Phosphoinositides in plant-pathogen interaction: trends and perspectives

Fauzia Zarreen, Kamal Kumar, Supriya Chakraborty

Stress Biology ›› 2023, Vol. 3 ›› Issue (1) : 4. DOI: 10.1007/s44154-023-00082-5
Review

Phosphoinositides in plant-pathogen interaction: trends and perspectives

Author information +
History +

Abstract

Phosphoinositides are important regulatory membrane lipids, with a role in plant development and cellular function. Emerging evidence indicates that phosphoinositides play crucial roles in plant defence and are also utilized by pathogens for infection. In this review, we highlight the role of phosphoinositides in plant-pathogen interaction and the implication of this remarkable convergence in the battle against plant diseases.

Keywords

Plant virus / Kinases / Phosphoinositides / Phosphatidylinositol / Plant-pathogen / Signalling

Cite this article

Download citation ▾
Fauzia Zarreen, Kamal Kumar, Supriya Chakraborty. Phosphoinositides in plant-pathogen interaction: trends and perspectives. Stress Biology, 2023, 3(1): 4 https://doi.org/10.1007/s44154-023-00082-5

References

[1]
Abd-El-HaliemAM, VossenJH, van ZeijlA, DezhsetanS, TesterinkC, SeidlMF, BeckM, StruttJ, RobatzekS, JoostenMHAJ. Biochemical characterization of the tomato phosphatidylinositol-specific phospholipase C (PI-PLC) family and its role in plant immunity. Biochim Biophys Acta, 2016, 1861(9):1365-1378
CrossRef Google scholar
[2]
AkhterS, UddinMN, JeongIS, KimDW, LiuXM, BahkJD. Role of Arabidopsis at PI 4Kγ3, a type II phosphoinositide 4-kinase, in abiotic stress responses and floral transition. Plant Biotechnol J, 2016, 14(1):215-230
CrossRef Google scholar
[3]
Alvarez-VenegasR, PienS, SadderM, WitmerX, GrossniklausU, AvramovaZ. ATX-1, an Arabidopsis homolog of Trithorax, activates flower homeotic genes. Curr Biol, 2003, 13(8):627-637
CrossRef Google scholar
[4]
Alves-FerreiraM, WellmerF, KumarV, RiechmannJL, MeyerowitzEM. Global expression profiling appliedto the analysis of Arabidopsis stamen development. Plant Physiol, 2007, 145(3):747-762
CrossRef Google scholar
[5]
AnderssonMX, KourtchenkoO, DanglJL, MackeyD, EllerströmM. Phospholipase-dependent signalling during the AvrRpm1- and AvrRpt2-induced disease resistance responses in Arabidopsis thaliana. Plant J, 2006, 47(6):947-959
CrossRef Google scholar
[6]
AntignaniV, KlockoAL, BakG, ChandrasekaranSD, DunivinT, NielsenE. Recruitment of PLANT U-BOX13 and the PI4Kβ1/β2 Phosphatidylinositol-4 kinases by the small GTPase RabA4B plays important roles during salicylic acid-mediated plant defense signaling in Arabidopsis. Plant Cell, 2015, 27(1):243-261
CrossRef Google scholar
[7]
BanerjeeS, Aponte-DiazD, YeagerC, SharmaSD, NingG, OhHS, HanQ, UmedaM, HaraY, WangRYL, CameronCE. Hijacking of multiple phospholipid biosynthetic pathways and induction of membrane biogenesis by a picornaviral 3CD protein. PLoS Pathog, 2018, 14(5):e1007086
CrossRef Google scholar
[8]
BarbosaIC, ShikataH, ZourelidouM, HeilmannM, HeilmannI, SchwechheimerC. Phospholipid composition and a polybasic motif determine D6 PROTEIN KINASE polar association with the plasma membrane and tropic responses. Development, 2016, 143(24):4687-4700
CrossRef Google scholar
[9]
BergerKL, KellySM, JordanTX, TartellMA, RandallG. Hepatitis C virus stimulates the phosphatidylinositol 4-kinase III alpha-dependent phosphatidylinositol 4-phosphate production that is essential for its replication. J Virol, 2011, 85(17):8870-8883
CrossRef Google scholar
[10]
Bloch D, Pleskot R, Pejchar P, Potocký M, Trpkošová P, Cwiklik L, Vukašinović N, Sternberg H, Yalovsky S, Žárský V (2016) Exocyst SEC3 and phosphoinositides define sites of exocytosis in pollen tube initiation and growth. Plant Physiol:00690.2016. https://doi.org/10.1104/pp.16.00690
[11]
Bozkurt TO RichardsonA, DagdasYF, MongrandS, KamounS, RaffaeleS. The plant membrane-associated remorin1.3 accumulates in discrete perihaustorial domains and enhances susceptibility tophytophthora infestans. Plant Physiol, 2014, 165: 1005-1018
CrossRef Google scholar
[12]
BraultML, PetitJD, ImmelF, NicolasWJ, GlavierM, BrocardL, et al.. Multiple C2 domains and transmembrane region proteins (MCTP s) tether membranes at plasmodesmata. EMBO Rep, 2019, 20(8):e47182
CrossRef Google scholar
[13]
ChandraM, ChinYK-Y, MasC, FeathersJR, PaulB, DattaS, ChenK-E, JiaX, YangZ, NorwoodSJ, MohantyB, BugarcicA, TeasdaleRD, HenneWM, MobliM, CollinsBM. Classification of the human phox homology (PX) domains based on their phosphoinositide binding specificities. Nat Commun, 2019, 10(1):1528
CrossRef Google scholar
[14]
ChenG, SnyderCL, GreerMS, WeselakeRJ. Biology and biochemistry of plant phospholipases. Crit Rev Plant Sci, 2011, 30(3):239-258
CrossRef Google scholar
[15]
ChengMK, ShearnA. The direct interaction between ASH2, a Drosophila Trithorax group protein, and SKTL, a nuclear phosphatidylinositol 4-phosphate 5-kinase, implies a role for phosphatidylinositol 4,5-bisphosphate in maintaining transcriptionally active chromatin. Genetics, 2004, 167(3):1213-1223
CrossRef Google scholar
[16]
ContentoAL, KimSJ, BasshamDC. Transcriptome profiling of the response of Arabidopsis suspension culture cells to Suc starvation. Plant Physiol, 2004, 135(4):2330-2347
CrossRef Google scholar
[17]
CoteGG, CrainRC. Biochemistry of phosphoinositides. Annu Rev Plant Biol, 1993, 44(1):333-356
CrossRef Google scholar
[18]
CuiY, CarosiJM, YangZ, AriottiN, KerrMC, PartonRG, SargeantTJ, TeasdaleRD. Retromer has a selective function in cargo sorting via endosome transport carriers. J Cell Biol, 2019, 218(2):615-631
CrossRef Google scholar
[19]
DarwishE, TesterinkC, KhalilM, El-ShihyO, MunnikT. Phospholipid signaling responses in salt-stressed rice leaves. Plant Cell Physiol, 2009, 50(5):986-997
CrossRef Google scholar
[20]
den BoonJA, DiazA, AhlquistP. Cytoplasmic viral replication complexes. Cell Host Microbe, 2010, 8(1):77-85
CrossRef Google scholar
[21]
DeWaldDB, TorabinejadJ, JonesCA, ShopeJC, CangelosiAR, ThompsonJE, PrestwichGD, HamaH. Rapid accumulation of phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate correlates with calcium mobilization in salt-stressed Arabidopsis. Plant Physiol, 2001, 126(2):759-769
CrossRef Google scholar
[22]
Dieck CB, Boss WF, Perera IY (2012a) A role for Phosphoinositides in regulating plant nuclear functions. Front Plant Sci 3. https://doi.org/10.3389/fpls.2012.00050
[23]
DieckCB, WoodA, BrglezI, Rojas-PierceM, BossWF. Increasing phosphatidylinositol (4,5) bisphosphate biosynthesis affects plant nuclear lipids and nuclear functions. Plant Physiol Biochem, 2012, 57: 32-44
CrossRef Google scholar
[24]
Dove SK, Cooke FT, Douglas MR, Sayers LG, Parker PJ, Michell RH (1997) Osmotic stress activates phosphatidylinositol-3,5-bisphosphate synthesis. Nature 390(6656):187-192. https://doi.org/10.1038/36613
[25]
DowdPE, CoursolS, SkirpanAL, KaoT-h, GilroyS. Petunia phospholipase C1 is involved in pollen tube growth. Plant Cell, 2006, 18(6):1438-1453
CrossRef Google scholar
[26]
EinspahrKJ, MaedaM, ThompsonGA. Concurrent changes in Dunaliella salina ultrastructure and membrane phospholipid metabolism after hyperosmotic shock. J Cell Biol, 1988, 107(2):529-538
CrossRef Google scholar
[27]
EinspahrKJ, PeelerTC, ThompsonGA. Rapid changes in polyphosphoinositide metabolism associated with the response of Dunaliella salina to hypoosmotic shock. J Biol Chem, 1988, 263(12):5775-5779
CrossRef Google scholar
[28]
Ek-RamosMJ, Racagni-Di PalmaG, Hernández-SotomayorSMT. Changes in phosphatidylinositol and phosphatidylinositol monophosphate kinase activities during the induction of somatic embryogenesis in Coffea arabica. Physiol Plant, 2003, 119(2):270-277
CrossRef Google scholar
[29]
FalkenburgerBH, JensenJB, DicksonEJ, SuhBC, HilleB. Phosphoinositides: lipid regulators of membrane proteins. J Physiol, 2010, 588(Pt 17):3179-3185
CrossRef Google scholar
[30]
FengZ, InabaJI, NagyPD. The retromer is co-opted to deliver lipid enzymes for the biogenesis of lipid-enriched tombusviral replication organelles. Proc Natl Acad Sci U S A, 2021, 118(1):e2016066118
CrossRef Google scholar
[31]
FengZ, KovalevN, NagyPD. Key interplay between the co-opted sorting nexin-BAR proteins and PI3P phosphoinositide in the formation of the tombusvirus replicase. PLoS Pathog, 2020, 16(12):e1009120
CrossRef Google scholar
[32]
FengZ, XuK, KovalevN, NagyPD. Recruitment of Vps34 PI3K and enrichment of PI3P phosphoinositide in the viral replication compartment is crucial for replication of a positive-strand RNA virus. PLoS Pathog, 2019, 15(1):e1007530
CrossRef Google scholar
[33]
FrankW, MunnikT, KerkmannK, SalaminiF, BartelsD. Water deficit triggers phospholipase D activity in the resurrection plant Craterostigma plantagineum. Plant Cell, 2000, 12(1):111-123
CrossRef Google scholar
[34]
GalvãoRM, KotaU, SoderblomEJ, GosheMB, BossWF. Characterization of a new family of protein kinases from Arabidopsis containing phosphoinositide 3/4-kinase and ubiquitin-like domains. Biochem J, 2008, 409(1):117-127
CrossRef Google scholar
[35]
GerthK, LinF, DaamenF, MenzelW, HeinrichF, HeilmannM. Arabidopsis phosphatidylinositol 4-phosphate 5-kinase 2 contains a functional nuclear localization sequence and interacts with alpha-importins. Plant J Cell Mole Biol, 2017, 92(5):862-878
CrossRef Google scholar
[36]
Gerth K, Lin F, Menzel W, Krishnamoorthy P, Stenzel I, Heilmann M, Heilmann I (2017b) Guilt by association: a phenotypebased view of the plant phosphoinositide network. Annu Rev Plant Biol 68:349–374. https://doi.org/10.1146/annurev-arplant-042916-041022
[37]
GonorazkyG, LaxaltAM, TesterinkC, MunnikT, La CanalD, l.. Phosphatidylinositol 4-phosphate accumulates extracellularly upon xylanase treatment in tomato cell suspensions. Plant Cell Environ, 2008, 31(8):1051-1062
CrossRef Google scholar
[38]
GronnierJ, CrowetJM, HabensteinB, NasirMN, BayleV, HosyE, MongrandS. Structural basis for plant plasma membrane protein dynamics and organization into functional nanodomains. Elife, 2017, 6: e26404
CrossRef Google scholar
[39]
GronnierJ, FranckCM, StegmannM, DeFalcoTA, AbarcaA, von ArxM, DünserK, LinW, YangZ, Kleine-VehnJ, RingliC, ZipfelC. Regulation of immune receptor kinase plasma membrane nanoscale organization by a plant peptide hormone and its receptors. eLife, 2022, 11: e74162
CrossRef Google scholar
[40]
GronnierJ, LegrandA, LoquetA, HabensteinB, GermainV, MongrandS. Mechanisms governing sub compartmentalization of biological membranes. Curr Opin Plant Biol, 2019, 52: 114-123
CrossRef Google scholar
[41]
GunesekeraB, TorabinejadJ, RobinsonJ, GillaspyGE. Inositol polyphosphate 5-phosphatases 1 and 2 are required for regulating seedling growth. Plant Physiol, 2007, 143(3):1408-1417
CrossRef Google scholar
[42]
HaKS, ThompsonGA Jr. Diacylglycerol metabolism in the green alga Dunaliella salina under osmotic stress. Possible role of diacylglycerols in phospholipase C-mediated signal transduction. Plant Physiol, 1991, 97(3):921-927
CrossRef Google scholar
[43]
HeilmannI. Plant phosphoinositide signaling - dynamics on demand. Biochimica et Biophysica Acta (BBA) - molecular and cell biology of. Lipids, 2016, 1861(9 Pt B):1345-1351
CrossRef Google scholar
[44]
HeilmannI. Phosphoinositide signaling in plant development. Development (Cambridge, England), 2016, 143(12):2044-2055
CrossRef Google scholar
[45]
Heilmann M, Heilmann I (2013) Arranged marriage in lipid signalling? The limited choices of PtdIns(4,5)P2 in finding the right partner. Plant Biol (Stuttg) 15(5):789–797. https://doi.org/10.1111/plb.12025
[46]
Heilmann I, Ischebeck T (2016) Male functions and malfunctions: the impact of phosphoinositides on pollen development and pollen tube growth. Plant Reprod 29(1-2):3–20. https://doi.org/10.1007/s00497-015-0270-6
[47]
HeilmannI, PereraIY, GrossW, BossWF. Changes in phosphoinositide metabolism with days in culture affect signal transduction pathways in Galdieria sulphuraria. Plant Physiol, 1999, 119(4):1331-1340
CrossRef Google scholar
[48]
HeilmannI, PereraIY, GrossW, BossWF. Plasma membrane phosphatidylinositol 4,5-bisphosphate levels decrease with time in culture. Plant Physiol, 2001, 126(4):1507-1518
CrossRef Google scholar
[49]
HellingD, PossartA, CottierS, KlahreU, KostB. Pollen tube tip growth depends on plasma membrane polarization mediated by tobacco PLC3 activity and endocytic membrane recycling. Plant Cell, 2006, 18(12):3519-3534
CrossRef Google scholar
[50]
HirayamaT, OhtoC, MizoguchiT, ShinozakiK. A gene encodinga phosphatidylinositol-specific phospholipase C is induced by dehydration andsalt stress in Arabidopsis thaliana. Proc Natl Acad Sci U S A, 1995, 92(9):3903-3907
CrossRef Google scholar
[51]
HortonP, ParkK-J, ObayashiT, FujitaN, HaradaH, Adams-CollierCJ, NakaiK. WoLF PSORT: protein localization predictor. Nucleic Acids Res, 2007, 35(Web Server):W585-W587
CrossRef Google scholar
[52]
HouQ, UferG, BartelsD. Lipid signalling in plant responses to abiotic stress. Plant Cell Environ, 2016, 39(5):1029-1048
CrossRef Google scholar
[53]
HsuN-Y, IlnytskaO, BelovG, SantianaM, ChenY-H, TakvorianPM, PauC, van der SchaarH, Kaushik-BasuN, BallaT, CameronCE, EhrenfeldE, van KuppeveldFJM, Altan-BonnetN. Viral reorganization of the secretory pathway generates distinct organelles for RNA replication. Cell, 2010, 141(5):799-811
CrossRef Google scholar
[54]
IschebeckT, StenzelI, HeilmannI. Type B phosphatidylinositol-4-phosphate 5-kinases mediate Arabidopsis and Nicotiana tabacum pollen tube growth by regulating apical pectin secretion. Plant Cell, 2008, 20(12):3312-3330
CrossRef Google scholar
[55]
IschebeckT, StenzelI, HempelF, JinX, MosblechA, HeilmannI. Phosphatidylinositol-4, 5-bisphosphate influences Nt-Rac5-mediated cell expansion in pollen tubes of Nicotiana tabacum. Plant J, 2011, 65(3):453-468
CrossRef Google scholar
[56]
IschebeckT, WernerS, KrishnamoorthyP, LercheJ, MeijónM, StenzelI, LöfkeC, WiessnerT, ImYJ, PereraIY. Phosphatidylinositol 4,5- bisphosphate influences PIN polarization by controlling clathrin-mediated membrane trafficking in Arabidopsis. Plant Cell, 2013, 25(12):4894-4911
CrossRef Google scholar
[57]
IshimaruC, TakeuchiT, SugawaraF, YoshidaH, MizushinaY. Inhibitory effects of diacylglyceride phospholipids on DNA polymerase and topoisomerase activities, and human cancer cell growth. Med Chem (Shariqah (United Arab Emirates)), 2010, 6(3):114-122
CrossRef Google scholar
[58]
ItohT, TakenawaT. Regulation of endocytosis by phosphatidylinositol 4,5-bisphosphate and ENTH proteins (pp. 31–47), 2004
CrossRef Google scholar
[59]
IvanovS, HarrisonMJ. Accumulation of phosphoinositides in distinct regions of the periarbuscular membrane. New Phytol, 2019, 221(4):2213-2227
CrossRef Google scholar
[60]
JaillaisY, OttT. The nanoscale Organization of the Plasma Membrane and its Importance in signaling: A proteolipid perspective. Plant Physiol, 2020, 182: 1682-1696
CrossRef Google scholar
[61]
JarschIK, KonradSS, StratilTF, UrbanusSL, SzymanskiW, BraunP, BraunKH, OttT. Plasma membranes are subcompartmentalized into a plethora of coexisting and diverse microdomains in Arabidopsis and Nicotiana benthamiana. Plant Cell, 2014, 26: 1698-1711
CrossRef Google scholar
[62]
JohannesL, WunderC. Retromer sets a trap for endosomal cargo sorting. Cell, 2016, 167(6):1452-1454
CrossRef Google scholar
[63]
KaleSD, GuB, CapellutoDGS, DouD, FeldmanE, RumoreA, ArredondoFD, HanlonR, FudalI, RouxelT, LawrenceCB, ShanW, TylerBM. External lipid PI3P mediates entry of eukaryotic pathogen effectors into plant and animal host cells. Cell, 2010, 142(2):284-295
CrossRef Google scholar
[64]
KaneharaK, YuC-Y, ChoY, CheongW-F, TortaF, ShuiG, WenkMR, NakamuraY. Arabidopsis AtPLC2 is a primary phosphoinositide specific phospholipase C in phosphoinositide metabolism and the endoplasmic reticulum stress response. PLoS Genet, 2015, 11(9):e1005511
CrossRef Google scholar
[65]
KatagiriT, TakahashiS, ShinozakiK. Involvement of a novel Arabidopsis phospholipase D, AtPLDδ, in dehydration-inducible accumulation of phosphatidic acid in stress signalling. Plant J, 2001, 26(6):595-605
CrossRef Google scholar
[66]
KönigS, IschebeckT, LercheJ, StenzelI, HeilmannI. Salt-stress-induced association of phosphatidylinositol 4,5-bisphosphate with clathrin-coated vesicles in plants. Biochem J, 2008, 415(3):387-399
CrossRef Google scholar
[67]
KönigS, MosblechA, HeilmannI. Stress-inducible and constitutive phosphoinositide pools have distinctive fatty acid patterns in Arabidopsis thaliana. FASEB J, 2007, 21(9):1958-1967
CrossRef Google scholar
[68]
KovalevN, PoganyJ, NagyPD. Reconstitution of an RNA virus replicase inartificial giant unilamellar vesicles supports fullreplication and provides protection for thedouble-stranded RNA replication intermediate. J Virol, 2020, 94: e00267-e00220
CrossRef Google scholar
[69]
KovtunO, LenevaN, BykovYS, AriottiN, TeasdaleRD, SchafferM, EngelBD, OwenDJ, BriggsJAG, CollinsBM. Structure of the membrane-assembled retromer coat determined by cryo-electron tomography. Nature, 2018, 561(7724):561-564
CrossRef Google scholar
[70]
KusanoH, TesterinkC, VermeerJE, TsugeT, ShimadaH, OkaA, MunnikT, AoyamaT. The Arabidopsis phosphatidylinositol phosphate 5-kinase PIP5K3 is a key regulator of root hair tip growth. Plant Cell, 2008, 20(2):367-380
CrossRef Google scholar
[71]
LaxaltAM, Ter RietB, VerdonkJC, ParigiL, TamelingWI, VossenJ, et al.. Characterization of five tomato phospholipase D cDNAs: rapid and specific expression of LePLDβ1 on elicitation with xylanase. Plant J, 2001, 26(3):237-247
CrossRef Google scholar
[72]
LefebvreB, TimmersT, MbengueM, MoreauS, Herve’C, To´t K, Bittencourt-SilvestreJ, KlausD, DeslandesL, GodiardL, MurrayJD, UdvardiMK, RaffaeleS, MongrandS, CullimoreJ, GamasP, NiebelA, OttT. A remorin protein interacts with symbiotic receptors and regulates bacterial infection. PNAS, 2010, 107: 2343-2348
CrossRef Google scholar
[73]
LemmonMA. Phosphoinositide recognition domains. Traffic, 2003, 4(4):201-213
CrossRef Google scholar
[74]
LewisAE, SommerL, Arntzen, StrahmY, MorriceNA, DivechaN, D’SantosCS. Identification of nuclear phosphatidylinositol 4,5-bisphosphate-interacting proteins by neomycin extraction. Mol Cell Proteomics, 2011, 10(2):S1-S15
CrossRef Google scholar
[75]
LiL, WangF, YanP, JingW, ZhangC, KudlaJ, ZhangW. A phosphoinositide-specific phospholipase C pathway elicits stress-induced Ca2+ signals and confers salt tolerance to rice. New Phytol, 2017, 214(3):1172-1187
CrossRef Google scholar
[76]
LiuH, PeckXY, ChoongYK, NgWS, EnglW, RaghuvamsiPV, ZhaoZW, AnandGS, ZhouY, SivaramanJ, XuQ, WongS-M. Identification of putative binding interface of PI(3,5)P2 lipid on rice black-streaked dwarf virus (RBSDV) P10 protein. Virology, 2022, 570: 81-95
CrossRef Google scholar
[77]
LiuP, XuZS, Pan-PanL, HuD, ChenM, LiLC, MaYZ. A wheat PI4K gene whose product possesses threonine autophophorylation activity confers tolerance to drought and salt in Arabidopsis. J Exp Bot, 2013, 64(10):2915-2927
CrossRef Google scholar
[78]
LouY, GouJ-Y, XueH-W. PIP5K9, an Arabidopsis phosphatidylinositol monophosphate kinase, interacts with a cytosolic Invertase to negatively regulate sugar-mediated root growth. Plant Cell, 2007, 19(1):163-181
CrossRef Google scholar
[79]
LuS, ChenL, TaoK, SunN, WuY, LuX, WangY, DouD. Intracellular and extracellular phosphatidylinositol 3-phosphate produced by Phytophthora species is important for infection. Mol Plant, 2013, 6(5):1592-1604
CrossRef Google scholar
[80]
MaaroufHE, Zuily-FodilY, GareilM, d'Arcy-LametaA, Thu Pham-ThiA. Enzymatic activity and gene expression under water stress of phospholipase D in two cultivars of Vigna unguiculata L. Walp differing in drought tolerance. Plant Mole Biol, 1999, 39(6):1257-1265
CrossRef Google scholar
[81]
Mansi, KushwahaNK, SinghAK, KarimMJ, ChakrabortyS. Nicotiana benthamiana phosphatidylinositol 4-kinase type II regulates chilli leaf curl virus pathogenesis. Mol Plant Pathol, 2019, 20(10):1408-1424
CrossRef Google scholar
[82]
MartinTFJ. PI(4,5)P2-binding effector proteins for vesicle exocytosis. Biochimica et Biophysica Acta (BBA) - molecular and cell biology of. Lipids, 2015, 1851(6):785-793
CrossRef Google scholar
[83]
Mei Y, Jia WJ, Chu YJ, Xue HW (2012) Arabidopsis phosphatidylinositol monophosphate 5-kinase 2 is involved in root gravitropism through regulation of polar auxin transport by affecting the cycling of PIN proteins. Cell Res 22(3):581–597. https://doi.org/10.1038/cr.2011.150
[84]
MeijerHJ, BerrieCP, IurisciC, DivechaN, MusgraveA, MunnikT. Identification of a new polyphosphoinositide in plants, phosphatidylinositol 5-monophosphate (PtdIns5P), and its accumulation upon osmotic stress. Biochem J, 2001, 360(2):491-498
CrossRef Google scholar
[85]
MeijerHJ, DivechaN, van den EndeH, MusgraveA, MunnikT. Hyperosmotic stress induces rapid synthesis of phosphatidyl-D-inositol 3, 5-bisphosphate in plant cells. Planta, 1999, 208(2):294-298
CrossRef Google scholar
[86]
MenzelW, StenzelI, HelbigL, KrishnamoorthyP, NeumannS, Eschen-LippoldL, HeilmannM, LeeJ, HeilmannI. A PAMP −triggered MAPK cascade inhibits phosphatidylinositol 4,5-bisphosphate production by PIP 5K6 in Arabidopsis thaliana. New Phytol, 2019, 224(2):833-847
CrossRef Google scholar
[87]
MillerS, Krijnse-LockerJ. Modification of intracellular membrane structures for virus replication. Nat Rev Microbiol, 2008, 6(5):363-374
CrossRef Google scholar
[88]
MishkindM, VermeerJEM, DarwishE, MunnikT. Heat stress activates phospholipase D and triggers PIP 2 accumulation at the plasma membrane and nucleus. Plant J, 2009, 60(1):10-21
CrossRef Google scholar
[89]
MoralesJA, Gonzalez-KantunWA, Rodriguez-ZapataLC, Ramón-UgaldeJ, CastanoE. The effect of plant stress on phosphoinositides. Cell Biochem Funct, 2019, 37(7):553-559
CrossRef Google scholar
[90]
Mueller-RoeberB, PicalC. Inositol phospholipid metabolism in Arabidopsis. Characterized and putative isoforms of inositol phospholipid kinase and phosphoinositide-specific phospholipase C. Plant Physiol, 2002, 130(1):22-46
CrossRef Google scholar
[91]
MunnikT. PI-PLC: phosphoinositide-phospholipase C in plant signaling. Phospholipases in plant signaling, 2014 Berlin Springer 27-54
CrossRef Google scholar
[92]
Munnik T, Nielsen E (2011) Green light for polyphosphoinositide signals in plants. Curr Opin Plant Biol 14(5):489–497. https://doi.org/10.1016/j.pbi.2011.06.007
[93]
MunnikT, VermeerJE. Osmotic stress-induced phosphoinositide and inositol phosphate signalling in plants. Plant Cell Environ, 2010, 33(4):655-669
CrossRef Google scholar
[94]
NdamukongI, JonesDR, LapkoH, DivechaN, AvramovaZ. Phosphatidylinositol 5-phosphate links dehydration stress to the activity of ARABIDOPSIS TRITHORAX-LIKE factor ATX1. PLoS One, 2010, 5(10):e13396
CrossRef Google scholar
[95]
NoackLC, JaillaisY. Precision targeting by phosphoinositides: how PIs direct endomembrane trafficking in plants. Curr Opin Plant Biol, 2017, 40: 22-33
CrossRef Google scholar
[96]
NokhrinaK, RayH, BockC, GeorgesF. Metabolomic shifts in Brassica napus lines with enhanced BnPLC2 expression impact their response to low temperature stress and plant pathogens. GM Crops Food, 2014, 5(2):120-131
CrossRef Google scholar
[97]
PereraIY, HeilmannI, BossWF. Transient and sustained increases in inositol 1,4,5-trisphosphate precede the differential growth response in gravistimulated maize pulvini. Proc Natl Acad Sci, 1999, 96(10):5838-5843
CrossRef Google scholar
[98]
PereraIY, HeilmannI, ChangSC, BossWF, KaufmanPB. A role for inositol 1,4,5-trisphosphate in Gravitropic signaling and the retention of cold-perceived gravistimulation of oat shoot Pulvini. Plant Physiol, 2001, 125(3):1499-1507
CrossRef Google scholar
[99]
PereraIY, HungCY, MooreCD, Stevenson-PaulikJ, BossWF. Transgenic Arabidopsis plants expressing the type 1 inositol 5-phosphatase exhibit increased drought tolerance and altered abscisic acid signaling. Plant Cell, 2008, 20(10):2876-2893
CrossRef Google scholar
[100]
Philipp EI, Franke WW, Keenan TW, Stadler J, Jarasch ED (1976) Characterization of nuclear membranes and endoplasmic reticulum isolated from plant tissue. J Cell Biol 68, 11–29. https://doi.org/10.1083/jcb.68.1.11
[101]
PicalC, WestergrenT, DoveSK, LarssonC, SommarinM. Salinity and hyperosmotic stress induce rapid increases in phosphatidylinositol 4, 5-bisphosphate, diacylglycerol pyrophosphate, and phosphatidylcholine in Arabidopsis thaliana cells. J Biol Chem, 1999, 274(53):38232-38240
CrossRef Google scholar
[102]
PlatreMP, NoackLC, DoumaneM, BayleV, SimonMLA, Maneta-PeyretL, JaillaisY. A combinatorial lipid code shapes the electrostatic landscape of plant endomembranes. Dev Cell, 2018, 45(4):465-480
CrossRef Google scholar
[103]
PokotyloI, PejcharP, PotockýM, KocourkováD, KrčkováZ, RuellandE, KravetsV, MartinecJ. The plant non-specific phospholipase C gene family. Novel competitors in lipid signalling. Prog Lipid Res, 2013, 52(1):62-79
CrossRef Google scholar
[104]
PribatA, SormaniR, Rousseau-GueutinM, JulkowskaMM, TesterinkC, JoubèsJ, CastroviejoM, LaguerreM, MeyerC, GermainV, RothanC. A novel class of PTEN protein in Arabidopsis displays unusual phosphoinositide phosphatase activity and efficiently binds phosphatidic acid. Biochem J, 2012, 441(1):161-171
CrossRef Google scholar
[105]
QinL, ZhouZ, LiQ, ZhaiC, LiuL, QuilichiniTD, GaoP, KesslerSA, JaillaisY, DatlaR, PengG, XiangD, WeiY. Specific recruitment of phosphoinositide species to the plant-pathogen interfacial membrane underlies Arabidopsis susceptibility to fungal infection. Plant Cell, 2020, 32(5):1665-1688
CrossRef Google scholar
[106]
RaffaeleS, BayerE, LafargeD, CluzetS, German RetanaS, BoubekeurT, Leborgne-CastelN, CardeJP, LherminierJ, NoirotE, Satiat-JeunemaıˆtreB, Laroche-TraineauJ, MoreauP, OttT, MauleAJ, ReymondP, Simon-PlasF, FarmerEE, BessouleJJ, MongrandS. Remorin, a solanaceae protein resident in membrane rafts and plasmodesmata, impairs potato virus X movement. Plant Cell, 2009, 21: 1541-1555
CrossRef Google scholar
[107]
RaffaeleS, MongrandS, GamasP, NiebelA, OttT. Genome-wide annotation of remorins, a plant-specific protein family: evolutionary and functional perspectives. Plant Physiol, 2007, 145: 593-600
CrossRef Google scholar
[108]
Rausche J, Stenzel I, Stauder R, Fratini M, Trujillo M, Heilmann I, Rosahl S (2021) A phosphoinositide 5‐phosphatase from Solanum tuberosum is activated by PAMP‐treatment and may antagonize phosphatidylinositol 4,5‐bisphosphate at Phytophthora infestans infection sites. New Phytol 229(1):469-487. https://doi.org/10.1111/nph.16853
[109]
ReissS, RebhanI, BackesP, Romero-BreyI, ErfleH, MatulaP, KaderaliL, PoenischM, BlankenburgH, HietM-S, LongerichT, DiehlS, RamirezF, BallaT, RohrK, KaulA, BühlerS, PepperkokR, LengauerT, BartenschlagerR. Recruitment and activation of a lipid kinase by hepatitis C virus NS5A is essential for integrity of the membranous replication compartment. Cell Host Microbe, 2011, 9(1):32-45
CrossRef Google scholar
[110]
SangY, CuiD, WangX. Phospholipase D and phosphatidic acid-mediated generation of superoxide in Arabidopsis. Plant Physiol, 2001, 126(4):1449-1458
CrossRef Google scholar
[111]
Sasvari Z, Lin W, Inaba J-I, Xu K, Kovalev N, Nagy PD (2020) Co-opted cellular Sac1 lipid phosphatase and PI(4)P phosphoinositide are key host factors during the biogenesis of the Tombusvirus replication compartment. J Virol 94(12). https://doi.org/10.1128/JVI.01979-19
[112]
ShigakiT, BhattacharyyaMK. Decreased inositol 1, 4, 5-trisphosphate content in pathogen-challenged soybean cells. Mol Plant-Microbe Interact, 2000, 13(5):563-567
CrossRef Google scholar
[113]
ShimadaTL, BetsuyakuS, InadaN, EbineK, FujimotoM, UemuraT, UedaT. Enrichment of phosphatidylinositol 4, 5-bisphosphate in the extra-invasive hyphal membrane promotes colletotrichum infection of Arabidopsis thaliana. Plant Cell Physiol, 2019, 60(7):1514-1524
CrossRef Google scholar
[114]
Shoji-KawaguchiM, IzutaS, Tamiya-KoizumiK, SuzukiM, YoshidaS. Selective inhibition of DNA polymerase ε by phosphatidylinositol. J Biochem, 1995, 117(5):1095-1099
CrossRef Google scholar
[115]
SimonML, PlatreMP, Marques-BuenoMM, ArmengotL, StanislasT, BayleV, CaillaudMC, JaillaisY. A PtdIns(4)P-driven electrostatic field controls cell membrane identity and signalling in plants. Nat Plants, 2016, 2: 16089
CrossRef Google scholar
[116]
SonS, OhCJ, AnCS. Arabidopsis thaliana remorins interact with SnRK1 and play a role in susceptibility to beet curly top virus and beet severe curly top virus. Plant Pathol J, 2014, 30: 269-278 PMID: 25289013
CrossRef Google scholar
[117]
SongF, GoodmanRM. Molecular cloning and characterization of a rice phosphoinositide-specific phospholipase C gene, OsPI-PLC1, that is activated in systemic acquired resistance. Physiol Mol Plant Pathol, 2002, 61(1):31-40
CrossRef Google scholar
[118]
SongMF, HanYZ. Molecular cloning and characterization of a phosphoinositide-specific phospholipase C from Torenia fournieri. Russ J Plant Physiol, 2008, 55(3):385-389
CrossRef Google scholar
[119]
Sousa E, Kost B, Malh OR (2008) Arabidopsis phosphatidylinositol-4-monophosphate 5-kinase 4 regulates pollen tube growth and polarity by modulating membrane recycling. Plant Cell 20(11):3050–3064. https://doi.org/10.1105/tpc.108.058826
[120]
StenzelI, IschebeckT, K€onigS, HołubowskaA, SporyszM, HauseB, HeilmannI. The type B phosphatidylinositol-4-phosphate 5-kinase 3 is essential for root hair formation in Arabidopsis thaliana. Plant Cell, 2008, 20(1):124-141
CrossRef Google scholar
[121]
Stevenson-Paulik J, Love J, Boss WF (2003) Differential regulation of two Arabidopsis type III phosphatidylinositol 4-kinase isoforms. A regulatory role for the Pleckstrin homology domain. Plant Physiol 132(2):1053–1064. https://doi.org/10.1104/pp.103.021758
[122]
Synek L, Pleskot R, Sekereš J, Serrano N, Vukašinović N, Ortmannová J, Klejchová M, Pejchar P, Batystová K, Gutkowska M, Janková-Drdová E, Marković V, Pečenková T, Šantrůček J, Žárský V, Potocký M (2021) Plasma membrane phospholipid signature recruits the plant exocyst complex via the EXO70A1 subunit. Proc Natl Acad Sci U S A 118(36):e2105287118. https://doi.org/10.1073/pnas.2105287118
[123]
Szumlanski A, Nielsen E (2009) Phosphatidylinositol 4-phosphate is required for tip growth in Arabidopsis thaliana. Plant Cell Monographs. https://doi.org/10.1007/978-3-642-03873-0_4
[124]
TakenawaT. Phosphoinositide-binding interface proteins involved in shaping cell membranes. Proc. Jpn Acad Ser B Phys Biol Sci, 2010, 86(5):509-523
CrossRef Google scholar
[125]
TangY, ZhaoC-Y, TanS-T, XueH-W. Arabidopsis type II phosphatidylinositol 4-kinase PI4Kγ5 regulates auxin biosynthesis and leaf margin development through interacting with membrane-bound transcription factor ANAC078. PLoS Genetic, 2016, 12(8):e1006252
CrossRef Google scholar
[126]
TejosR, SauerM, VannesteS, Palacios-GomezM, LiHJ, HeilmannM, vanWijkR, VermeerJEM, HeilmannI, MunnikT, et al.. Bipolar plasma membrane distribution of phosphoinositides and their requirement for auxin mediated cell polarity and patterning in Arabidopsis. Plant Cell, 2014, 26(5):2114-2128
CrossRef Google scholar
[127]
TholeJM, NielsenE. Phosphoinositides in plants: novel functions in membrane trafficking. Curr Opin Plant Biol, 2008, 11(6):620-631
CrossRef Google scholar
[128]
Toyoda, K., Shiraishi, T., Yamada, T., Ichinose, Y., & Oku, H. (1993) Rapid changes in polyphosphoinositide metabolism in pea [Pisum sativum] in response to fungal signals. Plant Cell Physiol (Japan) ISSN : 0032-0781
[129]
Van LeeuwenW, VermeerJE, GadellaTW Jr, MunnikT. Visualization of phosphatidylinositol 4, 5-bisphosphate in the plasma membrane of suspension-cultured tobacco BY-2 cells and whole Arabidopsis seedlings. Plant J, 2007, 52(6):1014-1026
CrossRef Google scholar
[130]
Von der MarkC, CruzTMD, Blanco-TouriñanN, Rodriguez-VillalonA. Bipartite phosphoinositide-dependent modulation of auxin signaling during xylem differentiation in Arabidopsis thaliana roots. The New Phytologist, 2022, 236(5):1734-1747
CrossRef Google scholar
[131]
VossenJH, Abd-El-HaliemA, FradinEF, van den BergGCM, EkengrenSK, MeijerHJG, SeifiA, BaiY, ten HaveA, MunnikT, ThommaBPHJ, JoostenMHAJ. Identification of tomato phosphatidylinositol-specific phospholipase-C (PI-PLC) family members and the role of PLC4 and PLC6 in HR and disease resistance. Plant J, 2010, 62(2):224-239
CrossRef Google scholar
[132]
Wang H, Zhang J, Liu H, Wang M, Dong Y, Zhou Y, Wong SM, Xu K, Xu Q (2022) A plant virus hijacks phosphatidylinositol-3,5-bisphosphate to escape autophagic degradation in its insect vector. Autophagy:1–16. Advance online publication. https://doi.org/10.1080/15548627.2022.2116676
[133]
WestergrenT, DoveSK, SommarinM, PicalC. AtPIP5K1, an Arabidopsis thaliana phosphatidylinositol phosphate kinase, synthesizes PtdIns(3,4)P2 and PtdIns(4,5)P2 in vitro and is inhibited by phosphorylation. Biochem J, 2001, 359(3):583
CrossRef Google scholar
[134]
Xu K, Nagy PD (2015) RNA virus replication depends on enrichment of phosphatidylethanolamine at replication sites in subcellular membranes. Proc Natl Acad Sci 112(14). https://doi.org/10.1073/pnas.1418971112
[135]
YaenoT, LiH, Chaparro-GarciaA, SchornackS, KoshibaS, WatanabeS, KigawaT, KamounS, ShirasuK. Phosphatidylinositol monophosphate-binding interface in the oomycete RXLR effector AVR3a is required for its stability in host cells to modulate plant immunity. Proc Natl Acad Sci, 2011, 108(35):14682-14687
CrossRef Google scholar
[136]
YoungSA, WangX, LeachJE. Changes in the plasma membrane distribution of rice phospholipase D during resistant interactions with Xanthomonas oryzae pv oryzae. Plant Cell, 1996, 8(6):1079-1090
CrossRef Google scholar
[137]
YuH, FukamiK, WatanabeY, OzakiC, TakenawaT. Phosphatidylinositol 4,5-bisphosphate reverses the inhibition of RNA transcription caused by histone H1. Eur J Biochem, 1998, 251(1–2):281-287
CrossRef Google scholar
[138]
ZhaiS, GaoQ, LiuX, SuiZ, ZhangJ. Overexpression of a Zea mays phospholipase C1 gene enhances drought tolerance in tobacco in part by maintaining stability in the membrane lipid composition. Plant Cell, Tissue Organ Culture (PCTOC), 2013, 115(2):253-262
CrossRef Google scholar
[139]
ZhangZ, HeG, FilipowiczNA, RandallG, BelovGA, KopekBG, WangX. Host lipids in positive Strand RNA virus GenomeReplication. Front Microbiol, 2019, 10: 286
CrossRef Google scholar
[140]
ZhangZ, HeG, HanG-S, ZhangJ, CatanzaroN, DiazA, WuZ, CarmanGM, XieL, WangX. Host Pah1p phosphatidate phosphatase limits viral replication by regulating phospholipid synthesis. PLoS Pathog, 2018, 14(4):e1006988
CrossRef Google scholar
[141]
ZhangK, JinC, WuL, HouM, DouS, PanY. Expression analysis of a stress-related phosphoinositide-specific phospholipase C gene in wheat (Triticum aestivum L.). PLoS One, 2014, 9(8):e105061
CrossRef Google scholar
[142]
Zhang J, Zhang Z, Chukkapalli V, Nchoutmboube JA, Li J, Randall G, Belov GA, Wang X (2016) Positive-strand RNA viruses stimulate host phosphatidylcholine synthesis at viral replication sites. Proc Natl Acad Sci 113(8). https://doi.org/10.1073/pnas.1519730113
[143]
Zhao Y, Yan A, Feijó JA, Furutani M, Takenawa T, Hwang I, Fu Y, Yang Z (2010) Phosphoinositides Regulate Clathrin-Dependent Endocytosis at the Tip of Pollen Tubes in Arabidopsis and Tobacco. Plant Cell 22(12): 4031-4044. https://doi.org/10.1105/tpc.110.076760
[144]
ZhongR, YeZ-H. The SAC domain-containing protein gene family in Arabidopsis. Plant Physiol, 2003, 132(2):544-555
CrossRef Google scholar
[145]
ZimmermannP, Hirsch-HoffmannM, HennigL, GruissemW. GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol, 2004, 136(1):2621-2632
CrossRef Google scholar
Funding
Department of Biotechnology, Ministry of Science and Technology, India(SC/DBT-BUILDER/2022)

Accesses

Citations

Detail

Sections
Recommended

/