Liquid-liquid phase separation as a major mechanism of plant abiotic stress sensing and responses

Xin Liu, Jian-Kang Zhu, Chunzhao Zhao

Stress Biology ›› 2023, Vol. 3 ›› Issue (1) : 56. DOI: 10.1007/s44154-023-00141-x
Review

Liquid-liquid phase separation as a major mechanism of plant abiotic stress sensing and responses

Author information +
History +

Abstract

Identification of environmental stress sensors is one of the most important research topics in plant abiotic stress research. Traditional strategies to identify stress sensors or early signaling components based on the cell membrane as a primary site of sensing and calcium signal as a second messenger have had only limited successes. Therefore, the current theoretical framework underlying stress sensing in plants should be reconsidered and additional mechanisms need to be introduced. Recently, accumulating evidence has emerged to suggest that liquid-liquid phase separation (LLPS) is a major mechanism for environmental stress sensing and response in plants. In this review, we briefly introduce LLPS regarding its concept, compositions, and dynamics, and then summarize recent progress of LLPS research in plants, emphasizing the contribution of LLPS to the sensing of various environmental stresses, such as dehydration, osmotic stress, and low and high temperatures. Finally, we propose strategies to identify key proteins that sense and respond to environmental stimuli on the basis of LLPS, and discuss the research directions of LLPS in plant abiotic stress responses and its potential application in enhancing stress tolerance in crops.

Keywords

Liquid-liquid phase separation / Biomolecular condensates / Stress sensors / Osmotic stress / High temperature

Cite this article

Download citation ▾
Xin Liu, Jian-Kang Zhu, Chunzhao Zhao. Liquid-liquid phase separation as a major mechanism of plant abiotic stress sensing and responses. Stress Biology, 2023, 3(1): 56 https://doi.org/10.1007/s44154-023-00141-x

References

[1]
Agudo-Canalejo J, Schultz SW, Chino H, Migliano SM, Saito C, Koyama-Honda I, Stenmark H, Brech A, May AI, Mizushima N et al (2021) Wetting regulates autophagy of phase-separated compartments and the cytosol. Nature 591:142–146. https://doi.org/10.1038/s41586-020-2992-3
[2]
Al-SadyB, NiW, KircherS, SchaferE, QuailPH. Photoactivated phytochrome induces rapid PIF3 phosphorylation prior to proteasome-mediated degradation. Mol Cell, 2006, 23: 439-446
CrossRef Google scholar
[3]
BaeG, ChoiG. Decoding of light signals by plant phytochromes and their interacting proteins. Annu Rev Plant Biol, 2008, 59: 281-311
CrossRef Google scholar
[4]
Baumberger N, Baulcombe DC (2005) Arabidopsis ARGONAUTE1 is an RNA slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci U S A 102:11928–11933. https://doi.org/10.1073/pnas.0505461102
[5]
BrangwynneCP, EckmannCR, CoursonDS, RybarskaA, HoegeC, GharakhaniJ, JülicherF, HymanAA. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science, 2009, 324: 1729-1732
CrossRef Google scholar
[6]
ChantarachotT, Bailey-SerresJ. Polysomes, stress granules, and processing bodies: a dynamic triumvirate controlling cytoplasmic mRNA fate and function. Plant Physiol, 2018, 176: 254-269
CrossRef Google scholar
[7]
ChenD, LyuM, KouX, LiJ, YangZ, GaoL, LiY, FanLM, ShiH, ZhongS. Integration of light and temperature sensing by liquid-liquid phase separation of phytochrome B. Mol Cell, 2022, 82: 3015-3029
CrossRef Google scholar
[8]
ChenK, LiGJ, BressanRA, SongCP, ZhuJK, ZhaoY. Abscisic acid dynamics, signaling, and functions in plants. J Integr Plant Biol, 2020, 62: 25-54
CrossRef Google scholar
[9]
Choi K, Kim J, Hwang HJ, Kim S, Park C, Kim SY, Lee I (2011) The FRIGIDA complex activates transcription of FLC, a strong flowering repressor in Arabidopsis, by recruiting chromatin modification factors. Plant Cell 23:289–303. https://doi.org/10.1105/tpc.110.075911
[10]
DasRK, RuffKM, PappuRV. Relating sequence encoded information to form and function of intrinsically disordered proteins. Curr Opin Struct Biol, 2015, 32: 102-112
CrossRef Google scholar
[11]
DignonGL, BestRB, MittalJ. Biomolecular phase separation: from molecular driving forces to macroscopic properties. Annu Rev Phys Chem, 2020, 71: 53-75
CrossRef Google scholar
[12]
DoroneY, BoeynaemsS, FloresE, JinB, HateleyS, BossiF, LazarusE, PenningtonJG, MichielsE, De DeckerM, et al.. A prion-like protein regulator of seed germination undergoes hydration-dependent phase separation. Cell, 2021, 184: 4284-4298
CrossRef Google scholar
[13]
DragwidgeJM, Van DammeD. Protein phase separation in plant membrane biology: more than just a compartmentalization strategy. Plant Cell, 2023, 35: 3162-3172
CrossRef Google scholar
[14]
EmeneckerRJ, HolehouseAS, StraderLC. Emerging roles for phase separation in plants. Dev Cell, 2020, 55: 69-83
CrossRef Google scholar
[15]
EmeneckerRJ, HolehouseAS, StraderLC. Biological phase separation and biomolecular condensates in plants. Annu Rev Plant Biol, 2021, 72: 17-46
CrossRef Google scholar
[16]
ErdosG, DosztanyiZ. Analyzing protein disorder with IUPred2A. Curr Protoc Bioinformatics, 2020, 70: e99
CrossRef Google scholar
[17]
Fang X, Wang L, Ishikawa R, Li Y, Fiedler M, Liu F, Calder G, Rowan B, Weigel D, Li P et al (2019) Arabidopsis FLL2 promotes liquid-liquid phase separation of polyadenylation complexes. Nature 569:265–269. https://doi.org/10.1038/s41586-019-1165-8
[18]
Gutierrez-Beltran E, Elander PH, Dalman K, Dayhoff GW, Moschou PN, Uversky VN, Crespo JL, Bozhkov PV (2021) Tudor staphylococcal nuclease is a docking platform for stress granule components and is essential for SnRK1 activation in Arabidopsis. EMBO J 40:e105043. https://doi.org/10.15252/embj.2020105043
[19]
HatzianestisIH, MountourakisF, StavridouS, MoschouPN. Plant condensates: no longer membrane-less?. Trends Plant Sci, 2023, 28: 1101-1112
CrossRef Google scholar
[20]
HuangX, ChenS, LiW, TangL, ZhangY, YangN, ZouY, ZhaiX, XiaoN, LiuW, et al.. ROS regulated reversible protein phase separation synchronizes plant flowering. Nat Chem Biol, 2021, 17: 549-557
CrossRef Google scholar
[21]
HymanAA, WeberCA, JulicherF. Liquid-liquid phase separation in biology. Annu Rev Cell Dev Biol, 2014, 30: 39-58
CrossRef Google scholar
[22]
IshidaT, KinoshitaK. PrDOS: prediction of disordered protein regions from amino acid sequence. Nucleic Acids Res, 2007, 35: W460-W464
CrossRef Google scholar
[23]
Jiang Z, Zhou X, Tao M, Yuan F, Liu L, Wu F, Wu X, Xiang Y, Niu Y, Liu F et al (2019) Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ influx. Nature 572:341–346. https://doi.org/10.1038/s41586-019-1449-z
[24]
Jung JH, Barbosa AD, Hutin S, Kumita JR, Gao M, Derwort D, Silva CS, Lai X, Pierre E, Geng F et al (2020) A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis. Nature 585:256–260. https://doi.org/10.1038/s41586-020-2644-7
[25]
Jung JH, Domijan M, Klose C, Biswas S, Ezer D, Gao M, Khattak AK, Box MS, Charoensawan V, Cortijo S et al (2016) Phytochromes function as thermosensors in Arabidopsis. Science 354:886–889. https://doi.org/10.1126/science.aaf6005
[26]
KalininaNO, MakarovaS, MakhotenkoA, LoveAJ, TalianskyM. The multiple functions of the nucleolus in plant development, disease and stress responses. Front Plant Sci, 2018, 9: 132
CrossRef Google scholar
[27]
KantP, KantS, GordonM, ShakedR, BarakS. STRESS RESPONSE SUPPRESSOR1 and STRESS RESPONSE SUPPRESSOR2, two DEAD-box RNA helicases that attenuate Arabidopsis responses to multiple abiotic stresses. Plant Physiol, 2007, 145: 814-830
CrossRef Google scholar
[28]
KatoM, HanTW, XieS, ShiK, DuX, WuLC, MirzaeiH, GoldsmithEJ, LonggoodJ, PeiJ, et al.. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell, 2012, 149: 753-767
CrossRef Google scholar
[29]
KimC, KwonY, JeongJ, KangM, LeeGS, MoonJH, LeeHJ, ParkYI, ChoiG. Phytochrome B photobodies are comprised of phytochrome B and its primary and secondary interacting proteins. Nat Commun, 2023, 14: 1708
CrossRef Google scholar
[30]
KircherS, GilP, Kozma-BognárL, FejesE, SpethV, Husselstein-MullerT, BauerD, AdámE, SchäferE, NagyF. Nucleocytoplasmic partitioning of the plant photoreceptors phytochrome a, B, C, D, and E is regulated differentially by light and exhibits a diurnal rhythm. Plant Cell, 2002, 14: 1541-1555
CrossRef Google scholar
[31]
KorolevaOA, CalderG, PendleAF, KimSH, LewandowskaD, SimpsonCG, JonesIM, BrownJW, ShawPJ. Dynamic behavior of Arabidopsis eIF4A-III, putative core protein of exon junction complex: fast relocation to nucleolus and splicing speckles under hypoxia. Plant Cell, 2009, 21: 1592-1606
CrossRef Google scholar
[32]
KosmaczM, GorkaM, SchmidtS, LuzarowskiM, MorenoJC, SzlachetkoJ, LeniakE, SokolowskaEM, SofroniK, SchnittgerA, et al.. Protein and metabolite composition of Arabidopsis stress granules. New Phytol, 2019, 222: 1420-1433
CrossRef Google scholar
[33]
KusumaatmajaH, MayAI, KnorrRL. Intracellular wetting mediates contacts between liquid compartments and membrane-bound organelles. J Cell Biol, 2021, 220: e202103175
CrossRef Google scholar
[34]
LamondAI, SpectorDL. Nuclear speckles: a model for nuclear organelles. Nat Rev Mol Cell Biol, 2003, 4: 605-612
CrossRef Google scholar
[35]
LancasterAK, Nutter-UphamA, LindquistS, KingOD. PLAAC: a web and command-line application to identify proteins with prion-like amino acid composition. Bioinformatics, 2014, 30: 2501-2502
CrossRef Google scholar
[36]
Legris M, Klose C, Burgie ES, Rojas CC, Neme M, Hiltbrunner A, Wigge PA, Schäfer E, Vierstra RD, Casal JJ (2016) Phytochrome B integrates light and temperature signals in Arabidopsis. Science 354:897–900. https://doi.org/10.1126/science.aaf5656
[37]
Li CF, Pontes O, El-Shami M, Henderson IR, Bernatavichute YV, Chan SW, Lagrange T, Pikaard CS, Jacobsen SE (2006) An ARGONAUTE4-containing nuclear processing center colocalized with Cajal bodies in Arabidopsis thaliana. Cell 126:93–106. https://doi.org/10.1016/j.cell.2006.05.032
[38]
Li Q, Liu NK, Liu Q, Zheng XG, Lu L, Gao WR, Liu Y, Liu Y, Zhang SC, Wang Q et al (2021) DEAD-box helicases modulate dicing body formation in Arabidopsis. Sci Adv 7:eabc6266. https://doi.org/10.1126/sciadv.abc6266
[39]
LiuC, MentzelopoulouA, MuhammadA, VolkovA, WeijersD, Gutierrez-BeltranE, MoschouPN. An actin remodeling role for Arabidopsis processing bodies revealed by their proximity interactome. EMBO J, 2023, 42: e111885
CrossRef Google scholar
[40]
LiuQ, LiuP, JiT, ZhengL, ShenC, RanS, LiuJ, ZhaoY, NiuY, WangT, et al.. The histone methyltransferase SUVR2 promotes DSB repair via chromatin remodeling and liquid–liquid phase separation. Mol Plant, 2022, 15: 1157-1175
CrossRef Google scholar
[41]
LiuQ, ShiL, FangY. Dicing bodies. Plant Physiol, 2012, 158: 61-66
CrossRef Google scholar
[42]
LiuX, WangJ, SunL. Structure of the hyperosmolality-gated calcium-permeable channel OSCA1.2. Nat Commun, 2018, 9: 5060
CrossRef Google scholar
[43]
MaY, DaiX, XuY, LuoW, ZhengX, ZengD, PanY, LinX, LiuH, ZhangD, et al.. COLD1 confers chilling tolerance in rice. Cell, 2015, 160: 1209-1221
CrossRef Google scholar
[44]
Maruri-LópezI, FigueroaNE, Hernández-SánchezIE, ChodasiewiczM. Plant stress granules: trends and beyond. Front Plant Sci, 2021, 12: 722643
CrossRef Google scholar
[45]
MorrisGE. The Cajal body. Biochim Biophys Acta, 2008, 1783: 2108-2115
CrossRef Google scholar
[46]
Na JK, Kim JK, Kim DY, Assmann SM (2015) Expression of potato RNA-binding proteins StUBA2a/b and StUBA2c induces hypersensitive-like cell death and early leaf senescence in Arabidopsis. J Exp Bot 66:4023–4033. https://doi.org/10.1093/jxb/erv207
[47]
NoverL, ScharfKD, NeumannD. Formation of cytoplasmic heat shock granules in tomato cell cultures and leaves. Mol Cell Biol, 1983, 3: 1648-1655
CrossRef Google scholar
[48]
NusinowDA, HelferA, HamiltonEE, KingJJ, ImaizumiT, SchultzTF, FarréEM, KaySA. The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature, 2011, 475: 398-402
CrossRef Google scholar
[49]
Oates ME, Romero P, Ishida T, Ghalwash M, Mizianty MJ, Xue B, Dosztányi Z, Uversky VN, Obradovic Z, Kurgan L et al (2013) D2P2: database of disordered protein predictions. Nucleic Acids Res 41:D508–D516.https://doi.org/10.1093/nar/gks1226
[50]
Ouyang M, Li X, Zhang J, Feng P, Pu H, Kong L, Bai Z, Rong L, Xu X, Chi W et al (2020) Liquid-liquid phase transition drives intra-chloroplast cargo sorting. Cell 180:1144–1159. https://doi.org/10.1016/j.cell.2020.02.045
[51]
ParkHJ, YouYN, LeeA, JungH, JoSH, OhN, KimHS, LeeHJ, KimJK, KimYS, et al.. OsFKBP20-1b interacts with the splicing factor OsSR45 and participates in the environmental stress response at the post-transcriptional level in rice. Plant J, 2020, 102: 992-1007
CrossRef Google scholar
[52]
PiovesanD, TabaroF, PaladinL, NecciM, MiceticI, CamilloniC, DaveyN, DosztányiZ, MészárosB, MonzonAM, et al.. MobiDB 3.0: more annotations for intrinsic disorder, conformational diversity and interactions in proteins. Nucleic Acids Res, 2018, 46: D471-D476
CrossRef Google scholar
[53]
QiuY, LiM, KimRJ, MooreCM, ChenM. Daytime temperature is sensed by phytochrome B in Arabidopsis through a transcriptional activator HEMERA. Nat Commun, 2019, 10: 140
CrossRef Google scholar
[54]
Solis-MirandaJ, ChodasiewiczM, SkiryczA, FernieAR, MoschouPN, BozhkovPV, Gutierrez-BeltranE. Stress-related biomolecular condensates in plants. Plant Cell, 2023, 35: 3187-3204
CrossRef Google scholar
[55]
SpectorDL, LamondAI. Nuclear speckles. Cold Spring Harb Perspect Biol, 2011, 3: a000646
CrossRef Google scholar
[56]
TsangB, PritišanacI, SchererSW, MosesAM, Forman-KayJD. Phase separation as a missing mechanism for interpretation of disease mutations. Cell, 2020, 183: 1742-1756
CrossRef Google scholar
[57]
VuLD, XuX, GevaertK, De SmetI. Developmental plasticity at high temperature. Plant Physiol, 2019, 181: 399-411
CrossRef Google scholar
[58]
WalshI, MartinAJ, Di DomenicoT, TosattoSC. ESpritz: accurate and fast prediction of protein disorder. Bioinformatics, 2012, 28: 503-509
CrossRef Google scholar
[59]
Wang B, Zhang H, Huai J, Peng F, Wu J, Lin R, Fang X (2022) Condensation of SEUSS promotes hyperosmotic stress tolerance in Arabidopsis. Nat Chem Biol 18:1361–1369. https://doi.org/10.1038/s41589-022-01196-z
[60]
WangL, DingY, HeL, ZhangG, ZhuJK, Lozano-DuranR. A virus-encoded protein suppresses methylation of the viral genome through its interaction with AGO4 in the Cajal body. Elife, 2020, 9: e55542
CrossRef Google scholar
[61]
Wang X, Jiang B, Gu L, Chen Y, Mora M, Zhu M, Noory E, Wang Q, Lin C (2021) A photoregulatory mechanism of the circadian clock in Arabidopsis. Nat Plants 7:1397–1408. https://doi.org/10.1038/s41477-021-01002-z
[62]
Wang Y, He S, Fang X (2023) Emerging roles of phase separation in plant transcription and chromatin organization. Curr Opin Plant Biol 75:102387. https://doi.org/10.1016/j.pbi.2023.102387
[63]
Xie D, Chen M, Niu J, Wang L, Li Y, Fang X, Li P, Qi Y (2020) Phase separation of SERRATE drives dicing body assembly and promotes miRNA processing in Arabidopsis. Nat Cell Biol 23:32–39. https://doi.org/10.1038/s41556-020-00606-5
[64]
XieZ, ZhaoS, LiY, DengY, ShiY, ChenX, LiY, LiH, ChenC, WangX, et al.. Phenolic acid-induced phase separation and translation inhibition mediate plant interspecific competition. Nat Plants, 2023, 9: 1481-1499
CrossRef Google scholar
[65]
XuJ, YangJY, NiuQW, ChuaNH. Arabidopsis DCP2, DCP1, and VARICOSE form a decapping complex required for postembryonic development. Plant Cell, 2006, 18: 3386-3398
CrossRef Google scholar
[66]
XuX, ZhengC, LuD, SongCP, ZhangL. Phase separation in plants: new insights into cellular compartmentalization. J Integr Plant Biol, 2021, 63: 1835-1855
CrossRef Google scholar
[67]
Yamaguchi R, Nakamura M, Mochizuki N, Kay SA, Nagatani A (1999) Light-dependent translocation of a phytochrome B-GFP fusion protein to the nucleus in transgenic Arabidopsis. J Cell Biol 145:437–445. https://doi.org/10.1083/jcb.145.3.437
[68]
YanY, GanJ, TaoY, OkitaTW, TianL. RNA-binding proteins: the key modulator in stress granule formation and abiotic stress response. Front Plant Sci, 2022, 13: 882596
CrossRef Google scholar
[69]
YounJY, DyakovBJA, ZhangJ, KnightJDR, VernonRM, Forman-KayJD, GingrasAC. Properties of stress granule and P-body proteomes. Mol Cell, 2019, 76: 286-294
CrossRef Google scholar
[70]
Yuan F, Yang H, Xue Y, Kong D, Ye R, Li C, Zhang J, Theprungsirikul L, Shrift T, Krichilsky B et al (2014) OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature 514:367–371. https://doi.org/10.1038/nature13593
[71]
ZhangH, PengF, HeC, LiuY, DengH, FangX. Large-scale identification of potential phase-separation proteins from plants using a cell-free system. Mol Plant, 2023, 16: 310-313
CrossRef Google scholar
[72]
Zhang Y, Li Z, Chen N, Huang Y, Huang S (2020) Phase separation of Arabidopsis EMB1579 controls transcription, mRNA splicing, and development. PLoS Biol 18:e3000782. https://doi.org/10.1371/journal.pbio.3000782
[73]
ZhaoC, LangZ, ZhuJK. Cold responsive gene transcription becomes more complex. Trends Plant Sci, 2015, 20: 466-468
CrossRef Google scholar
[74]
ZhuJK. Abiotic stress signaling and responses in plants. Cell, 2016, 167: 313-324
CrossRef Google scholar
[75]
ZhuP, ListerC, DeanC. Cold-induced Arabidopsis FRIGIDA nuclear condensates for FLC repression. Nature, 2021, 599: 657-661
CrossRef Google scholar
[76]
Zhu S, Gu J, Yao J, Li Y, Zhang Z, Xia W, Wang Z, Gui X, Li L, Li D et al (2022) Liquid-liquid phase separation of RBGD2/4 is required for heat stress resistance in Arabidopsis. Dev Cell 57:583–597. https://doi.org/10.1016/j.devcel.2022.02.005
[77]
Zhu X, Feng Y, Liang G, Liu N, Zhu JK (2013) Aequorin-based luminescence imaging reveals stimulus- and tissue-specific Ca2+ dynamics in Arabidopsis plants. Mol Plant 6:444–455. https://doi.org/10.1093/mp/sst013

Accesses

Citations

Detail

Sections
Recommended

/