Rapid alkalinization factor: function, regulation, and potential applications in agriculture

Ran Zhang, Peng-Tao Shi, Min Zhou, Huai-Zeng Liu, Xiao-Jing Xu, Wen-Ting Liu, Kun-Ming Chen

Stress Biology ›› 2023, Vol. 3 ›› Issue (1) : 16. DOI: 10.1007/s44154-023-00093-2
Review

Rapid alkalinization factor: function, regulation, and potential applications in agriculture

Author information +
History +

Abstract

Rapid alkalinization factor (RALF) is widespread throughout the plant kingdom and controls many aspects of plant life. Current studies on the regulatory mechanism underlying RALF function mainly focus on Arabidopsis, but little is known about the role of RALF in crop plants. Here, we systematically and comprehensively analyzed the relation between RALF family genes from five important crops and those in the model plant Arabidopsis thaliana. Simultaneously, we summarized the functions of RALFs in controlling growth and developmental behavior using conservative motifs as cues and predicted the regulatory role of RALFs in cereal crops. In conclusion, RALF has considerable application potential in improving crop yields and increasing economic benefits. Using gene editing technology or taking advantage of RALF as a hormone additive are effective way to amplify the role of RALF in crop plants.

Keywords

RALF / Fertilization / Stress / Crops / Molecular regulatory network

Cite this article

Download citation ▾
Ran Zhang, Peng-Tao Shi, Min Zhou, Huai-Zeng Liu, Xiao-Jing Xu, Wen-Ting Liu, Kun-Ming Chen. Rapid alkalinization factor: function, regulation, and potential applications in agriculture. Stress Biology, 2023, 3(1): 16 https://doi.org/10.1007/s44154-023-00093-2

References

[1]
AbarcaA, FranckCM, ZipfelC. Family-wide evaluation of RAPID ALKALINIZATION FACTOR peptides. Plant Physiol, 2021, 187: 996-1010
CrossRef Google scholar
[2]
ArayaT, MiyamotoM, WibowoJ, SuzukiA, KojimaS, TsuchiyaYN, SawaS, FukudaH, von WirenN, TakahashiH. CLE-CLAVATA1 peptide-receptor signaling module regulates the expansion of plant root systems in a nitrogen-dependent manner. Proc Natl Acad Sci U S A, 2014, 111: 2029-2034
CrossRef Google scholar
[3]
AtkinsonNJ, LilleyCJ, UrwinPE. Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses. Plant Physiol, 2013, 162: 2028-2041
CrossRef Google scholar
[4]
BarbezE, DunserK, GaidoraA, LendlT, BuschW. Auxin steers root cell expansion via apoplastic pH regulation in Arabidopsis thaliana. Proc Natl Acad Sci U S A, 2017, 114: E4884-E4893
CrossRef Google scholar
[5]
BelkhadirY, JaillaisY. The molecular circuitry of brassinosteroid signaling. New Phytol, 2015, 206: 522-540
CrossRef Google scholar
[6]
BergerD, AltmannTJG, development, . A subtilisin-like serine protease involved in the regulation of stomatal density and distribution in Arabidopsis thaliana. Genes Dev, 2000, 14: 1119-1131
CrossRef Google scholar
[7]
Bergonci T, Silva-Filho MC, Moura DS (2014b) Antagonistic relationship between AtRALF1 and brassinosteroid regulates cell expansion-related genes. Plant Signal Behav 9:e976146. https://doi.org/10.4161/15592324.2014.976146
[8]
BergonciT, RibeiroB, CeciliatoPH, Guerrero-AbadJC, Silva-FilhoMC, MouraDS. Arabidopsis thaliana RALF1 opposes brassinosteroid effects on root cell elongation and lateral root formation. J Exp Bot, 2014, 65: 2219-2230
CrossRef Google scholar
[9]
BettiF, Ladera-CarmonaMJ, WeitsDA, FerriG, IacopinoS, NoviG, SveziaB, KunkowskaAB, SantanielloA, PiaggesiA, LoretiE, PerataP. Exogenous miRNAs induce post-transcriptional gene silencing in plants. Nat Plants, 2021, 7: 1379-1388
CrossRef Google scholar
[10]
Boisson-Dernier A, Lituiev DS, Nestorova A, Franck CM, Thirugnanarajah S, Grossniklaus U (2013) ANXUR receptor-like kinases coordinate cell wall integrity with growth at the pollen tube tip via NADPH oxidases. PLoS Biol 11:e1001719. https://doi.org/10.1371/journal.pbio.1001719
[11]
Boisson-DernierA, RoyS, KritsasK, GrobeiMA, JaciubekM, SchroederJI, GrossniklausU. Disruption of the pollen-expressed FERONIA homologs ANXUR1 and ANXUR2 triggers pollen tube discharge. Development, 2009, 136: 3279-3288
CrossRef Google scholar
[12]
Boisson-DernierA, KesslerSA, GrossniklausU. The walls have ears: the role of plant CrRLK1Ls in sensing and transducing extracellular signals. J Exp Bot, 2011, 62: 1581-1591
CrossRef Google scholar
[13]
Boisson-DernierA, FranckCM, LituievDS, GrossniklausU. Receptor-like cytoplasmic kinase MARIS functions downstream of CrRLK1L-dependent signaling during tip growth. Proc Natl Acad Sci U S A, 2015, 112: 12211-12216
CrossRef Google scholar
[14]
CampbellL, TurnerSR. A Comprehensive Analysis of RALF Proteins in Green Plants Suggests There Are Two Distinct Functional Groups. Front Plant Sci, 2017, 8: 37
CrossRef Google scholar
[15]
CamposWF, DressanoK, CeciliatoPHO, Guerrero-AbadJC, SilvaAL, FioriCS, Morato do Canto A, Bergonci T, Claus LAN, Silva-Filho MC, Moura DS, . Arabidopsis thaliana rapid alkalinization factor 1-mediated root growth inhibition is dependent on calmodulin-like protein 38. J Biol Chem, 2018, 293: 2159-2171
CrossRef Google scholar
[16]
CaoJ, ShiF. Evolution of the RALF Gene Family in Plants: Gene Duplication and Selection Patterns. Evol Bioinform Online, 2012, 8: 271-292
CrossRef Google scholar
[17]
CapronA, GourguesM, NeivaLS, FaureJE, BergerF, PagnussatG, KrishnanA, Alvarez-MejiaC, Vielle-CalzadaJP, LeeYR, LiuB, SundaresanV. Maternal control of male-gamete delivery in Arabidopsis involves a putative GPI-anchored protein encoded by the LORELEI gene. Plant Cell, 2008, 20: 3038-3049
CrossRef Google scholar
[18]
ChakravortyD, YuY, AssmannSM. A kinase-dead version of FERONIA receptor-like kinase has dose-dependent impacts on rosette morphology and RALF1-mediated stomatal movements. FEBS Lett, 2018, 592: 3429-3437
CrossRef Google scholar
[19]
ChenJ, YuF, LiuY, DuC, LiX, ZhuS, WangX, LanW, RodriguezPL, LiuX, LiD, ChenL, LuanS. FERONIA interacts with ABI2-type phosphatases to facilitate signaling cross-talk between abscisic acid and RALF peptide in Arabidopsis. Proc Natl Acad Sci U S A, 2016, 113: E5519-5527
CrossRef Google scholar
[20]
ChenK, KeR, DuM, YiY, ChenY, WangX, YaoL, LiuH, HouX, XiongL, YangY, XieK. A FLASH pipeline for arrayed CRISPR library construction and the gene function discovery of rice receptor-like kinases. Mol Plant, 2022, 15: 243-257
CrossRef Google scholar
[21]
ChevalierE, Loubert-HudonA, MattonDP. ScRALF3, a secreted RALF-like peptide involved in cell-cell communication between the sporophyte and the female gametophyte in a solanaceous species. Plant J, 2013, 73: 1019-1033
CrossRef Google scholar
[22]
GuoH, YeH, LiL, Yin YJPs, behavior, . A family of receptor-like kinases are regulated by BES1 and involved in plant growth in Arabidopsis thaliana. Plant Signal Behav, 2009, 4: 784-786
CrossRef Google scholar
[23]
Cheung AY, Duan Q, Li C, James Liu MC, Wu HM (2022) Pollen-pistil interactions: It takes two to tangle but a molecular cast of many to deliver. Curr Opin Plant Biol 69:102279. https://doi.org/10.1016/j.pbi.2022.102279
[24]
ClouseSD. Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development. Plant Cell, 2011, 23: 1219-1230
CrossRef Google scholar
[25]
CombierJP, KüsterH, JournetEP, HohnjecN, NiebelAJMPMI. Evidence for the Involvement in Nodulation of the Two Small Putative Regulatory Peptide-Encoding Genes MtRALFL1 and MtDVL1. Mol Plant Microbe Interact, 2008, 21: 1118-1127
CrossRef Google scholar
[26]
CoutoD, ZipfelC. Regulation of pattern recognition receptor signalling in plants. Nat Rev Immunol, 2016, 16: 537-552
CrossRef Google scholar
[27]
CoveyPA, SubbaiahCC, ParsonsRL, PearceG, LayFT, AndersonMA, RyanCA, BedingerPA. A pollen-specific RALF from tomato that regulates pollen tube elongation. Plant Physiol, 2010, 153: 703-715
CrossRef Google scholar
[28]
De SamblanxG, Fernandez del CarmenA, SijtsmaL, PlasmanH, SchaaperW, PosthumaG, FantF, MeloenR, BroekaertW, AmerongenV, AJPr, . Antifungal activity of synthetic 15-mer peptides based on the Rs-AFP2 (Raphanus sativus antifungal protein 2) sequence. Pept Res, 1996, 9: 262-268
CrossRef Google scholar
[29]
DemidchikV, MaathuisFJM. Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. New Phytol, 2007, 175: 387-404
CrossRef Google scholar
[30]
DenningerP, BleckmannA, LausserA, VoglerF, OttT, EhrhardtDW, FrommerWB, SprunckS, DresselhausT, GrossmannG. Male-female communication triggers calcium signatures during fertilization in Arabidopsis. Nat Commun, 2014, 5: 4645
CrossRef Google scholar
[31]
DievartA, GottinC, PerinC, RanwezV, ChantretN. Origin and Diversity of Plant Receptor-Like Kinases. Annu Rev Plant Biol, 2020, 71: 131-156
CrossRef Google scholar
[32]
Dressano K, Ceciliato PHO, Silva AL, Guerrero-Abad JC, Bergonci T, Ortiz-Morea FA, Burger M, Silva-Filho MC, Moura DS (2017) BAK1 is involved in AtRALF1-induced inhibition of root cell expansion. PLoS Genet 13:e1007053. https://doi.org/10.1371/journal.pgen.1007053
[33]
DresselhausT, SprunckS, WesselGM. Fertilization Mechanisms in Flowering Plants. Curr Biol, 2016, 26: R125-139
CrossRef Google scholar
[34]
Dunser K, Gupta S, Herger A, Feraru MI, Ringli C, Kleine-Vehn J (2019) Extracellular matrix sensing by FERONIA and Leucine-Rich Repeat Extensins controls vacuolar expansion during cellular elongation in Arabidopsis thaliana. EMBO J 38:https://doi.org/10.15252/embj.2018100353
[35]
DuC, LiX, ChenJ, ChenW, LiB, LiC, WangL, LiJ, ZhaoX, LinJ, LiuX, LuanS, YuF. Receptor kinase complex transmits RALF peptide signal to inhibit root growth in Arabidopsis. Proc Natl Acad Sci U S A, 2016, 113: E8326-E8334
CrossRef Google scholar
[36]
DuS, QuLJ, XiaoJ. Crystal structures of the extracellular domains of the CrRLK1L receptor-like kinases ANXUR1 and ANXUR2. Protein Sci, 2018, 27: 886-892
CrossRef Google scholar
[37]
DuanQ, KitaD, LiC, CheungAY, WuHM. FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development. Proc Natl Acad Sci U S A, 2010, 107: 17821-17826
CrossRef Google scholar
[38]
DuanQ, KitaD, JohnsonEA, AggarwalM, GatesL, WuHM, CheungAY. Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis. Nat Commun, 2014, 5: 3129
CrossRef Google scholar
[39]
DuanQ, LiuMJ, KitaD, JordanSS, YehFJ, YvonR, CarpenterH, FedericoAN, Garcia-ValenciaLE, EylesSJ, WangCS, WuHM, CheungAY. FERONIA controls pectin- and nitric oxide-mediated male-female interaction. Nature, 2020, 579: 561-566
CrossRef Google scholar
[40]
DuanZ, LiuW, LiK, DuanW, ZhuS, XingJ, ChenT, LuoX. Regulation of immune complex formation and signalling by FERONIA, a busy goddess in plant-microbe interactions. Mol Plant Pathol, 2022, 23: 1695-1700
CrossRef Google scholar
[41]
DupuisI, Dumas CJPp, . Influence of temperature stress on in vitro fertilization and heat shock protein synthesis in maize (Zea mays L.) reproductive tissues. Plant Physiol, 1990, 94: 665-670
CrossRef Google scholar
[42]
Endo S, Shinohara H, Matsubayashi Y, Fukuda HJCB (2013) A novel pollen-pistil interaction conferring high-temperature tolerance during reproduction via CLE45 signaling. 23:1670–1676. https://doi.org/10.1016/j.cub.2013.06.060
[43]
FengH, LiuC, FuR, ZhangM, LiH, ShenL, WeiQ, SunX, XuL, NiB, LiC. LORELEI-LIKE GPI-ANCHORED PROTEINS 2/3 Regulate Pollen Tube Growth as Chaperones and Coreceptors for ANXUR/BUPS Receptor Kinases in Arabidopsis. Mol Plant, 2019, 12: 1612-1623
CrossRef Google scholar
[44]
Feng W, Kita D, Peaucelle A, Cartwright HN, Doan V, Duan Q, Liu MC, Maman J, Steinhorst L, Schmitz-Thom I, Yvon R, Kudla J, Wu HM, Cheung AY, Dinneny JR (2018) The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca(2+) signaling. Curr Biol 28:666–675 e665. https://doi.org/10.1016/j.cub.2018.01.023
[45]
ForemanJ, DemidchikV, BothwellJH, MylonaP, MiedemaH, TorresMA, LinsteadP, CostaS, BrownleeC, JonesJDJN. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature, 2003, 422: 442-446
CrossRef Google scholar
[46]
FrederickRO, HarutaM, TonelliM, LeeW, CornilescuG, CornilescuCC, SussmanMR, MarkleyJL. Function and solution structure of the Arabidopsis thaliana RALF8 peptide. Protein Sci, 2019, 28: 1115-1126
CrossRef Google scholar
[47]
FuglsangAT, GuoY, CuinTA, QiuQ, SongC, KristiansenKA, BychK, SchulzA, ShabalaS, SchumakerKS, PalmgrenMG, ZhuJK. Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+ -ATPase by preventing interaction with 14–3-3 protein. Plant Cell, 2007, 19: 1617-1634
CrossRef Google scholar
[48]
Galindo-Trigo S, Blanco-Tourinan N, DeFalco TA, Wells ES, Gray JE, Zipfel C, Smith LM (2020) CrRLK1L receptor-like kinases HERK1 and ANJEA are female determinants of pollen tube reception. EMBO Rep 21:e48466. https://doi.org/10.15252/embr.201948466
[49]
GaoQ, WangC, XiY, ShaoQ, LiL, LuanS. A receptor-channel trio conducts Ca(2+) signalling for pollen tube reception. Nature, 2022, 607: 534-539
CrossRef Google scholar
[50]
GaoQ, WangC, XiY, ShaoQ, HouC, LiL, LuanS. RALF signaling pathway activates MLO calcium channels to maintain pollen tube integrity. Cell Res, 2023, 33: 71-79
CrossRef Google scholar
[51]
GeZ, BergonciT, ZhaoY, ZouY, DuS, LiuM-C, LuoX, RuanH, García-ValenciaLE, ZhongSJS. Arabidopsis pollen tube integrity and sperm release are regulated by RALF-mediated signaling. Science, 2017, 358: 1596-1600
CrossRef Google scholar
[52]
Ge Z, Zhao Y, Liu MC, Zhou LZ, Wang L, Zhong S, Hou S, Jiang J, Liu T, Huang Q, Xiao J, Gu H, Wu HM, Dong J, Dresselhaus T, Cheung AY, Qu LJ (2019) LLG2/3 are co-receptors in BUPS/ANX-RALF signaling to regulate arabidopsis pollen tube integrity. Curr Biol 29:3256–3265 e3255. https://doi.org/10.1016/j.cub.2019.08.032
[53]
GinanjarEF, TehOK, FujitaT. Characterisation of rapid alkalinisation factors in Physcomitrium patens reveals functional conservation in tip growth. New Phytol, 2022, 233: 2442-2457
CrossRef Google scholar
[54]
GjettingSK, MahmoodK, ShabalaL, KristensenA, ShabalaS, PalmgrenM, FuglsangAT. Evidence for multiple receptors mediating RALF-triggered Ca(2+) signaling and proton pump inhibition. Plant J, 2020, 104: 433-446
CrossRef Google scholar
[55]
Gonneau M, Desprez T, Martin M, Doblas VG, Bacete L, Miart F, Sormani R, Hematy K, Renou J, Landrein B, Murphy E, Van De Cotte B, Vernhettes S, De Smet I, Hofte H (2018) Receptor Kinase THESEUS1 Is a Rapid Alkalinization Factor 34 Receptor in Arabidopsis. Curr Biol 28:2452–2458 e2454. https://doi.org/10.1016/j.cub.2018.05.075
[56]
Gronnier J, Franck CM, Stegmann M, DeFalco TA, Abarca A, von Arx M, Dunser K, Lin W, Yang Z, Kleine-Vehn J, Ringli C, Zipfel C (2022) Regulation of immune receptor kinase plasma membrane nanoscale organization by a plant peptide hormone and its receptors. Elife 11:https://doi.org/10.7554/eLife.74162
[57]
GuoH, LiL, YeH, YuX, AlgreenA, Yin YJPotNAoS, . Three related receptor-like kinases are required for optimal cell elongation in Arabidopsis thaliana. Proc Natl Acad Sci, 2009, 106: 7648-7653
CrossRef Google scholar
[58]
Guo H, Nolan TM, Song G, Liu S, Xie Z, Chen J, Schnable PS, Walley JW, Yin Y (2018) FERONIA receptor kinase contributes to plant immunity by suppressing Jasmonic Acid signaling in arabidopsis thaliana. Curr Biol 28:3316–3324 e3316. https://doi.org/10.1016/j.cub.2018.07.078
[59]
GuptaA, Rico-MedinaA, Caño-DelgadoAIJS. The physiology of plant responses to drought. Science, 2020, 368: 266-269
CrossRef Google scholar
[60]
HamannT. The plant cell wall integrity maintenance mechanism-concepts for organization and mode of action. Plant Cell Physiol, 2015, 56: 215-223
CrossRef Google scholar
[61]
HarutaM, MonshausenG, GilroyS, SussmanMRJB. A cytoplasmic Ca2+ functional assay for identifying and purifying endogenous cell signaling peptides in Arabidopsis seedlings: identification of AtRALF1 peptide. Biochemistry, 2008, 47: 6311-6321
CrossRef Google scholar
[62]
HarutaM, SabatG, SteckerK, MinkoffBB, SussmanMR. A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science, 2014, 343: 408-411
CrossRef Google scholar
[63]
HayashiY, TanoiK, NishiyamaH, NakanishiTMJSS, NutritionP. Rhizosphere pH profile of rice plant influenced by Al treatment. Soil Science and Plant Nutrition, 2005, 51: 729-731
CrossRef Google scholar
[64]
He YH, Zhang ZR, Xu YP, Chen SY, Cai XZ (2022) Genome-wide identification of rapid alkalinization factor family in brassica napus and functional analysis of BnRALF10 in immunity to Sclerotinia sclerotiorum. Front Plant Sci 13:877404. https://doi.org/10.3389/fpls.2022.877404
[65]
HoelscherMP, FornerJ, CalderoneS, KramerC, TaylorZ, LoiaconoFV, AgrawalS, KarcherD, MorattiF, KroopX, BockR. Expression strategies for the efficient synthesis of antimicrobial peptides in plastids. Nat Commun, 2022, 13: 5856
CrossRef Google scholar
[66]
HoffmannRD, OlsenLI, EzikeCV, PedersenJT, ManstrettaR, Lopez-MarquesRL, PalmgrenM. Roles of plasma membrane proton ATPases AHA2 and AHA7 in normal growth of roots and root hairs in Arabidopsis thaliana. Physiol Plant, 2019, 166: 848-861
CrossRef Google scholar
[67]
HuffakerA, PearceG, Ryan CAJPotNAoS, . An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proc Natl Acad Sci U S A, 2006, 103: 10098-10103
CrossRef Google scholar
[68]
IgarashiD, TsudaK, KatagiriF. The peptide growth factor, phytosulfokine, attenuates pattern-triggered immunity. Plant J, 2012, 71: 194-204
CrossRef Google scholar
[69]
IwanoM, IgarashiM, TarutaniY, Kaothien-NakayamaP, NakayamaH, MoriyamaH, YakabeR, EntaniT, Shimosato-AsanoH, UekiMJTPC. A pollen coat–inducible autoinhibited Ca2+-ATPase expressed in stigmatic papilla cells is required for compatible pollination in the Brassicaceae. Plant Cell, 2014, 26: 636-649
CrossRef Google scholar
[70]
JiangY, LahlaliR, KarunakaranC, WarkentinTD, DavisAR, BueckertRA. Pollen, ovules, and pollination in pea: Success, failure, and resilience in heat. Plant Cell Environ, 2019, 42: 354-372
CrossRef Google scholar
[71]
Jiang W, Li C, Li L, Li Y, Wang Z, Yu F, Yi F, Zhang J, Zhu JK, Zhang H, Li Y, Zhao C (2022) Genome-wide analysis of CqCrRLK1L and CqRALF gene families in Chenopodium quinoa and their roles in salt stress response. Front Plant Sci 13:918594. https://doi.org/10.3389/fpls.2022.918594
[72]
JinY, YangH, WeiZ, MaH, GeXJMP. Rice male development under drought stress: phenotypic changes and stage-dependent transcriptomic reprogramming. Mol Plant, 2013, 6: 1630-1645
CrossRef Google scholar
[73]
KadotaY, SklenarJ, DerbyshireP, StransfeldL, AsaiS, NtoukakisV, JonesJD, ShirasuK, MenkeF, JonesA, ZipfelC. Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity. Mol Cell, 2014, 54: 43-55
CrossRef Google scholar
[74]
Kasahara RD, Maruyama D, Higashiyama T (2013) Fertilization recovery system is dependent on the number of pollen grains for efficient reproduction in plants. Plant Signal Behav 8:e23690. https://doi.org/10.4161/psb.23690
[75]
Kessler SA, Lindner H, Jones DS, Grossniklaus U (2015) Functional analysis of related CrRLK1L receptor-like kinases in pollen tube reception. EMBO Rep 16:107–115. https://doi.org/10.15252/embr.201438801
[76]
KouX, SunJ, WangP, WangD, CaoP, LinJ, ChangY, ZhangS, WuJ. PbrRALF2-elicited reactive oxygen species signaling is mediated by the PbrCrRLK1L13-PbrMPK18 module in pear pollen tubes. Hortic Res, 2021, 8: 222
CrossRef Google scholar
[77]
Li C, Yeh FL, Cheung AY, Duan Q, Kita D, Liu MC, Maman J, Luu EJ, Wu BW, Gates L, Jalal M, Kwong A, Carpenter H, Wu HM (2015) Glycosylphosphatidylinositol-anchored proteins as chaperones and co-receptors for FERONIA receptor kinase signaling in Arabidopsis. Elife 4:https://doi.org/10.7554/eLife.06587
[78]
Li C, Liu X, Qiang X, Li X, Li X, Zhu S, Wang L, Wang Y, Liao H, Luan S, Yu F (2018) EBP1 nuclear accumulation negatively feeds back on FERONIA-mediated RALF1 signaling. PLoS Biol 16:e2006340. https://doi.org/10.1371/journal.pbio.2006340
[79]
Li L, Chen H, Alotaibi SS, Pencik A, Adamowski M, Novak O, Friml J (2022) RALF1 peptide triggers biphasic root growth inhibition upstream of auxin biosynthesis. Proc Natl Acad Sci U S A 119:e2121058119. https://doi.org/10.1073/pnas.2121058119
[80]
LiL, LiM, YuL, ZhouZ, LiangX, LiuZ, CaiG, GaoL, ZhangX, WangY, ChenS, ZhouJM. The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity. Cell Host Microbe, 2014, 15: 329-338
CrossRef Google scholar
[81]
LiL, VerstraetenI, RoosjenM, TakahashiK, RodriguezL, MerrinJ, ChenJ, ShabalaL, SmetW, RenH, VannesteS, ShabalaS, De RybelB, WeijersD, KinoshitaT, GrayWM, FrimlJ. Cell surface and intracellular auxin signalling for H(+) fluxes in root growth. Nature, 2021, 599: 273-277
CrossRef Google scholar
[82]
Lin W, Tang W, Pan X, Huang A, Gao X, Anderson CT, Yang Z (2022) Arabidopsis pavement cell morphogenesis requires FERONIA binding to pectin for activation of ROP GTPase signaling. Curr Biol 32:497–507 e494. https://doi.org/10.1016/j.cub.2021.11.030
[83]
Liu L, Song W, Huang S, Jiang K, Moriwaki Y, Wang Y, Men Y, Zhang D, Wen X, Han Z, Chai J, Guo H (2022a) Extracellular pH sensing by plant cell-surface peptide-receptor complexes. Cell 185:3341–3355 e3313. https://doi.org/10.1016/j.cell.2022.07.012
[84]
LiuX, CastroC, WangY, NobleJ, PonvertN, BundyM, HoelC, ShpakE, PalaniveluR. The Role of LORELEI in Pollen Tube Reception at the Interface of the Synergid Cell and Pollen Tube Requires the Modified Eight-Cysteine Motif and the Receptor-Like Kinase FERONIA. Plant Cell, 2016, 28: 1035-1052
CrossRef Google scholar
[85]
LiuPL, DuL, HuangY, GaoSM, YuM. Origin and diversification of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in plants. BMC Evol Biol, 2017, 17: 47
CrossRef Google scholar
[86]
LiuX, ZhangH, JiaoH, LiL, QiaoX, FabriceMR, WuJ, ZhangS. Expansion and evolutionary patterns of cysteine-rich peptides in plants. BMC Genomics, 2017, 18: 610
CrossRef Google scholar
[87]
LiuP, HarutaM, MinkoffBB, SussmanMR. Probing a Plant Plasma Membrane Receptor Kinase's Three-Dimensional Structure Using Mass Spectrometry-Based Protein Footprinting. Biochemistry, 2018, 57: 5159-5168
CrossRef Google scholar
[88]
LiuJ, ElmoreJM, LinZJ, CoakerG. A receptor-like cytoplasmic kinase phosphorylates the host target RIN4, leading to the activation of a plant innate immune receptor. Cell Host Microbe, 2011, 9: 137-146
CrossRef Google scholar
[89]
LiuC, ShenL, XiaoY, VyshedskyD, PengC, SunX, LiuZ, ChengL, ZhangH, HanZJS. Pollen PCP-B peptides unlock a stigma peptide–receptor kinase gating mechanism for pollination. Science, 2021, 372: 171-175
CrossRef Google scholar
[90]
LiuY, ChenY, JiangH, ShuiZ, ZhongY, ShangJ, YangH, SunX, DuJ. Genome-wide characterization of soybean RALF genes and their expression responses to Fusarium oxysporum. Front Plant Sci, 2022, 13: 1006028
CrossRef Google scholar
[91]
López-GarcíaB, González-CandelasL, Pérez-PayáE, MarcosJFJMP-MI. Identification and characterization of a hexapeptide with activity against phytopathogenic fungi that cause postharvest decay in fruits. Mol Plant Microbe Interact, 2000, 13: 837-846
CrossRef Google scholar
[92]
Loubert-HudonA, MazinBD, ChevalierE, MattonDP. The ScRALF3 secreted peptide is involved in sporophyte to gametophyte signalling and affects pollen mitosis I. Plant Biol (stuttg), 2020, 22: 13-20
CrossRef Google scholar
[93]
MamaevaA, LyapinaI, KnyazevA, GolubN, MollaevT, ChudinovaE, ElanskyS, BabenkoVV, VeselovskyVA, KliminaKM, GribovaT, KharlampievaD, LazarevV, FesenkoI. RALF peptides modulate immune response in the moss Physcomitrium patens. Front Plant Sci, 2023, 14: 1077301
CrossRef Google scholar
[94]
MangH, FengB, HuZ, Boisson-DernierA, FranckCM, MengX, HuangY, ZhouJ, XuG, WangT, ShanL, HeP. Differential Regulation of Two-Tiered Plant Immunity and Sexual Reproduction by ANXUR Receptor-Like Kinases. Plant Cell, 2017, 29: 3140-3156
CrossRef Google scholar
[95]
MasachisS, SegorbeD, TurraD, Leon-RuizM, FurstU, El GhalidM, LeonardG, Lopez-BergesMS, RichardsTA, FelixG, Di PietroA. A fungal pathogen secretes plant alkalinizing peptides to increase infection. Nat Microbiol, 2016, 1: 16043
CrossRef Google scholar
[96]
MatosJL, FioriCS, Silva-FilhoMC, MouraDS. A conserved dibasic site is essential for correct processing of the peptide hormone AtRALF1 in Arabidopsis thaliana. FEBS Lett, 2008, 582: 3343-3347
CrossRef Google scholar
[97]
MatsubayashiY. Posttranslationally modified small-peptide signals in plants. Annu Rev Plant Biol, 2014, 65: 385-413
CrossRef Google scholar
[98]
MecchiaMA, Santos-FernandezG, DussNN, SomozaSC, Boisson-DernierA, GagliardiniV, Martínez-BernardiniA, FabriceTN, RingliC, MuschiettiJPJS. RALF4/19 peptides interact with LRX proteins to control pollen tube growth in Arabidopsis. Science, 2017, 358: 1600-1603
CrossRef Google scholar
[99]
MerinoMC, GuidarelliM, NegriniF, De BiaseD, PessionA, BaraldiE. Induced expression of the Fragaria x ananassa Rapid alkalinization factor-33-like gene decreases anthracnose ontogenic resistance of unripe strawberry fruit stages. Mol Plant Pathol, 2019, 20: 1252-1263
CrossRef Google scholar
[100]
MingossiFB, MatosJL, RizzatoAP, MedeirosAH, FalcoMC, Silva-FilhoMC, MouraDS. SacRALF1, a peptide signal from the grass sugarcane (Saccharum spp.), is potentially involved in the regulation of tissue expansion. Plant Mol Biol, 2010, 73: 271-281
CrossRef Google scholar
[101]
Morato do Canto A, Ceciliato PH, Ribeiro B, Ortiz Morea FA, Franco Garcia AA, Silva-Filho MC, Moura DS, . Biological activity of nine recombinant AtRALF peptides: implications for their perception and function in Arabidopsis. Plant Physiol Biochem, 2014, 75: 45-54
CrossRef Google scholar
[102]
MoussuS, AugustinS, RomanAO, BroyartC, SantiagoJ. Crystal structures of two tandem malectin-like receptor kinases involved in plant reproduction. Acta Crystallogr D Struct Biol, 2018, 74: 671-680
CrossRef Google scholar
[103]
MoussuS, BroyartC, Santos-FernandezG, AugustinS, WehrleS, GrossniklausU, SantiagoJ. Structural basis for recognition of RALF peptides by LRX proteins during pollen tube growth. Proc Natl Acad Sci U S A, 2020, 117: 7494-7503
CrossRef Google scholar
[104]
NgoQA, VoglerH, LituievDS, NestorovaA, GrossniklausU. A calcium dialog mediated by the FERONIA signal transduction pathway controls plant sperm delivery. Dev Cell, 2014, 29: 491-500
CrossRef Google scholar
[105]
NicaiseV, JoeA, JeongBR, KorneliC, BoutrotF, WestedtI, StaigerD, AlfanoJR, ZipfelC. Pseudomonas HopU1 modulates plant immune receptor levels by blocking the interaction of their mRNAs with GRP7. EMBO J, 2013, 32: 701-712
CrossRef Google scholar
[106]
NobleJA, BielskiNV, LiuMJ, DeFalcoTA, StegmannM, NelsonADL, McNamaraK, SullivanB, DinhKK, KhuuN, HancockS, ShiuSH, ZipfelC, CheungAY, BeilsteinMA, PalaniveluR. Evolutionary analysis of the LORELEI gene family in plants reveals regulatory subfunctionalization. Plant Physiol, 2022, 190: 2539-2556
CrossRef Google scholar
[107]
OkudaS, TsutsuiH, ShiinaK, SprunckS, TakeuchiH, YuiR, KasaharaRD, HamamuraY, MizukamiA, SusakiD, KawanoN, SakakibaraT, NamikiS, ItohK, OtsukaK, MatsuzakiM, NozakiH, KuroiwaT, NakanoA, KanaokaMM, DresselhausT, SasakiN, HigashiyamaT. Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature, 2009, 458: 357-361
CrossRef Google scholar
[108]
OlsenAN, MundyJ, SkriverKJSB. Peptomics, identification of novel cationic Arabidopsis peptides with conserved sequence motifs. Silico Biol, 2002, 2: 441-451
CrossRef Google scholar
[109]
Pearce G, Moura DS, Stratmann J, Jr R, CAJPotNAoS, (2001) RALF, a 5-kDa ubiquitous polypeptide in plants, arrests root growth and development. Proc Natl Acad Sci 98:12843–12847. https://doi.org/10.1073/pnas.201416998
[110]
PearceG, YamaguchiY, MunskeG, RyanCA. Structure-activity studies of RALF, Rapid Alkalinization Factor, reveal an essential–YISY–motif. Peptides, 2010, 31: 1973-1977
CrossRef Google scholar
[111]
RouxM, SchwessingerB, AlbrechtC, ChinchillaD, JonesA, HoltonN, MalinovskyFG, TorM, de VriesS, ZipfelC. The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens. Plant Cell, 2011, 23: 2440-2455
CrossRef Google scholar
[112]
SchiøttM, RomanowskySM, BækgaardL, JakobsenMK, PalmgrenMG, Harper JFJPotNAoS, . A plant plasma membrane Ca2+ pump is required for normal pollen tube growth and fertilization. Proc Natl Acad Sci, 2004, 101: 9502-9507
CrossRef Google scholar
[113]
SchulzeB, MentzelT, JehleAK, MuellerK, BeelerS, BollerT, FelixG, ChinchillaD. Rapid heteromerization and phosphorylation of ligand-activated plant transmembrane receptors and their associated kinase BAK1. J Biol Chem, 2010, 285: 9444-9451
CrossRef Google scholar
[114]
SegonzacC, MonaghanJ. Modulation of plant innate immune signaling by small peptides. Curr Opin Plant Biol, 2019, 51: 22-28
CrossRef Google scholar
[115]
Shanmugaraj B, Bulaon CJI, Malla A, Phoolcharoen W (2021) Biotechnological Insights on the Expression and Production of Antimicrobial Peptides in Plants. Molecules 26:https://doi.org/10.3390/molecules26134032
[116]
ShenQ, BourdaisG, PanH, RobatzekS, TangD. Arabidopsis glycosylphosphatidylinositol-anchored protein LLG1 associates with and modulates FLS2 to regulate innate immunity. Proc Natl Acad Sci U S A, 2017, 114: 5749-5754
CrossRef Google scholar
[117]
SongY, WilsonAJ, ZhangXC, ThomsD, SohrabiR, SongS, GeissmannQ, LiuY, WalgrenL, HeSY, HaneyCH. FERONIA restricts Pseudomonas in the rhizosphere microbiome via regulation of reactive oxygen species. Nat Plants, 2021, 7: 644-654
CrossRef Google scholar
[118]
SrivastavaR, LiuJX, GuoH, YinY, HowellSH. Regulation and processing of a plant peptide hormone, AtRALF23, in Arabidopsis. Plant J, 2009, 59: 930-939
CrossRef Google scholar
[119]
StegmannM, MonaghanJ, Smakowska-LuzanE, RovenichH, LehnerA, HoltonN, BelkhadirY, ZipfelC. The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling. Science, 2017, 355: 287-289
CrossRef Google scholar
[120]
Sui J, Xiao X, Yang J, Fan Y, Zhu S, Zhu J, Zhou B, Yu F, Tang C (2023) The rubber tree RALF peptide hormone and its receptor protein kinase FER implicates in rubber production. Plant Sci 326:111510. https://doi.org/10.1016/j.plantsci.2022.111510
[121]
Szurman-Zubrzycka M, Chwialkowska K, Niemira M, Kwasniewski M, Nawrot M, Gajecka M, Larsen PB, Szarejko I (2021) Aluminum or Low pH - Which Is the Bigger Enemy of Barley? Transcriptome Analysis of Barley Root Meristem Under Al and Low pH Stress. Front Genet 12:675260. https://doi.org/10.3389/fgene.2021.675260
[122]
TabataR, SumidaK, YoshiiT, OhyamaK, ShinoharaH, MatsubayashiYJS. Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signaling. Science, 2014, 346: 343-346
CrossRef Google scholar
[123]
TakahashiF, SuzukiT, OsakabeY, BetsuyakuS, KondoY, DohmaeN, FukudaH, Yamaguchi-ShinozakiK, ShinozakiKJN. A small peptide modulates stomatal control via abscisic acid in long-distance signalling. Nature, 2018, 556: 235-238
CrossRef Google scholar
[124]
TangJ, HanZ, SunY, ZhangH, GongX, ChaiJ. Structural basis for recognition of an endogenous peptide by the plant receptor kinase PEPR1. Cell Res, 2015, 25: 110-120
CrossRef Google scholar
[125]
TavorminaP, De ConinckB, NikonorovaN, De SmetI, CammueBP. The Plant Peptidome: An Expanding Repertoire of Structural Features and Biological Functions. Plant Cell, 2015, 27: 2095-2118
CrossRef Google scholar
[126]
TempleBR, JonesAM. The plant heterotrimeric G-protein complex. Annu Rev Plant Biol, 2007, 58: 249-266
CrossRef Google scholar
[127]
ThynneE, SaurIML, SimbaquebaJ, OgilvieHA, Gonzalez-CendalesY, MeadO, TarantoA, CatanzaritiAM, McDonaldMC, SchwessingerB, JonesDA, RathjenJP, SolomonPS. Fungal phytopathogens encode functional homologues of plant rapid alkalinization factor (RALF) peptides. Mol Plant Pathol, 2017, 18: 811-824
CrossRef Google scholar
[128]
WangL, YangT, LinQ, WangB, LiX, LuanS, YuF. Receptor kinase FERONIA regulates flowering time in Arabidopsis. BMC Plant Biol, 2020, 20: 26
CrossRef Google scholar
[129]
Wang L, Yang T, Wang B, Lin Q, Zhu S, Li C, Ma Y, Tang J, Xing J, Li XJSa (2020b) RALF1-FERONIA complex affects splicing dynamics to modulate stress responses and growth in plants. Science advances 6:eaaz1622. https://doi.org/10.1126/sciadv.aaz1622
[130]
WangP, YaoS, KosamiKI, GuoT, LiJ, ZhangY, FukaoY, Kaneko-KawanoT, ZhangH, SheYM, WangP, XingW, HanadaK, LiuR, KawanoY. Identification of endogenous small peptides involved in rice immunity through transcriptomics- and proteomics-based screening. Plant Biotechnol J, 2020, 18: 415-428
CrossRef Google scholar
[131]
WangX, ZhangN, ZhangL, HeY, CaiC, ZhouJ, LiJ, MengX. Perception of the pathogen-induced peptide RGF7 by the receptor-like kinases RGI4 and RGI5 triggers innate immunity in Arabidopsis thaliana. New Phytol, 2021, 230: 1110-1125
CrossRef Google scholar
[132]
Wieghaus A, Prufer D, Schulze Gronover C (2019) Loss of function mutation of the Rapid Alkalinization Factor (RALF1)-like peptide in the dandelion Taraxacum koksaghyz entails a high-biomass taproot phenotype. PLoS One 14:e0217454. https://doi.org/10.1371/journal.pone.0217454
[133]
WoodAKM, WalkerC, LeeWS, UrbanM, Hammond-KosackKE. Functional evaluation of a homologue of plant rapid alkalinisation factor (RALF) peptides in Fusarium graminearum. Fungal Biol, 2020, 124: 753-765
CrossRef Google scholar
[134]
WuJ, KurtenEL, MonshausenG, HummelGM, GilroyS, BaldwinIT. NaRALF, a peptide signal essential for the regulation of root hair tip apoplastic pH in Nicotiana attenuata, is required for root hair development and plant growth in native soils. Plant J, 2007, 52: 877-890
CrossRef Google scholar
[135]
XiaoY, StegmannM, HanZ, DeFalcoTA, ParysK, XuL, BelkhadirY, ZipfelC, ChaiJ. Mechanisms of RALF peptide perception by a heterotypic receptor complex. Nature, 2019, 572: 270-274
CrossRef Google scholar
[136]
Xie Y, Sun P, Li Z, Zhang F, You C, Zhang Z (2022) FERONIA Receptor Kinase Integrates with Hormone Signaling to Regulate Plant Growth, Development, and Responses to Environmental Stimuli. Int J Mol Sci 23:https://doi.org/10.3390/ijms23073730
[137]
XuY, MagwangaRO, JinD, CaiX, HouY, JuyunZ, AgongSG, WangK, LiuF, ZhouZ. Comparative transcriptome analysis reveals evolutionary divergence and shared network of cold and salt stress response in diploid D-genome cotton. BMC Plant Biol, 2020, 20: 518
CrossRef Google scholar
[138]
YamaguchiY, PearceG, Ryan CAJPotNAoS, . The cell surface leucine-rich repeat receptor for At Pep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells. Proc Natl Acad Sci, 2006, 103: 10104-10109
CrossRef Google scholar
[139]
YamaguchiY, HuffakerA, BryanAC, TaxFE, RyanCA. PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis. Plant Cell, 2010, 22: 508-522
CrossRef Google scholar
[140]
Yang Y, Wang Q, Geng M, Guo Z, Zhao Z (2011) Rhizosphere pH difference regulated by plasma membrane H+-ATPase is related to differential Al tolerance of two wheat cultivars. Plant, Soil Environment 57:201–206. https://doi.org/10.17221/419/2010-PSE
[141]
Yang G, Qu M, Xu G, Li Y, Li X, Feng Y, Xiao H, He Y, Shabala S, Demidchik V, Liu J, Yu M (2022) pH-Dependent mitigation of aluminum toxicity in pea (Pisum sativum) roots by boron. Plant Sci 318:111208. https://doi.org/10.1016/j.plantsci.2022.111208
[142]
YangH, MatsubayashiY, NakamuraK, SakagamiYJPP. Diversity of Arabidopsis genes encoding precursors for phytosulfokine, a peptide growth factor. Plant Physiol, 2001, 127: 842-851
CrossRef Google scholar
[143]
YuY, AssmannSM. The heterotrimeric G-protein beta subunit, AGB1, plays multiple roles in the Arabidopsis salinity response. Plant Cell Environ, 2015, 38: 2143-2156
CrossRef Google scholar
[144]
YuY, AssmannSM. Inter-relationships between the heterotrimeric Gbeta subunit AGB1, the receptor-like kinase FERONIA, and RALF1 in salinity response. Plant Cell Environ, 2018, 41: 2475-2489
CrossRef Google scholar
[145]
YuF, QianL, NibauC, DuanQ, KitaD, LevasseurK, LiX, LuC, LiH, HouC, LiL, BuchananBB, ChenL, CheungAY, LiD, LuanS. FERONIA receptor kinase pathway suppresses abscisic acid signaling in Arabidopsis by activating ABI2 phosphatase. Proc Natl Acad Sci U S A, 2012, 109: 14693-14698
CrossRef Google scholar
[146]
Yu M, Li R, Cui Y, Chen W, Li B, Zhang X, Bu Y, Cao Y, Xing J, Jewaria PK, Li X, Bhalerao RP, Yu F, Lin J (2020) The RALF1-FERONIA interaction modulates endocytosis to mediate control of root growth in Arabidopsis. Development 147:https://doi.org/10.1242/dev.189902
[147]
YuY, ChakravortyD, AssmannSM. The G Protein beta-Subunit, AGB1, Interacts with FERONIA in RALF1-Regulated Stomatal Movement. Plant Physiol, 2018, 176: 2426-2440
CrossRef Google scholar
[148]
ZhangX, PengH, ZhuS, XingJ, LiX, ZhuZ, ZhengJ, WangL, WangB, ChenJ, MingZ, YaoK, JianJ, LuanS, Coleman-DerrD, LiaoH, PengY, PengD, YuF. Nematode-Encoded RALF Peptide Mimics Facilitate Parasitism of Plants through the FERONIA Receptor Kinase. Mol Plant, 2020, 13: 1434-1454
CrossRef Google scholar
[149]
ZhangY, RenQ, TangX, LiuS, MalzahnAA, ZhouJ, WangJ, YinD, PanC, YuanM, HuangL, YangH, ZhaoY, FangQ, ZhengX, TianL, ChengY, LeY, McCoyB, FranklinL, SelengutJD, MountSM, QueQ, ZhangY, QiY. Expanding the scope of plant genome engineering with Cas12a orthologs and highly multiplexable editing systems. Nat Commun, 2021, 12: 1944
CrossRef Google scholar
[150]
ZhaoC, ZayedO, YuZ, JiangW, ZhuP, HsuCC, ZhangL, TaoWA, Lozano-DuranR, ZhuJK. Leucine-rich repeat extensin proteins regulate plant salt tolerance in Arabidopsis. Proc Natl Acad Sci U S A, 2018, 115: 13123-13128
CrossRef Google scholar
[151]
Zhao C, Jiang W, Zayed O, Liu X, Tang K, Nie W, Li Y, Xie S, Li Y, Long T, Liu L, Zhu Y, Zhao Y, Zhu JK (2021) The LRXs-RALFs-FER module controls plant growth and salt stress responses by modulating multiple plant hormones. Natl Sci Rev 8:nwaa149. https://doi.org/10.1093/nsr/nwaa149
[152]
Zhang X, Wang D, Chen J, Wu D, Feng X, Yu F (2021a) Nematode RALF-Like 1 Targets Soybean Malectin-Like Receptor Kinase to Facilitate Parasitism. Front Plant Sci 12:775508. https://doi.org/10.3389/fpls.2021.775508
[153]
Zhang X, Yang Z, Wu D, Yu F (2020b) RALF-FERONIA Signaling: Linking Plant Immune Response with Cell Growth. Plant Commun 1:100084. https://doi.org/10.1016/j.xplc.2020.100084
[154]
ZhengXY, SpiveyNW, ZengW, LiuPP, FuZQ, KlessigDF, HeSY, DongX. Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation. Cell Host Microbe, 2012, 11: 587-596
CrossRef Google scholar
[155]
ZhongS, LiL, WangZ, GeZ, LiQ, BleckmannA, WangJ, SongZ, ShiY, LiuTJS. RALF peptide signaling controls the polytubey block in Arabidopsis. Science, 2022, 375: 290-296
CrossRef Google scholar
[156]
Zhou X, Lu J, Zhang Y, Guo J, Lin W, Van Norman JM, Qin Y, Zhu X, Yang Z (2021) Membrane receptor-mediated mechano-transduction maintains cell integrity during pollen tube growth within the pistil. Dev Cell 56:1030–1042 e1036. https://doi.org/10.1016/j.devcel.2021.02.030
[157]
ZiemannS, van der LindeK, LahrmannU, AcarB, KaschaniF, ColbyT, KaiserM, DingY, SchmelzE, HuffakerA, HoltonN, ZipfelC, DoehlemannG. An apoplastic peptide activates salicylic acid signalling in maize. Nat Plants, 2018, 4: 172-180
CrossRef Google scholar
[158]
ZhuJY, Sae-SeawJ, WangZY. Brassinosteroid Signalling Development, 2013, 140: 1615-1620
CrossRef Google scholar
[159]
ZhuL, ChuLC, LiangY, ZhangXQ, ChenLQ, YeD. The Arabidopsis CrRLK1L protein kinases BUPS1 and BUPS2 are required for normal growth of pollen tubes in the pistil. Plant J, 2018, 95: 474-486
CrossRef Google scholar
[160]
ZhuS, EstevezJM, LiaoH, ZhuY, YangT, LiC, WangY, LiL, LiuX, PachecoJM, GuoH, YuF. The RALF1-FERONIA Complex Phosphorylates eIF4E1 to Promote Protein Synthesis and Polar Root Hair Growth. Mol Plant, 2020, 13: 698-716
CrossRef Google scholar
[161]
ZhuS, FuQ, XuF, ZhengH, YuF. New paradigms in cell adaptation: decades of discoveries on the CrRLK1L receptor kinase signalling network. New Phytol, 2021, 232: 1168-1183
CrossRef Google scholar
Funding
National Natural Science Foundation of China(31270299)

Accesses

Citations

Detail

Sections
Recommended

/