, Xu W and Zhang Q (2022) Mechanisms of Abscisic Acid-Mediated Drought Stress Responses in Plants. Int J Mol Sci 23. https://doi.org/10.3390/ijms23031084
Nilson SE, Assmann SM. Heterotrimeric G proteins regulate reproductive trait plasticity in response to water availability New Phytol, 2009, 185: 734-746.
CrossRef Google scholar
Nilson SE, Assmann SM. The α-Subunit of the Arabidopsis Heterotrimeric G Protein, GPA1, Is a Regulator of Transpiration Efficiency Plant Physiol, 2010, 152: 2067-2077.
CrossRef Google scholar
Oldham WM, Hamm HE. Heterotrimeric G protein activation by G-protein-coupled receptors Nat Rev Mol Cell Biol, 2008, 9: 60-71.
CrossRef Google scholar
Pandey S, Assmann SM. The Arabidopsis Putative G Protein-Coupled Receptor GCR1 Interacts with the G Protein α Subunit GPA1 and Regulates Abscisic Acid Signaling Plant Cell, 2004, 16: 1616-1632.
CrossRef Google scholar
Pandey S, Vijayakumar A. Emerging themes in heterotrimeric G-protein signaling in plants Plant Sci, 2018, 270: 292-300.
CrossRef Google scholar
Peng Y, Chen L, Li S, Zhang Y, Xu R, Liu Z, Liu W, Kong J, Huang X, Wang Y, Cheng B, Zheng L, and Li Y (2018) BRI1 and BAK1 interact with G proteins and regulate sugar-responsive growth and development in Arabidopsis. Nat Commun 9:1522. https://doi.org/10.1038/s41467-018-03884-8
Peng P, Gao Y, Li Z, Yu Y, Qin H, Guo Y, Huang R and Wang J (2019) Proteomic Analysis of a Rice Mutant sd58 Possessing a Novel d1 Allele of Heterotrimeric G Protein Alpha Subunit (RGA1) in Salt Stress with a Focus on ROS Scavenging. Int J Mole Sci 20:167. https://doi.org/10.3390/ijms20010167
Perraki A, DeFalco TA, Derbyshire P, Avila J, Séré D, Sklenar J, Qi X, Stransfeld L, Schwessinger B, Kadota Y, Macho AP, Jiang S, Couto D, Torii KU, Menke FLH, Zipfel C. Phosphocode-dependent functional dichotomy of a common co-receptor in plant signalling Nature, 2018, 561: 248-252.
CrossRef Google scholar
Roy Choudhury S, Pandey S. SymRK-dependent phosphorylation of Gα protein and its role in signaling during soybean (Glycine max) nodulation Plant J, 2022, 110: 277-291.
CrossRef Google scholar
Smythers AL, Bhatnagar N, Ha C, Majumdar P, McConnell EW, Mohanasundaram B, Hicks LM, Pandey S. Abscisic acid-controlled redox proteome of Arabidopsis and its regulation by heterotrimeric Gβ protein New Phytol, 2022, 236: 447-463.
CrossRef Google scholar
Springer NM, Wu Q, Regan M, Furukawa H and Jackson D (2018) Role of heterotrimeric Gα proteins in maize development and enhancement of agronomic traits. PLOS Genet 14:e1007374. https://doi.org/10.1371/journal.pgen.1007374
Subramaniam G, Trusov Y, Lopez-Encina C, Hayashi S, Batley J, Botella JR. Type B Heterotrimeric G Protein γ-Subunit Regulates Auxin and ABA Signaling in Tomato Plant Physiol, 2016, 170: 1117-1134.
CrossRef Google scholar
Sun H, Qian Q, Wu K, Luo J, Wang S, Zhang C, Ma Y, Liu Q, Huang X, Yuan Q, Han R, Zhao M, Dong G, Guo L, Zhu X, Gou Z, Wang W, Wu Y, Lin H, Fu X. Heterotrimeric G proteins regulate nitrogen-use efficiency in rice Nat Genet, 2014, 46: 652-656.
CrossRef Google scholar
Sun S, Wang L, Mao H, Shao L, Li X, Xiao J, Ouyang Y and Zhang Q (2018) A G-protein pathway determines grain size in rice. Nat Commun 9:851. https://doi.org/10.1038/s41467-018-03141-y
Sun W, Zhang H, Yang S, Liu L, Xie P, Li J, Zhu Y, Ouyang Y, Xie Q, Zhang H and Yu F (2023) Genetic modification of Gγ subunit AT1 enhances salt-alkali tolerance in main graminaceous crops. Nat Sci Rev 10. https://doi.org/10.1093/nsr/nwad075
Sun Y, Xie Z, Jin L, Qin T, Zhan C and Huang J (2024) Histone deacetylase OsHDA716 represses rice chilling tolerance by deacetylating OsbZIP46 to reduce its transactivation function and protein stability. Plant Cell 1:1913–1936. https://doi.org/10.1093/plcell/koae010
Swain DM, Sahoo RK, Srivastava VK, Tripathy BC, Tuteja R, Tuteja N. Function of heterotrimeric G-protein γ subunit RGG1 in providing salinity stress tolerance in rice by elevating detoxification of ROS Planta, 2017, 245: 367-383.
CrossRef Google scholar
Takahashi H, Urano D, Sanson AC, Leong R, Goh H, Krishnamoorthi S, Wu T-Y. Crosstalk between heterotrimeric G protein-coupled signaling pathways and WRKY transcription factors modulating plant responses to suboptimal micronutrient conditions J Exp Bot, 2020, 71: 3227-3239.
CrossRef Google scholar
Tiwari R and Bisht NC (2022) The multifaceted roles of heterotrimeric G-proteins: lessons from models and crops. Planta 255:88. https://doi.org/10.1007/s00425-022-03868-5
Trusov Y, Zhang W, Assmann SM, Botella JRn. Gγ1 + Gγ2 ≠ Gβ: Heterotrimeric G Protein Gγ-Deficient Mutants Do Not Recapitulate All Phenotypes of Gβ-Deficient Mutants Plant Physiol, 2008, 147: 636-649.
CrossRef Google scholar
Ueguchi-Tanaka M, Fujisawa Y, Kobayashi M, Ashikari M, Iwasaki Y, Kitano H, Matsuoka M. Rice dwarf mutant d1, which is defective in the alpha subunit of the heterotrimeric G protein, affects gibberellin signal transduction Proc Natl Acad Sci USA, 2000, 97: 11638-11643.
CrossRef Google scholar
Ullah H, Chen JG, Young JC, Im KH, Sussman MR, Jones AM. Modulation of cell proliferation by heterotrimeric G protein in Arabidopsis Science, 2001, 292: 2066-2069.
CrossRef Google scholar
Ullah H, Chen J-G, Wang S, Jones AM. Role of a Heterotrimeric G Protein in Regulation of Arabidopsis Seed Germination Plant Physiol, 2002, 129: 897-907.
CrossRef Google scholar
Ullah H, Chen J-G, Temple B, Boyes DC, Alonso JM, Davis KR, Ecker JR, Jones AM. The β-Subunit of the Arabidopsis G Protein Negatively Regulates Auxin-Induced Cell Division and Affects Multiple Developmental Processes[W] Plant Cell, 2003, 15: 393-409.
CrossRef Google scholar
Urano D, Jones AM. Heterotrimeric G Protein-Coupled Signaling in Plants Annu Rev Plant Biol, 2014, 65: 365-384.
CrossRef Google scholar
Urano D, Phan N, Jones JC, Yang J, Huang J, Grigston J, Philip Taylor J, Jones AM. Endocytosis of the seven-transmembrane RGS1 protein activates G-protein-coupled signalling in Arabidopsis Nat Cell Biol, 2012, 14: 1079-1088.
CrossRef Google scholar
Urano D, Chen JG, Botella JR and Jones AM (2013) Heterotrimeric G protein signalling in the plant kingdom. Open Biol 3:120186. https://doi.org/10.1098/rsob.120186
Urano D, Colaneri A, Jones AM. Gα modulates salt-induced cellular senescence and cell division in rice and maize J Exp Bot, 2014, 65: 6553-6561.
CrossRef Google scholar
Urano D, Jackson D, Jones AM. A G protein alpha null mutation confers prolificacy potential in maize J Exp Bot, 2015, 66: 4511-4515.
CrossRef Google scholar
Urano D, Maruta N, Trusov Y, Stoian R, Wu Q, Liang Y, Jaiswal DK, Thung L, Jackson D, Botella JR and Jones AM (2016) Saltational evolution of the heterotrimeric G protein signaling mechanisms in the plant kingdom. Sci Signal 9:ra93. https://doi.org/10.1126/scisignal.aaf9558
Vavilova V, Konopatskaia I, Kuznetsova AE, Blinov A and Goncharov NP (2017) DEP1 gene in wheat species with normal, compactoid and compact spikes. BMC Genet 18:106. https://doi.org/10.1186/s12863-017-0583-6
Wang T, Chen X, Ju C and Wang C (2023) Calcium signaling in plant mineral nutrition: From uptake to transport. Plant commun 4:100678. https://doi.org/10.1016/j.xplc.2023.100678
Wang K, Xu F, Yuan W, Zhang D, Liu J, Sun L, Cui L, Zhang J, Xu W. Rice G protein γ subunit qPE9-1 modulates root elongation for phosphorus uptake by involving 14-3-3 protein OsGF14b and plasma membrane H+-ATPase Plant J, 2021, 107: 1603-1615.
CrossRef Google scholar
Wang XQ, Ullah H, Jones AM and Assmann SM (2001) G Protein Regulation of Ion Channels and Abscisic Acid Signaling in Arabidopsis Guard Cells. Science 292:2070–2072. https://doi.org/10.1126/science.1059046
Wang Y, Wu Y, Yu B, Yin Z, Xia Y. EXTRA-LARGE G PROTEINs Interact with E3 Ligases PUB4 and PUB2 and Function in Cytokinin and Developmental Processes Plant Physiol, 2017, 173: 1235-1246.
CrossRef Google scholar
Wang Y, Lv Y, Yu H, Hu P, Wen Y, Wang J, Tan Y, Wu H, Zhu L, Wu K, Chai B, Liu J, Zeng D, Zhang G, Zhu L, Gao Z, Dong G, Ren D, Shen L, Zhang Q, Li Q, Guo L, Xiong G, Qian Q and Hu J. (2024). GR5 acts in the G protein pathway to regulate grain size in rice. Plant Commun 5:100673. https://doi.org/10.1016/j.xplc.2023.100673
Wu K, Wendt T, Holme I, Dockter C, Preuß A, Thomas W, Druka A, Waugh R, Hansson M and Braumann I (2016) HvDep1 Is a Positive Regulator of Culm Elongation and Grain Size in Barley and Impacts Yield in an Environment-Dependent Manner. PLoS One 11:e0168924. https://doi.org/10.1371/journal.pone.0168924
Wu Q, Xu F, Jackson D. All together now, a magical mystery tour of the maize shoot meristem Curr Opin Plant Biol, 2018, 45: 26-35.
CrossRef Google scholar
Wu T-Y, Krishnamoorthi S, Boonyaves K, Al-Darabsah I, Leong R, Jones AM, Ishizaki K, Liao K-L, Urano D. G protein controls stress readiness by modulating transcriptional and metabolic homeostasis in Arabidopsis thaliana and Marchantia polymorpha Mol Plant, 2022, 15: 1889-1907.
CrossRef Google scholar
Xiong XX, Liu Y, Zhang LL, Li XJ, Zhao Y, Zheng Y, Yang QH, Yang Y, Min DH and Zhang XH (2023) G-Protein β-Subunit Gene TaGB1-B Enhances Drought and Salt Resistance in Wheat. Int J Mol Sci 24:7337. https://doi.org/10.3390/ijms24087337
Xiong M, Zhang H, Huang Y and Li Y (2024) G protein regulation in rice seed biology. Seed Biol 3:e010. https://doi.org/10.48130/seedbio-0024-0008
Xu R, Li N, Li Y. Control of grain size by G protein signaling in rice J Integr Plant Biol, 2019, 61: 533-540.
CrossRef Google scholar
Xu D, Tang W, Ma Y, Wang X, Yang Y, Wang X, Xie L, Huang S, Qin T, Tang W, Xu Z, Li L, Tang Y, Chen M, Ma Y, Jones M. Arabidopsis G-protein β subunit AGB1 represses abscisic acid signaling via attenuation of the MPK3–VIP1 phosphorylation cascade J Exp Bot, 2024, 75: 1615-1632.
CrossRef Google scholar
Yadav DK, Shukla D, Tuteja N. Rice heterotrimeric G-protein alpha subunit (RGA1): In silico analysis of the gene and promoter and its upregulation under abiotic stress Plant Physiol Biochem, 2013, 63: 262-271.
CrossRef Google scholar
Yu Y, Assmann SM. The heterotrimeric G-protein β subunit, AGB1, plays multiple roles in the Arabidopsis salinity response Plant, Cell Environ, 2015, 38: 2143-2156.
CrossRef Google scholar
Yu Y, Assmann SM. Inter-relationships between the heterotrimeric Gβ subunit AGB1, the receptor-like kinase FERONIA, and RALF1 in salinity response Plant, Cell Environ, 2018, 41: 2475-2489.
CrossRef Google scholar
Yu Y, Chakravorty D, Assmann SM. The G Protein β-Subunit, AGB1, Interacts with FERONIA in RALF1-Regulated Stomatal Movement Plant Physiol, 2018, 176: 2426-2440.
CrossRef Google scholar
Zait Y, Ferrero-Serrano Á, Assmann SM. The α subunit of the heterotrimeric G protein regulates mesophyll CO2 conductance and drought tolerance in rice New Phytol, 2021, 232: 2324-2338.
CrossRef Google scholar
Zhang L, Hu G, Cheng Y, Huang J. Heterotrimeric G protein α and β subunits antagonistically modulate stomatal density in Arabidopsis thaliana Dev Biol, 2008, 324: 68-75.
CrossRef Google scholar
Zhang W, Jeon BW, Assmann SM. Heterotrimeric G-protein regulation of ROS signalling and calcium currents in Arabidopsis guard cells J Exp Bot, 2011, 62: 2371-2379.
CrossRef Google scholar
Zhang D-P, Zhou Y, Yin J-F, Yan X-J, Lin S, Xu W-F, Baluška F, Wang Y-P, Xia Y-J, Liang G-H, Liang J-S. Rice G-protein subunitsqPE9-1andRGB1play distinct roles in abscisic acid responses and drought adaptation J Exp Bot, 2015, 66: 6371-6384.
CrossRef Google scholar
Zhang H, Xu Db, Chen M, Ma Yn, Xu Zs, Li Lc, Chen Yf and Ma Yz (2015b) A G-Protein β Subunit, AGB1, Negatively Regulates the ABA Response and Drought Tolerance by Down-Regulating AtMPK6-Related Pathway in Arabidopsis. PLoS One 10:e0116385. https://doi.org/10.1371/journal.pone.0116385
Zhang T, Xu P, Wang W, Wang S, Caruana JC, Yang HQ and Lian H (2018) Arabidopsis G-Protein β Subunit AGB1 Interacts with BES1 to Regulate Brassinosteroid Signaling and Cell Elongation. Front Plant Sci 8:2225. https://doi.org/10.3389/fpls.2017.02225
Zhang H, Zhu J, Gong Z, Zhu J-K. Abiotic stress responses in plants Nat Rev Genet, 2021, 23: 104-119.
CrossRef Google scholar
Zhang H, Xie P, Xu X, Xie Q, Yu F, Hu Y. Heterotrimeric G protein signalling in plant biotic and abiotic stress response Plant Biol, 2021, 23: 20-30.
CrossRef Google scholar
Zhang H, Yu F, Xie P, Sun S, Qiao X, Tang S, Chen C, Yang S, Mei C, Yang D, Wu Y, Xia R, Li X, Lu J, Liu Y, Xie X, Ma D, Xu X, Liang Z, Feng Z, Huang X, Yu H, Liu G, Wang Y, Li J, Zhang Q, Chen C, Ouyang Y and Xie Q (2023a) A Gγ protein regulates alkaline sensitivity in crops. Science 379:eade8416. https://doi.org/10.1126/science.ade8416
Zhang WJ, Zhou Y, Zhang Y, Su YH and Xu T (2023b) Protein phosphorylation: A molecular switch in plant signaling. Cell Rep 42:112729. https://doi.org/10.1016/j.celrep.2023.112729
Zhu J-K. Salt and Drought Stress Signal Transduction in Plants Annu Rev Plant Biol, 2002, 53: 247-273.
CrossRef Google scholar
Zhu J-K. Abiotic Stress Signaling and Responses in Plants Cell, 2016, 167: 313-324.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/