Maleic acid and malonic acid reduced the pathogenicity of Sclerotinia sclerotiorum by inhibiting mycelial growth, sclerotia formation and virulence factors
Yu-chen Fei, Qin Cheng, Huan Zhang, Chuang Han, Xu Wang, Yan-feng Li, Shi-qian Li, Xiao-hu Zhao
Maleic acid and malonic acid reduced the pathogenicity of Sclerotinia sclerotiorum by inhibiting mycelial growth, sclerotia formation and virulence factors
Sclerotinia sclerotiorum is a necrotrophic plant pathogenic fungus with broad distribution and host range. Bioactive compounds derived from plant extracts have been proven to be effective in controlling S. sclerotiorum. In this study, the mycelial growth of S. sclerotiorum was effectively inhibited by maleic acid, malonic acid, and their combination at a concentration of 2 mg/mL, with respective inhibition rates of 32.5%, 9.98%, and 67.6%. The treatment of detached leaves with the two acids resulted in a decrease in lesion diameters. Interestingly, maleic acid and malonic acid decreased the number of sclerotia while simultaneously increasing their weight. The two acids also disrupted the cell structure of sclerotia, leading to sheet-like electron-thin regions. On a molecular level, maleic acid reduced oxalic acid secretion, upregulated the expression of Ss-Odc2 and downregulated CWDE10, Ss-Bi1 and Ss-Ggt1. Differently, malonic acid downregulated CWDE2 and Ss-Odc1. These findings verified that maleic acid and malonic acid could effectively inhibit S. sclerotiorum, providing promising evidence for the development of an environmentally friendly biocontrol agent.
Sclerotinia sclerotiorum / Maleic acid / Malonic acid / Inhibition
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
Derbyshire MC, Newman TE, Khentry Y, Taiwo AO (2021) The evolutionary and molecular features of the broad-host-range plant pathogen Sclerotinia sclerotiorum. Mol Plant Pathol 1–16. https://doi.org/10.1111/mpp.13221.
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
Kim YT, Prusky D, Rollins JA (2007) An activating mutation of the Sclerotinia sclerotiorum pac1 gene increases oxalic acid production at low pH but decreases virulence. Mol Plant Pathol 8:611–622. https://doi.org/10.1111/j.1364-3703.2007.00423.x
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
/
〈 | 〉 |