Exploring the precision redox map during fasting-refeeding and satiation in C. elegans
Xinhua Qiao, Lu Kang, Chang Shi, Aojun Ye, Dongli Wu, Yuyunfei Huang, Minghao Deng, Jiarui Wang, Yuzheng Zhao, Chang Chen
Exploring the precision redox map during fasting-refeeding and satiation in C. elegans
Fasting is a popular dietary strategy because it grants numerous advantages, and redox regulation is one mechanism involved. However, the precise redox changes with respect to the redox species, organelles and tissues remain unclear, which hinders the understanding of the metabolic mechanism, and exploring the precision redox map under various dietary statuses is of great significance. Twelve redox-sensitive C. elegans strains stably expressing genetically encoded redox fluorescent probes (Hyperion sensing H2O2 and Grx1-roGFP2 sensing GSH/GSSG) in three organelles (cytoplasm, mitochondria and endoplasmic reticulum (ER)) were constructed in two tissues (body wall muscle and neurons) and were confirmed to respond to redox challenge. The H2O2 and GSSG/GSH redox changes in two tissues and three organelles were obtained by confocal microscopy during fasting, refeeding, and satiation. We found that under fasting condition, H2O2 decreased in most compartments, except for an increase in mitochondria, while GSSG/GSH increased in the cytoplasm of body muscle and the ER of neurons. After refeeding, the redox changes in H2O2 and GSSG/GSH caused by fasting were reversed in most organelles of the body wall muscle and neurons. In the satiated state, H2O2 increased markedly in the cytoplasm, mitochondria and ER of muscle and the ER of neurons, while GSSG/GSH exhibited no change in most organelles of the two tissues except for an increase in the ER of muscle. Our study systematically and precisely presents the redox characteristics under different dietary states in living animals and provides a basis for further investigating the redox mechanism in metabolism and optimizing dietary guidance.
Redox / Fasting / Refeeding / Satiation / Hyperion / Grx1-roGFP2 / Caenorhabditis elegans
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
Davis K, Cheong M C, Park J S, You Y J. Appetite control in C. elegans, in appetite and food intake: central control, R.B.S. Harris, ed. Boca Raton (FL): CRC Press/Taylor & Francis © 2017 by Taylor & Francis Group, LLC.; 2017. p. 1–16
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
Soukas AA, Kane EA, Carr CE, Melo JA, Ruvkun G (2009) Rictor/TORC2 regulates fat metabolism, feeding, growth, and life span in Caenorhabditis elegans. Genes Dev 23:496-511. https://doi.org/10.1101/gad.1775409
|
[50] |
|
[51] |
Wang Y, Qiao X, Shi C, Ye A, Guo M, Zhao Y, Chen C (2022) Exercise alleviates ER reductive stress and promotes healthy aging. Prog. Biochem. Biophys 3:444-453. https://doi.org/10.16476/j.pibb.2022.0057
|
[52] |
|
[53] |
|
/
〈 | 〉 |