Acute hyperthermia and hypoxia tolerance of two improved strains of nile tilapia (Oreochromis niloticus)

Kwasi Adu Obirikorang, Richard Appiah-Kubi, Daniel Adjei-Boateng, Wonder Sekey, Collins Prah Duodu

Stress Biology ›› 2023, Vol. 3 ›› Issue (1) : 21. DOI: 10.1007/s44154-023-00099-w
Original Paper

Acute hyperthermia and hypoxia tolerance of two improved strains of nile tilapia (Oreochromis niloticus)

Author information +
History +

Abstract

Tilapia production in Ghana has been hit with episodes of stress and pathogen-induced mass fish kills which have anecdotally been linked to the culture of illegally imported Genetically Improved Farmed Tilapia (GIFT) strains of Nile tilapia, Oreochromis niloticus. This study was thus set up to comprehensively assess the stress tolerance of the GIFT strain and a native strain of Nile tilapia (the Akosombo strain) following exposures to hyperthermic and hypoxic stressors. In a series of experiments, oxygen consumption (MO2), aquatic surface respiration (ASR), thermal limits and hypoxia tolerance were assessed. The effects of these stressors on haematological parameters were also assessed. The GIFT strain was less tolerant of hypoxia and performed ASR at higher O2 levels than the Akosombo strain. Under progressive hypoxia, the GIFT strain exhibited higher gill ventilations frequencies (fV) than the Akosombo strain. The thermal tolerance trial indicated that the Akosombo strain of O. niloticus has higher thermotolerance than the GIFT strain and this was reflective in the higher LT50 (45.1℃) and LTmax (48℃), compared to LT50 and LTmax of 41.5℃ and 46℃ respectively. These results imply that it is crucial to consider how the GIFT strain performs under various environmental conditions and changes during culture. Particularly, raising the GIFT strain of Nile tilapia in earthen ponds rich in phytoplankton and subject to protracted episodes of extreme hypoxia may have a detrimental physiological impact on its growth and welfare.

Keywords

Aquaculture / Aquatic hypoxia / Environmental stressors / Oxygen / Temperature

Cite this article

Download citation ▾
Kwasi Adu Obirikorang, Richard Appiah-Kubi, Daniel Adjei-Boateng, Wonder Sekey, Collins Prah Duodu. Acute hyperthermia and hypoxia tolerance of two improved strains of nile tilapia (Oreochromis niloticus). Stress Biology, 2023, 3(1): 21 https://doi.org/10.1007/s44154-023-00099-w

References

[1]
Abass DA, Obirikorang KA, Campion BB, Edziyie RE, Skov PV (2018) Dietary supplementation of yeast (Saccharomyces cerevisiae) improves growth, stress tolerance, and disease resistance in juvenile Nile tilapia (Oreochromis niloticus). Aquac Int 26(3):843–855. https://doi.org/10.1007/s10499-018-0255-1
[2]
Addo AK (2021) Microsatellite based genetic variations and relationships among some farmed Nile tilapia populations in Ghana: Implications on Nile tilapia culture. Doctoral dissertation, University of Cape Coast.
[3]
Anane-Taabeah G, Frimpong EA, Hallerman E (2019) Aquaculture-mediated invasion of the genetically improved farmed tilapia (GIFT) into the Lower Volta Basin of Ghana. Diversity 11(10):188. https://doi.org/10.3390/d11100188
[4]
Anane-Taabeah Attu G, Frimpong EA, Hallerman EM (2022) Defining management units for wild Nile tilapia Oreochromis niloticus from nine river basins in Ghana. Diversity 14(2):73. https://doi.org/10.3390/d14020073
[5]
Ansah YB, Frimpong EA, Hallerman EM (2014) Genetically-improved tilapia strains in Africa: Potential benefits and negative impacts. Sustainability 6(6):3697–3721. https://doi.org/10.3390/su6063697
[6]
Ashaf-Ud-Doulah M, Al Mamun A, Rahman ML, Islam SM, Jannat R, Hossain MAR et al (2020) High temperature acclimation alters upper thermal limits and growth performance of Indian major carp, rohu, Labeo rohita (Hamilton, 1822). J Therm Biol 93:102738. https://doi.org/10.1016/j.jtherbio.2020.102738
[7]
Attipoe FY, Blay Jnr, J, Agyakwah S, Ponzoni RW, Khaw HL, Abban EK (2013) Genetic parameters and response to selection in the development of Akosombo strain of the Nile tilapia (Oreochromis niloticus) in the Volta Basin, Ghana. In: Proceedings of the International Symposium on Tilapia in Aquaculture, Jerusalem, Israel, 6–10 October 2013, https://doi.org/10.3382/ps.2009-00198.
[8]
Bao JW, Qiang J, Tao YF, Li HX, He J, Xu P et al (2018) Responses of blood biochemistry, fatty acid composition and expression of microRNAs to heat stress in genetically improved farmed tilapia (Oreochromis niloticus). J Therm Biol 73:91–97. https://doi.org/10.1016/j.jtherbio.2018.02.007
[9]
Bennett JM, Sunday J, Calosi P, Villalobos F, Martínez B, Molina-Venegas R et al (2021) The evolution of critical thermal limits of life on Earth. Nat Commun 12(1):1–9. https://doi.org/10.1038/s41467-021-21263-8
[10]
Chapman LJ, McKenzie DJ (2009) Chapter 2 Behavioral responses and ecological consequences. In: Richards JG, Farrell AP, Brauner CJ (eds) Fish Physiology, vol 27. Academic Press, pp 25–77. https://doi.org/10.1016/S1546-5098(08)00002-2
[11]
Chatterjee N, Pal AK, Manush SM, Das T, Mukherjee SC (2004) Thermal tolerance and oxygen consumption of Labeo rohita and Cyprinus carpio early fingerlings acclimated to three different temperatures. J Therm Biol 29:265–270. https://doi.org/10.1016/j.jtherbio.2004.05.001
[12]
Ciji A, Akhtar MS, Tripathi PH, Pandey A, Rajesh M, Kamalam BS (2021) Dietary soy lecithin augments antioxidative defense and thermal tolerance but fails to modulate non-specific immune genes in endangered golden mahseer (Tor putitora) fry. Fish Shellfish Immunol 109:34–40
[13]
Dagoudo M, Qiang J, Bao JW, Tao YF, Zhu HJ, Tumukunde EM et al (2021) Effects of acute hypoxia stress on hemato-biochemical parameters, oxidative resistance ability, and immune responses of hybrid yellow catfish (Pelteobagrus fulvidraco × P. vachelli) juveniles. Aquac Int 29:2181–2196. https://doi.org/10.1007/s10499-021-00742-1
[14]
DeWilde MA, Houston AH (1967) Hematological aspects of the thermoacclimatory process in the rainbow trout, Salmo gairdneri. J Fish Res Board Can 24(11):2267–2281. https://doi.org/10.1139/f67-185
[15]
Eknath AE, Tayamen MM, Palada-de Vera MS, Danting JC, Reyes RA, Dionisio EE et al (1993) Genetic improvement of farmed tilapias: the growth performance of eight strains of Oreochromis niloticus tested in different farm environments. Genetics in Aquaculture, Elsevier, pp 171–188. https://doi.org/10.1016/B978-0-444-81527-9.50021-X
[16]
FAO (2022) The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation. Rome, FAO. https://doi.org/10.4060/cc0461en
[17]
Fazio F, Filiciotto F, Marafioti S, Di Stefano V, Assenza A, Placenti F et al (2012) Automatic analysis to assess haematological parameters in farmed gilthead sea bream (Sparus aurata Linnaeus, 1758). Mar Freshw Behav Physiol 45(1):63–73. https://doi.org/10.1080/10236244.2012.677559
[18]
Fernando AV, Lochmann SE, Haukenes AH (2016) Critical thermal maxima of juvenile alligator gar (Atractosteus spatula, Lacépède, 1803) from three Mississippi-drainage populations acclimated to three temperatures. J Appl Ichthyol 32(4):701–705. https://doi.org/10.1111/jai.13047
[19]
Gilmour KM, Didyk NE, Reid SG, Perry SF (1994) Down-regulation of red blood cell beta-adrenoreceptors in response to chronic elevation of plasma catecholamine levels in the rainbow trout. J Exp Biol 186:309–314. https://doi.org/10.1242/jeb.186.1.309
[20]
GuptaMV, AcostaBO. A review of global tilapia farming practices. Aquaculture Asia, 2004, 9(1):7-12
[21]
Katersky RS, Carter CG (2007) High growth efficiency occurs over a wide temperature range for juvenile barramundi Lates calcarifer fed a balanced diet. Aquaculture 272(1-4):444–450. https://doi.org/10.1016/j.aquaculture.2007.09.001
[22]
King M, Sardella B (2017) The effects of acclimation temperature, salinity, and behavior on the thermal tolerance of Mozambique tilapia (Oreochromis mossambicus). J Exp Zool A Ecol Integr Physiol 327(7):417–422. https://doi.org/10.1002/jez.2113
[23]
Kramer DL (1987) Dissolved oxygen and fish behavior. Environ Biol Fishes 18:81–92. https://doi.org/10.1007/BF00002597
[24]
Musinguzi L, Lugya J, Rwezawula P, Kamya A, Nuwahereza C, Halafo J et al (2019) The extent of cage aquaculture, adherence to best practices and reflections for sustainable aquaculture on African inland waters. J Great Lakes Res 45(6):1340–1347. https://doi.org/10.1016/j.jglr.2019.09.011
[25]
Nikinmaa M, Boutilier RG (1995) Adrenergic control of red cell pH, organic phosphate concentrations and haemoglobin function in teleost fish. In: Heisler N (ed) Advances in comparative and environmental physiology, vol 21. Mechanisms of Systemic Regulation: Respiration and Circulation. Springer, Berlin, pp 107–133. https://doi.org/10.1007/978-3-642-79666-1_5
[26]
Obirikorang KA, Agbo NW, Obirikorang C, Adjei-Boateng D, Ahiave SE, Skov PV (2019) Effects of water flow rates on growth and welfare of Nile tilapia (Oreochromis niloticus) reared in a recirculating aquaculture system. Aquac Int 27:449–462. https://doi.org/10.1007/s10499-019-00342-0
[27]
Obirikorang KA, Acheampong JN, Duodu CP, Skov PV (2020) Growth, metabolism and respiration in Nile tilapia (Oreochromis niloticus) exposed to chronic or periodic hypoxia. Comp Biochem Physiol Part A Mol Integr Physiol 248:110768. https://doi.org/10.1016/j.cbpa.2020.110768
[28]
Perry SF, Jonz MG, Gilmour KM (2009) Chapter 5 Oxygen sensing and the hypoxic ventilatory response. Fish Physiology. Academic Press, pp 193–253. https://doi.org/10.1016/S1546-5098(08)00005-8
[29]
Ponzoni RW, Nguyen NH, Khaw HL, Bakar HA, KRA, Yee HY (2011) Genetic improvement of Nile tilapia (Oreochromis niloticus) with special reference to the work conducted by the WorldFish Center with the GIFT strain. Rev Aquac 3:27–41. https://doi.org/10.1111/j.1753-5131.2010.01041.x
[30]
Qiang J, Wang H, Kpundeh MD, He J, Xu P (2013) Effect of water temperature, salinity, and their interaction on growth, plasma osmolality, and gill Na+, K+-ATPase activity in juvenile GIFT tilapia Oreochromis niloticus (L.). J Therm Biol 38(6):331–338 https://doi.org/10.1016/j.jtherbio.2013.04.002
[31]
Ragasa C, Agyakwah SK, Asmah R, Mensah ETD, Amewu S, Oyih M (2022a) Accelerating pond aquaculture development and resilience beyond COVID: Ensuring food and jobs in Ghana. Aquaculture 547:737476. https://doi.org/10.1016/j.aquaculture.2021.737476
[32]
Ragasa C, Charo-Karisa H, Rurangwa E, Tran N, Shikuku KM (2022b) Sustainable aquaculture development in sub-Saharan Africa. Nature Food 3(2):92–94. https://doi.org/10.1038/s43016-022-00467-1
[33]
Ramírez-Paredes JG, Paley RK, Hunt W, Feist SW, Stone DM, Field TR et al (2021) First detection of infectious spleen and kidney necrosis virus (ISKNV) associated with massive mortalities in farmed tilapia in Africa. Transbound Emerg Dis 68(3):1550–1563. https://doi.org/10.1111/tbed.13825
[34]
Richards JG (2011) Physiological, behavioral and biochemical adaptations of intertidal fishes to hypoxia. J Exp Biol 214(2):191–199. https://doi.org/10.1242/jeb.047951
[35]
Sarma K, Pal AK, Ayyappan S, Das T, Manush SM, Debnath D et al (2010) Acclimation of Anabas testudineus (Bloch) to three test temperatures influences thermal tolerance and oxygen consumption. Fish Physiol Biochem 36:85–90. https://doi.org/10.1007/s10695-008-9293-3
[36]
Schulte PM, Healy TM, Fangue NA (2011) Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure. Integr Comp Biol 51(5):691–702. https://doi.org/10.1093/icb/icr097
[37]
Sheng Y, Hua ZY, Yang Z, Wei XL, Sheng YJ, Jia HL et al (2019) Effects of acute hypoxic stress on biochemical parameters, immune regulation and metabolic capacity of the blood in genetically improved farmed tilapia (GIFT, Oreochromis niloticus). J Appl Ichthyol 35(4):978–986. https://doi.org/10.1111/jai.13930
[38]
Sifa L, Chenhong L, Dey M, Gagalac F, Dunham R (2002) Cold tolerance of three strains of Nile tilapia, Oreochromis niloticus. China Aquaculture 213(1–4):123–129. https://doi.org/10.1016/S0044-8486(02)00068-6
[39]
Steffensen JF, Johansen K, Bushnell PG (1984) An automated swimming respirometer. Comp Biochem Phys A-Mol Integr Physiol 79(3):437–440. https://doi.org/10.1016/0300-9629(84)90541-3
[40]
Teletchea F (2019) Fish domestication: an overview. Animal Domestication, IntechOpen, pp 69–90. https://doi.org/10.5772/intechopen.79628
[41]
Tran N, Shikuku KM, Rossignoli CM, Barman BK, Cheong KC, Ali MS et al (2021) Growth, yield and profitability of genetically improved farmed tilapia (GIFT) and non-GIFT strains in Bangladesh. Aquaculture 536:736486. https://doi.org/10.1016/j.aquaculture.2021.736486
[42]
Tran-Duy A, Schrama JW, van Dam AA, Verreth JA (2008) Effects of oxygen concentration and body weight on maximum feed intake, growth and hematological parameters of Nile tilapia, Oreochromis Niloticus. Aquaculture 275(1–4):152–162. https://doi.org/10.1016/j.aquaculture.2007.12.024
[43]
Trinh TQ, Agyakwah SK, Khaw HL, Benzie JA, Attipoe FK (2021) Performance evaluation of Nile tilapia (Oreochromis niloticus) improved strains in Ghana. Aquaculture 530:735938. https://doi.org/10.1016/j.aquaculture.2020.735938
[44]
Water Research Institute (2013) Performance Comparison of GIFT and Akosombo Strains of the Nile Tilapia (Oreochromis niloticus). 19 pp. TIVO Project Technical Report.
[45]
Worldfish (2015) The GIFT that keeps giving. Penang: Worldfish. Available online at: https://worldfishcenter.org/pages/gift/. Accessed: 01/03/2023
[46]
Yáñez JM, Joshi R, Yoshida GM (2020) Genomics to accelerate genetic improvement in tilapia. Anim Genet 51(5):658–674. https://doi.org/10.1111/age.12989
[47]
Yu X, Megens HJ, Mengistu SB, Bastiaansen JW, Mulder HA, Benzie JA et al (2021) Genome-wide association analysis of adaptation to oxygen stress in Nile tilapia (Oreochromis niloticus). BMC Genomics 22(1):1–13. https://doi.org/10.1186/s12864-021-07486-5
[48]
Zar JH (1999) Biostatistical Analysis, 4th edn. Prentice Hall, New Jersey
[49]
Zhou Y, Zhang Y, Wei S, Li W, Li W, Wu Z et al (2022) Reduced Hypoxia Tolerance and Altered Gill Morphology at Elevated Temperatures May Limit the Survival of Tilapia (GIFT, Oreochromis niloticus) under Global Warming. Fishes 7(5):216. https://doi.org/10.3390/fishes7050216
[50]
Zhu T, Li X, Wu X, Yang D (2022) Temperature Acclimation Alters the Thermal Tolerance and Intestinal Heat Stress Response in a Tibetan Fish Oxygymnocypris stewarti. Front Microbiol 13:898145. https://doi.org/10.3389/fmicb.2022.898145

Accesses

Citations

Detail

Sections
Recommended

/