Apoplastic barriers of Populus ×  canescens roots in reaction to different cultivation conditions and abiotic stress treatments

Paul Grünhofer, Ines Heimerich, Lena Herzig, Svenja Pohl, Lukas Schreiber

Stress Biology ›› 2023, Vol. 3 ›› Issue (1) : 24. DOI: 10.1007/s44154-023-00103-3
Original Paper

Apoplastic barriers of Populus ×  canescens roots in reaction to different cultivation conditions and abiotic stress treatments

Author information +
History +

Abstract

Populus is an important tree genus frequently cultivated for economical purposes. However, the high sensitivity of poplars towards water deficit, drought, and salt accumulation significantly affects plant productivity and limits biomass yield. Various cultivation and abiotic stress conditions have been described to significantly induce the formation of apoplastic barriers (Casparian bands and suberin lamellae) in roots of different monocotyledonous crop species. Thus, this study aimed to investigate to which degree the roots of the dicotyledonous gray poplar (Populus ×  canescens) react to a set of selected cultivation conditions (hydroponics, aeroponics, or soil) and abiotic stress treatments (abscisic acid, oxygen deficiency) because a differing stress response could potentially help in explaining the observed higher stress susceptibility. The apoplastic barriers of poplar roots cultivated in different environments were analyzed by means of histochemistry and gas chromatography and compared to the available literature on monocotyledonous crop species. Overall, dicotyledonous poplar roots showed only a remarkably low induction or enhancement of apoplastic barriers in response to the different cultivation conditions and abiotic stress treatments. The genetic optimization (e.g., overexpression of biosynthesis key genes) of the apoplastic barrier development in poplar roots might result in more stress-tolerant cultivars in the future.

Keywords

Hydroponics / Aeroponics / Soil / Abscisic acid (ABA) / Oxygen deficiency / Poplar root suberin

Cite this article

Download citation ▾
Paul Grünhofer, Ines Heimerich, Lena Herzig, Svenja Pohl, Lukas Schreiber. Apoplastic barriers of Populus ×  canescens roots in reaction to different cultivation conditions and abiotic stress treatments. Stress Biology, 2023, 3(1): 24 https://doi.org/10.1007/s44154-023-00103-3

References

[1]
AbramoffMD, MagalhãesPJ, RamSJ. Image Processing with ImageJ, 2004, 11: 36-42
[2]
AishanT, HalikÜ, KurbanA, CyffkaB, KubaM, BetzF, KeyimuM. Eco-morphological response of floodplain forests (Populus euphratica Oliv.) to water diversion in the lower Tarim River, northwest China. Environ Earth Sci, 2015, 73: 533-545
CrossRef Google scholar
[3]
Al AfasN, MarronN, CeulemansR. Clonal variation in stomatal characteristics related to biomass production of 12 poplar (Populus) clones in a short rotation coppice culture. Environ Exp Bot, 2006, 58: 279-286
CrossRef Google scholar
[4]
AllenSJ, HallRL, RosierPTW. Transpiration by two poplar varieties grown as coppice for biomass production. Tree Physiol, 1999, 19: 493-501
CrossRef Google scholar
[5]
Bagniewska-ZadwornaA, StelmasikA, MinickaJ. From birth to death - Populus trichocarpa fibrous roots functional anatomy. Biol Plant, 2014, 58: 551-560
CrossRef Google scholar
[6]
BallachHJ, WittigR. Reciprocal Effects of Platinum and Lead on the Water Household of Poplar Cuttings. Environ Sci Pollut Res, 1996, 3: 3-9
CrossRef Google scholar
[7]
BarberonM. The endodermis as a checkpoint for nutrients. New Phytol, 2017, 213: 1604-1610
CrossRef Google scholar
[8]
BelliniC, PăcurarDI, PerroneI. Adventitious Roots and Lateral Roots: Similarities and Differences. Annu Rev Plant Biol, 2014, 65: 639-666
CrossRef Google scholar
[9]
BoluWH, PolleA. Growth and stress reactions in roots and shoots of a salt-sensitive poplar species (Populus x canescens). Trop Ecol, 2004, 45: 161-171
[10]
BrundrettMC, EnstoneDE, PetersonCA. A Berberine-Aniline Blue Fluorescent Staining Procedure for Suberin, Lignin, and Callose in Plant Tissue. Protoplasma, 1988, 146: 133-142
CrossRef Google scholar
[11]
BrundrettMC, KendrickB, PetersonCA. Efficient Lipid Staining in Plant Material with Sudan Red 7B or Fluoral Yellow 088 in Polyethylene Glycol-Glycerol. Biotech Histochem, 1991, 66: 111-116
CrossRef Google scholar
[12]
BrunnerI, HerzogC, DawesMA, ArendM, SperisenC. How tree roots respond to drought. Front Plant Sci, 2015, 6: 547
CrossRef Google scholar
[13]
ChenS, PolleA. Salinity tolerance of Populus. Plant Biol, 2010, 12: 317-333
CrossRef Google scholar
[14]
ChenYP, ChenYN, LiWH, XuCC. Characterization of photosynthesis of Populus euphratica grown in the arid region. Photosynthetica, 2006, 44: 622-626
CrossRef Google scholar
[15]
ColmerTD. Aerenchyma and an Inducible Barrier to Radial Oxygen Loss Facilitate Root Aeration in Upland, Paddy and Deep-water Rice (Oryza sativa L.). Ann Bot, 2003, 91: 301-309
CrossRef Google scholar
[16]
ColmerTD, GibberdMR, WiengweeraA, TinhTK. The barrier to radial oxygen loss from roots of rice (Oryza sativa L.) is induced by growth in stagnant solution. J Exp Bot, 1998, 49: 1431-1436
CrossRef Google scholar
[17]
Delude C, Vishwanath SJ, Rowland O, Domergue F (2017) Root Aliphatic Suberin Analysis Using Non-extraction or Solvent-extraction Methods. Bio-protocol 7:e2331. https://doi.org/10.21769/BioProtoc.2331
[18]
DillenSY, RoodSB, CeulemansR. JanssonS, BhaleraoR, GrooverA. Growth and Physiology. Genetics and Genomics of Populus, 2010 Berlin, Heidelberg, New York Springer 39-63
CrossRef Google scholar
[19]
EckenwalderJE. StettlerRF, BradshawT, HeilmanP, HinckleyT. Systematics and evolution of Populus. Biology of Populus and its Implications for Management and Conservation, Part 1, 1996 Ottawa NRC Research Press 7-32
[20]
EnstoneDE, PetersonCA. Suberin deposition and band plasmolysis in the corn (Zea mays L.) root exodermis. Can J Bot, 1997, 75: 1188-1199
CrossRef Google scholar
[21]
EnstoneDE, PetersonCA, MaF. Root Endodermis and Exodermis: Structure, Function, and Responses to the Environment. J Plant Growth Regul, 2003, 21: 335-351
CrossRef Google scholar
[22]
EsauK. Anatomy of Seed Plants, 1977 2 New York Wiley
[23]
GambettaGA, FeiJ, RostTL, KnipferT, MatthewsMA, ShackelKA, WalkerMA, McElroneAJ. Water Uptake along the Length of Grapevine Fine Roots: Developmental Anatomy, Tissue-Specific Aquaporin Expression, and Pathways of Water Transport. Plant Physiol, 2013, 163: 1254-1265
CrossRef Google scholar
[24]
Grünhofer P, Schreiber L (2023) Cutinized and suberized barriers in leaves and roots: Similarities and differences. J Plant Physiol 282:153921. https://doi.org/10.1016/j.jplph.2023.153921
[25]
GrünhoferP, GuoY, LiR, LinJ, SchreiberL. Hydroponic cultivation conditions allowing the reproducible investigation of poplar root suberization and water transport. Plant Methods, 2021, 17: 129
CrossRef Google scholar
[26]
GrünhoferP, HerzigL, SchreiberL. Leaf morphology, wax composition, and residual (cuticular) transpiration of four poplar clones. Trees, 2021, 36: 645-658
CrossRef Google scholar
[27]
GrünhoferP, SchreiberL, KresziesT. BaluškaF, MukherjeeS. Suberin in Monocotyledonous Crop Plants: Structure and Function in Response to Abiotic Stresses. Rhizobiology: Molecular Physiology of Plant Roots, 2021 Cham Springer International Publishing 333-378
CrossRef Google scholar
[28]
Grünhofer P, Stöcker T, Guo Y, Li R, Lin J, Ranathunge K, Schoof H, Schreiber L (2022) Populus × canescens root suberization in reaction to osmotic and salt stress is limited to the developing younger root tip region. Physiol Plant 174:e13765. https://doi.org/10.1111/ppl.13765
[29]
Hoagland, D.R. & Arnon, D.I. (1950) The water-culture method for growing plants without soil. Circular, 347. Berkeley, University of California. https://doi.org/10.1111/ppl.13765
[30]
HoseE, ClarksonDT, SteudleE, SchreiberL, HartungW. The exodermis: a variable apoplastic barrier. J Exp Bot, 2001, 52: 2245-2264
CrossRef Google scholar
[31]
IsebrandsJG, RichardsonJ. Poplars and Willows: Trees for Society and the Environment, 2014 Wallingford, UK CABI
CrossRef Google scholar
[32]
KavkaM, PolleA. Phosphate uptake kinetics and tissue-specific transporter expression profiles in poplar (Populus × canescens) at different phosphorus availabilities. BMC Plant Biol, 2016, 16: 206
CrossRef Google scholar
[33]
KnipferT, DanjouM, VionneC, FrickeW. Salt stress reduces root water uptake in barley (Hordeum vulgare L.) through modification of the transcellular transport path. Plant Cell Environ, 2020, 44: 1-18
CrossRef Google scholar
[34]
KotulaL, RanathungeK, SchreiberL, SteudleE. Functional and chemical comparison of apoplastic barriers to radial oxygen loss in roots of rice (Oryza sativa L.) grown in aerated or deoxygenated solution. J Exp Bot, 2009, 60: 2155-2167
CrossRef Google scholar
[35]
KresziesT, ShellakkuttiN, OsthoffA, YuP, BaldaufJA, Zeisler-DiehlVV, RanathungeK, HochholdingerF, SchreiberL. Osmotic stress enhances suberization of apoplastic barriers in barley seminal roots: analysis of chemical, transcriptomic and physiological responses. New Phytol, 2019, 221: 180-194
CrossRef Google scholar
[36]
KresziesT, EggelsS, KresziesV, OsthoffA, ShellakkuttiN, BaldaufJA, Zeisler-DiehlVV, HochholdingerF, RanathungeK, SchreiberL. Seminal roots of wild and cultivated barley differentially respond to osmotic stress in gene expression, suberization, and hydraulic conductivity. Plant Cell Environ, 2020, 43: 344-357
CrossRef Google scholar
[37]
KreuzwieserJ, HaubergJ, HowellKA, CarrollA, RennenbergH, MillarAH, WhelanJ. Differential Response of Gray Poplar Leaves and Roots Underpins Stress Adaptation during Hypoxia. Plant Physiol, 2009, 149: 461-473
CrossRef Google scholar
[38]
KrishnamurthyP, RanathungeK, FrankeR, PrakashHS, SchreiberL, MathewMK. The role of root apoplastic transport barriers in salt tolerance of rice (Oryza sativa L.). Planta, 2009, 230: 119-134
CrossRef Google scholar
[39]
KrishnamurthyP, RanathungeK, NayakS, SchreiberL, MathewMK. Root apoplastic barriers block Na+ transport to shoots in rice (Oryza sativa L.). J Exp Bot, 2011, 62: 4215-4228
CrossRef Google scholar
[40]
KrömerK. Wurzelhaut, Hypodermis und Endodermis der Angiospermenwurzel. Biblioth Bot, 1903, 59: 1-160
[41]
LarchevêqueM, MaurelM, DesrochersA, LarocqueGR. How does drought tolerance compare between two improved hybrids of balsam poplar and an unimproved native species?. Tree Physiol, 2011, 31: 240-249
CrossRef Google scholar
[42]
MiyamotoN, SteudleE, HirasawaT, LafitteR. Hydraulic conductivity of rice roots. J Exp Bot, 2001, 52: 1835-1846
CrossRef Google scholar
[43]
NetzerF, MuellerCW, ScheererU, GrünerJ, Kögel-KnabnerI, HerschbachC, RennenbergH. Phosphorus nutrition of Populus × canescens reflects adaptation to high P-availability in the soil. Tree Physiol, 2018, 38: 6-24
CrossRef Google scholar
[44]
OttowEA, BrinkerM, TeichmannT, FritzE, KaiserW, BroschéM, KangasjärviJ, JiangX, PolleA. Populus euphratica Displays Apoplastic Sodium Accumulation, Osmotic Adjustment by Decreases in Calcium and Soluble Carbohydrates, and Develops Leaf Succulence under Salt Stress. Plant Physiol, 2005, 139: 1762-1772
CrossRef Google scholar
[45]
PedersenO, SauterM, ColmerTD, NakazonoM. Regulation of root adaptive anatomical and morphological traits during low soil oxygen. New Phytol, 2020, 229: 42-49
CrossRef Google scholar
[46]
PengY, ZhouZ, TongR, HuX, DuK. Anatomy and ultrastructure adaptations to soil flooding of two full-sib poplar clones differing in flood-tolerance. Flora, 2017, 233: 90-98
CrossRef Google scholar
[47]
PerumallaCJ, PetersonCA. Deposition of Casparian bands and suberin lamellae in the exodermis and endodermis of young corn and onion roots. Can J Bot, 1986, 64: 1873-1878
CrossRef Google scholar
[48]
PolleA, ChenS. On the salty side of life: molecular, physiological and anatomical adaptation and acclimation of trees to extreme habitats. Plant Cell Environ, 2015, 38: 1794-1816
CrossRef Google scholar
[49]
PolleA, ChenSL, EckertC, HarfoucheA. Engineering Drought Resistance in Forest Trees. Front Plant Sci, 2019, 9: 1875
CrossRef Google scholar
[50]
QiuD, BaiS, MaJ, ZhangL, ShaoF, ZhangK, YangY, SunT, HuangJ, ZhouY, GalbraithDW, WangZ, SunG. The genome of Populus alba x Populus tremula var. glandulosa clone 84K. DNA Res, 2019, 26: 423-431
CrossRef Google scholar
[51]
RanathungeK, LinJ, SteudleE, SchreiberL. Stagnant deoxygenated growth enhances root suberization and lignifications, but differentially affects water and NaCl permeabilities in rice (Oryza sativa L.) roots. Plant Cell Environ, 2011, 34: 1223-1240
CrossRef Google scholar
[52]
RanathungeK, SchreiberL, FrankeR. Suberin research in the genomics era - New interest for an old polymer. Plant Sci, 2011, 180: 399-413
CrossRef Google scholar
[53]
RedjalaT, ZelkoI, SterckemanT, LeguéV, LuxA. Relationship between root structure and root cadmium uptake in maize. Environ Exp Bot, 2011, 71: 241-248
CrossRef Google scholar
[54]
ReinhardtDH, RostTL. Salinity accelerates endodermal development and induces an exodermis in cotton seedling roots. Environ Exp Bot, 1995, 35: 563-574
CrossRef Google scholar
[55]
RobisonDJ, RaffaKF. Productivity, drought tolerance and pest status of hybrid Populus: tree improvement and silvicultural implications. Biomass Bioenerg, 1998, 14: 1-20
CrossRef Google scholar
[56]
SannigrahiP, RagauskasAJ. Poplar as a feedstock for biofuels: A review of compositional characteristics. Biofuels, Bioprod Biorefin, 2010, 4: 209-226
CrossRef Google scholar
[57]
SchreiberL, FrankeRB. Endodermis and Exodermis in Roots, 2011 Chichester John Wiley & Sons, Ltd
CrossRef Google scholar
[58]
SchreiberL, FrankeR, HartmannK. Effects of NO3 deficiency and NaCl stress on suberin deposition in rhizo- and hypodermal (RHCW) and endodermal cell walls (ECW) of castor bean (Ricinus communis L.) roots. Plant Soil, 2005, 269: 333-339
CrossRef Google scholar
[59]
ShionoK, AndoM, NishiuchiS, TakahashiH, WatanabeK, NakamuraM, MatsuoY, YasunoN, YamanouchiU, FujimotoM, TakanashiH, RanathungeK, FrankeRB, ShitanN, NishizawaNK, TakamureI, YanoM, TsutsumiN, SchreiberL, YazakiK, NakazonoM, KatoK. RCN1/OsABCG5, an ATP-binding cassette (ABC) transporter, is required for hypodermal suberization of roots in rice (Oryza sativa). Plant J, 2014, 80: 40-51
CrossRef Google scholar
[60]
SiemensJA, ZwiazekJJ. Effects of water deficit stress and recovery on the root water relations of trembling aspen (Populus tremuloides) seedlings. Plant Sci, 2003, 165: 113-120
CrossRef Google scholar
[61]
SilimS, NashR, ReynardD, WhiteB, SchroederW. Leaf gas exchange and water potential responses to drought in nine poplar (Populus spp.) clones with contrasting drought tolerance. Trees, 2009, 23: 959-969
CrossRef Google scholar
[62]
StolárikováM, VaculíkM, LuxA, BaccioD, MinnocciA, AndreucciA, SebastianiL. Anatomical differences of poplar (Populus × euramericana clone I-214) roots exposed to zinc excess. Biologia, 2012, 67: 483-489
CrossRef Google scholar
[63]
Stoláriková-VaculíkováM, RomeoS, MinnocciA, LuxováM, VaculíkM, LuxA, SebastianiL. Anatomical, biochemical and morphological responses of poplar Populus deltoides clone Lux to Zn excess. Environ Exp Bot, 2015, 109: 235-243
CrossRef Google scholar
[64]
StrohmM, EiblmeierM, LangebartelsC, JouaninL, PolleA, SandermannH, RennenbergH. Responses of transgenic poplar (Populus tremula × P. alba) overexpressing glutathione synthetase or glutathione reductase to acute ozone stress: visible injury and leaf gas exchange. J Exp Bot, 1999, 50: 365-374
CrossRef Google scholar
[65]
TaylorG. Populus: Arabidopsis for Forestry. Do We Need a Model Tree?. Ann Bot, 2002, 90: 681-689
CrossRef Google scholar
[66]
TsaiC-J, HardingSA, TschaplinskiTJ, LindrothRL, YuanY. Genome-wide analysis of the structural genes regulating defense phenylpropanoid metabolism in Populus. New Phytol, 2006, 172: 47-62
CrossRef Google scholar
[67]
TuskanGA, DifazioS, JanssonS, BohlmannJ, GrigorievI, HellstenU, PutnamN, RalphS, RombautsS, SalamovA. The Genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray). Science, 2006, 313: 1596-1604
CrossRef Google scholar
[68]
TylováE, PeckováE, BlascheováZ, SoukupA. Casparian bands and suberin lamellae in exodermis of lateral roots: an important trait of roots system response to abiotic stress factors. Ann Bot, 2017, 120: 71-85
CrossRef Google scholar
[69]
van LooM, JosephJA, HeinzeB, FayMF, LexerC. Clonality and spatial genetic structure in Populus x canescens and its sympatric backcross parent P. alba in a Central European hybrid zone. New Phytol, 2008, 177: 506-516
CrossRef Google scholar
[70]
VishwanathSJ, DeludeC, DomergueF, RowlandO. Suberin: biosynthesis, regulation, and polymer assembly of a protective extracellular barrier. Plant Cell Rep, 2015, 34: 573-586
CrossRef Google scholar
[71]
VoicuMC, ZwiazekJJ. Cycloheximide inhibits root water flow and stomatal conductance in aspen (Populus tremuloides) seedlings. Plant Cell Environ, 2004, 27: 199-208
CrossRef Google scholar
[72]
WanX, ZwiazekJJ. Root water flow and leaf stomatal conductance in aspen (Populus tremuloides) seedlings treated with abscisic acid. Planta, 2001, 213: 741-747
CrossRef Google scholar
[73]
WangP, WangC-M, GaoL, CuiY-N, YangH-L, de SilvaNDG, MaQ, FlowersTJ, RowlandO, WangS-M. Aliphatic suberin confers salt tolerance to Arabidopsis by limiting Na+ influx, K+ efflux and water backflow. Plant Soil, 2020, 448: 603-620
CrossRef Google scholar
[74]
XuX, XiaoL, FengJ, ChenN, ChenY, SongB, XueK, ShiS, ZhouY, JenksMA. Cuticle lipids on heteromorphic leaves of Populus euphratica Oliv. growing in riparian habitats differing in available soil moisture. Physiol Plant, 2016, 158: 318-330
CrossRef Google scholar
[75]
Zeier J (1998) Pflanzliche Abschlussgewebe der Wurzel: Chemische Zusammensetzung und Feinstruktur der Endodermis in Abhängigkeit von Entwicklung und äußeren Faktoren. Doctoral Thesis. Julius-Maximilians-University, Würzburg. https://doi.org/10.1007/978-3-030-84985-6_19
[76]
ZeierJ, SchreiberL. Chemical Composition of Hypodermal and Endodermal Cell Walls and Xylem Vessels Isolated from Clivia miniata. Plant Physiol, 1997, 113: 1223-1231
CrossRef Google scholar
[77]
ZeierJ, SchreiberL. Comparative investigation of primary and tertiary endodermal cell walls isolated from the roots of five monocotyledoneous species: chemical composition in relation to fine structure. Planta, 1998, 206: 349-361
CrossRef Google scholar
[78]
ZhouHH, ChenYN, LiWH, ChenYP. Photosynthesis of Populus euphratica in relation to groundwater depths and high temperature in arid environment, northwest China. Photosynthetica, 2010, 48: 257-268
CrossRef Google scholar
[79]
ZimmermannHM, HartmannK-D, SchreiberL, SteudleE. Chemical composition of apoplastic transport barriers in relation to radial hydraulic conductivity of corn roots (Zea mays L.). Planta, 2000, 210: 302-311
CrossRef Google scholar
Funding
Deutsche Forschungsgemeinschaft(391657309)

Accesses

Citations

Detail

Sections
Recommended

/