β-Hydroxybutyric acid improves cognitive function in a model of heat stress by promoting adult hippocampal neurogenesis

Jian Huang, Yongji Wu, Xuejun Chai, Shuai Wang, Yongkang Zhao, Yan Hou, Yue Ma, Shulin Chen, Shanting Zhao, Xiaoyan Zhu

Stress Biology ›› 2022, Vol. 2 ›› Issue (1) : 57. DOI: 10.1007/s44154-022-00079-6
Original Paper

β-Hydroxybutyric acid improves cognitive function in a model of heat stress by promoting adult hippocampal neurogenesis

Author information +
History +

Abstract

Heat stress has multiple potential effects on the brain, such as neuroinflammation, neurogenesis defects, and cognitive impairment. β-hydroxybutyric acid (BHBA) has been demonstrated to play neuroprotective roles in various models of neurological diseases. In the present study, we investigated the efficacy of BHBA in alleviating heat stress-induced impairments of adult hippocampal neurogenesis and cognitive function, as well as the underlying mechanisms. Mice were exposed to 43 ℃ for 15 min for 14 days after administration with saline, BHBA, or minocycline. Here, we showed for the first time that BHBA normalized memory ability in the heat stress-treated mice and attenuated heat stress-impaired hippocampal neurogenesis. Consistently, BHBA noticeably improved the synaptic plasticity in the heat stress-treated hippocampal neurons by inhibiting the decrease of synapse-associated proteins and the density of dendritic spines. Moreover, BHBA inhibited the expression of cleaved caspase-3 by suppressing endoplasmic reticulum (ER) stress, and increased the expression of brain-derived neurotrophic factor (BDNF) in the heat stress-treated hippocampus by activating the protein kinase B (Akt)/cAMP response element binding protein (CREB) and methyl-CpG binding protein 2 (MeCP2) pathways. These findings indicate that BHBA is a potential agent for improving cognitive functions in heat stress-treated mice. The action may be mediated by ER stress, and Akt-CREB-BDNF and MeCP2 pathways to improve adult hippocampal neurogenesis and synaptic plasticity.

Keywords

β-Hydroxybutyric acid / Heat stress / Adult hippocampal neurogenesis / Synaptic plasticity / Cognitive dysfunctions

Cite this article

Download citation ▾
Jian Huang, Yongji Wu, Xuejun Chai, Shuai Wang, Yongkang Zhao, Yan Hou, Yue Ma, Shulin Chen, Shanting Zhao, Xiaoyan Zhu. β-Hydroxybutyric acid improves cognitive function in a model of heat stress by promoting adult hippocampal neurogenesis. Stress Biology, 2022, 2(1): 57 https://doi.org/10.1007/s44154-022-00079-6

References

[1]
AltmanJ, DasGD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol, 1965, 124(3):319-335
CrossRef Google scholar
[2]
AnackerC, HenR. Adult hippocampal neurogenesis and cognitive flexibility - linking memory and mood. Nat Rev Neurosci, 2017, 18(6):335-346
CrossRef Google scholar
[3]
ArealLB, HamiltonA, Martins-SilvaC, PiresRGW, FergusonSSG. Neuronal scaffolding protein spinophilin is integral for cocaine-induced behavioral sensitization and ERK1/2 activation. Mol Brain, 2019, 12(1):15
CrossRef Google scholar
[4]
Arroyo-GarcíaLE, Tendilla-BeltránH, Vázquez-RoqueRA, Jurado-TapiaEE, DíazA, Aguilar-AlonsoP, BrambilaE, MonjarazE, De La CruzF, Rodríguez-MorenoA, FloresG. Amphetamine sensitization alters hippocampal neuronal morphology and memory and learning behaviors. Mol Psychiatry, 2021, 26(9):4784-4794
CrossRef Google scholar
[5]
Austin SHL, Gabarró-Solanas R, Rigo P, Paun O, Harris L, Guillemot F, Urbán N (2021) Wnt/β-catenin signalling is dispensable for adult neural stem cell homeostasis and activation. Development 148(20). https://doi.org/10.1242/dev.199629
[6]
Bassett B, Subramaniyam S, Fan Y, Varney S, Pan H, Carneiro AMD, Chung CY (2021) Minocycline alleviates depression-like symptoms by rescuing decrease in neurogenesis in dorsal hippocampus via blocking microglia activation/phagocytosis. Brain Behav Immun 91(519–530). https://doi.org/10.1016/j.bbi.2020.11.009
[7]
Bello-MedinaPC, FloresG, QuirarteGL, McGaughJL, Prado AlcaláRA. Mushroom spine dynamics in medium spiny neurons of dorsal striatum associated with memory of moderate and intense training. Proc Natl Acad Sci U S A, 2016, 113(42):E6516-e6525
CrossRef Google scholar
[8]
BenjaminJS, PilarowskiGO, CarossoGA, ZhangL, HusoDL, GoffLA, VernonHJ, HansenKD, BjornssonHT. A ketogenic diet rescues hippocampal memory defects in a mouse model of Kabuki syndrome. Proc Natl Acad Sci U S A, 2017, 114(1):125-130
CrossRef Google scholar
[9]
BonaguidiMA, WheelerMA, ShapiroJS, StadelRP, SunGJ, MingGL, SongH. In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell, 2011, 145(7):1142-1155
CrossRef Google scholar
[10]
Bongioanni P, Del Carratore R, Corbianco S, Diana A, Cavallini G, Masciandaro SM, Dini M, Buizza R (2021) Climate change and neurodegenerative diseases. Environ Res 201(111511). https://doi.org/10.1016/j.envres.2021.111511
[11]
BrownPL, KiyatkinEA. Brain hyperthermia induced by MDMA (ecstasy): modulation by environmental conditions. Eur J Neurosci, 2004, 20(1):51-58
CrossRef Google scholar
[12]
CahillSP, YuRQ, GreenD, TodorovaEV, SnyderJS. Early survival and delayed death of developmentally-born dentate gyrus neurons. Hippocampus, 2017, 27(11):1155-1167
CrossRef Google scholar
[13]
CarrettaMD, BarríaY, BorquezK, UrraB, RiveraA, AlarcónP, HidalgoMA, BurgosRA. β-hydroxybutyrate and hydroxycarboxylic acid receptor 2 agonists activate the AKT, ERK and AMPK pathways, which are involved in bovine neutrophil chemotaxis. Sci Rep, 2020, 10(1):12491
CrossRef Google scholar
[14]
ChahrourM, JungSY, ShawC, ZhouX, WongST, QinJ, ZoghbiHY. MeCP2, a key contributor to neurological disease, activates and represses transcription. Science, 2008, 320(5880):1224-1229
CrossRef Google scholar
[15]
Chauhan NR, Kumar R, Gupta A, Meena RC, Nanda S, Mishra KP, Singh SB (2021) Heat stress induced oxidative damage and perturbation in BDNF/ERK1/2/CREB axis in hippocampus impairs spatial memory. Behav Brain Res 396(112895). https://doi.org/10.1016/j.bbr.2020.112895
[16]
ChenX, ShenWB, YangP, DongD, SunW, YangP. High Glucose Inhibits Neural Stem Cell Differentiation Through Oxidative Stress and Endoplasmic Reticulum Stress. Stem Cells Dev, 2018, 27(11):745-755
CrossRef Google scholar
[17]
ChengB, LuH, BaiB, ChenJ. D-β-Hydroxybutyrate inhibited the apoptosis of PC12 cells induced by H2O2 via inhibiting oxidative stress. Neurochem Int, 2013, 62(5):620-625
CrossRef Google scholar
[18]
ClellandCD, ChoiM, RombergC, ClemensonGD Jr, FragniereA, TyersP, JessbergerS, SaksidaLM, BarkerRA, GageFH, BusseyTJ. A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science, 2009, 325(5937):210-213
CrossRef Google scholar
[19]
Colnaghi L, Russo L, Natale C, Restelli E, Cagnotto A, Salmona M, Chiesa R, Fioriti  L (2019) Super Resolution Microscopy of SUMO Proteins in Neurons. Front Cell Neurosci 13(486). https://doi.org/10.3389/fncel.2019.00486
[20]
CreerDJ, RombergC, SaksidaLM, van PraagH, BusseyTJ. Running enhances spatial pattern separation in mice. Proc Natl Acad Sci U S A, 2010, 107(5):2367-2372
CrossRef Google scholar
[21]
Elvira R, Cha SJ, Noh GM, Kim K, Han J (2020) PERK-Mediated eIF2α Phosphorylation Contributes to The Protection of Dopaminergic Neurons from Chronic Heat Stress in Drosophila. Int J Mol Sci 21(3). https://doi.org/10.3390/ijms21030845
[22]
ErfaniM, Ghazi TabatabaeiZ, Sadigh-EteghadS, Farokhi-SisakhtF, FarajdokhtF, MahmoudiJ, et al.. Rosa canina L. methanolic extract prevents heat stress-induced memory dysfunction in rats. Exp Physiol, 2019, 104(10):1544-1554
CrossRef Google scholar
[23]
EsvaldEE, TuvikeneJ, SirpA, PatilS, BramhamCR, TimmuskT. CREB Family Transcription Factors Are Major Mediators of BDNF Transcriptional Autoregulation in Cortical Neurons. J Neurosci, 2020, 40(7):1405-1426
CrossRef Google scholar
[24]
FengJ, YanZ, FerreiraA, TomizawaK, LiauwJA, ZhuoM, AllenPB, OuimetCC, GreengardP. Spinophilin regulates the formation and function of dendritic spines. Proc Natl Acad Sci U S A, 2000, 97(16):9287-9292
CrossRef Google scholar
[25]
Frankfurt M, Luine V (2015) The evolving role of dendritic spines and memory: Interaction(s) with estradiol. Horm Behav 74(28–36). https://doi.org/10.1016/j.yhbeh.2015.05.004
[26]
FuSP, WangJF, XueWJ, LiuHM, LiuBR, ZengYL, LiSN, HuangBX, LvQK, WangW. Anti-inflammatory effects of BHBA in both in vivo and in vitro Parkinson's disease models are mediated by GPR109A-dependent mechanisms. J Neuroinflammation, 2015, 12(1):1-14
CrossRef Google scholar
[27]
GarzaJC, GuoM, ZhangW, LuXY. Leptin restores adult hippocampal neurogenesis in a chronic unpredictable stress model of depression and reverses glucocorticoid-induced inhibition of GSK-3β/β-catenin signaling. Mol Psychiatry, 2012, 17(8):790-808
CrossRef Google scholar
[28]
Govindarajulu M, Pinky PD, Steinke I, Bloemer J, Ramesh S, Kariharan T, Rella RT,  Bhattacharya S, Dhanasekaran M, Suppiramaniam V, Amin RH (2020) Gut Metabolite TMAO Induces Synaptic Plasticity Deficits by Promoting Endoplasmic Reticulum Stress. Front Mol Neurosci 13(138). https://doi.org/10.3389/fnmol.2020.00138
[29]
HalestrapAP, MeredithD. The SLC16 gene family-from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Arch, 2004, 447(5):619-628
CrossRef Google scholar
[30]
Henry, C. J., Y. Huang, A. Wynne, M. Hanke, J. Himler, M. T. Bailey, J. F. Sheridan and J. P. Godbout (2008) Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia. J Neuroinflammation 5(15). https://doi.org/10.1186/1742-2094-5-15
[31]
HetzC, SaxenaS. ER stress and the unfolded protein response in neurodegeneration. Nat Rev Neurol, 2017, 13(8):477-491
CrossRef Google scholar
[32]
HoodKN, ZhaoJ, RedellJB, HylinMJ, HarrisB, PerezA, MooreAN, DashPK. Endoplasmic Reticulum Stress Contributes to the Loss of Newborn Hippocampal Neurons after Traumatic Brain Injury. J Neurosci, 2018, 38(9):2372-2384
CrossRef Google scholar
[33]
HuangJ, ChaiX, WuY, HouY, LiC, XueY, PanJ, ZhaoY, SuA, ZhuX, ZhaoS. β-Hydroxybutyric acid attenuates heat stress-induced neuroinflammation via inhibiting TLR4/p38 MAPK and NF-κB pathways in the hippocampus. Faseb j, 2022, 36(4):e22264
CrossRef Google scholar
[34]
JinK, ZhuY, SunY, MaoXO, XieL, GreenbergDA. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci U S A, 2002, 99(18):11946-11950
CrossRef Google scholar
[35]
JuliandiB, TanemuraK, IgarashiK, TominagaT, FurukawaY, OtsukaM, MoriyamaN, IkegamiD, AbematsuM, SanosakaT, TsujimuraK, NaritaM, KannoJ, NakashimaK. Reduced Adult Hippocampal Neurogenesis and Cognitive Impairments following Prenatal Treatment of the Antiepileptic Drug Valproic Acid. Stem Cell Reports, 2015, 5(6):996-1009
CrossRef Google scholar
[36]
KeeN, SivalingamS, BoonstraR, WojtowiczJM. The utility of Ki-67 and BrdU as proliferative markers of adult neurogenesis. J Neurosci Methods, 2002, 115(1):97-105
CrossRef Google scholar
[37]
KendlerKS, ThorntonLM, GardnerCO. Genetic risk, number of previous depressive episodes, and stressful life events in predicting onset of major depression. Am J Psychiatry, 2001, 158(4):582-586
CrossRef Google scholar
[38]
KimDY, VallejoJ, RhoJM. Ketones prevent synaptic dysfunction induced by mitochondrial respiratory complex inhibitors. J Neurochem, 2010, 114(1):130-141
CrossRef Google scholar
[39]
KohmanRA, RhodesJS. Neurogenesis, inflammation and behavior. Brain Behav Immun, 2013, 27(1):22-32
CrossRef Google scholar
[40]
Lazutkin A, Podgorny O, Enikolopov G (2019) Modes of division and differentiation of neural stem cells. Behav Brain Res 374(112118). https://doi.org/10.1016/j.bbr.2019.112118
[41]
LeeW, MoonM, KimHG, LeeTH, OhMS. Heat stress-induced memory impairment is associated with neuroinflammation in mice. J Neuroinflammation, 2015, 12(1):1-13
CrossRef Google scholar
[42]
LiJY, RenKK, ZhangWJ, XiaoL, WuHY, LiuQY, DingT, ZhangXC, NieWJ, KeY, DengKY, LiuQW, XinHB. Human amniotic mesenchymal stem cells and their paracrine factors promote wound healing by inhibiting heat stress-induced skin cell apoptosis and enhancing their proliferation through activating PI3K/AKT signaling pathway. Stem Cell Res Ther, 2019, 10(1):247
CrossRef Google scholar
[43]
LiY, JiangW, NiuQ, SunY, MengC, TanL, SongC, QiuX, LiaoY, DingC. eIF2α-CHOP-BCl-2/JNK and IRE1α-XBP1/JNK signaling promote apoptosis and inflammation and support the proliferation of Newcastle disease virus. Cell Death Dis, 2019, 10(12):891
CrossRef Google scholar
[44]
Li K, Cheng X, Jiang J, Wang J, Zhao SJF, c. t. a. i. j. p. f. t. B. I. B. R. Association (2017) The toxic influence of paraquat on hippocampal neurogenesis in adult mice. 106(Pt A). https://doi.org/10.1016/j.fct.2017.05.067.
[45]
LiuZ, FanY, WonSJ, NeumannM, HuD, ZhouL, WeinsteinPR, LiuJ. Chronic treatment with minocycline preserves adult new neurons and reduces functional impairment after focal cerebral ischemia. Stroke, 2007, 38(1):146-152
CrossRef Google scholar
[46]
LiuY, SakamotoH, AdachiM, ZhaoS, UkaiW, HashimotoE, HareyamaM, IshidaT, ImaiK, ShinomuraY. Heat stress activates ER stress signals which suppress the heat shock response, an effect occurring preferentially in the cortex in rats. Mol Biol Rep, 2012, 39(4):3987-3993
CrossRef Google scholar
[47]
MarosiK, KimSW, MoehlK, Scheibye-KnudsenM, ChengA, CutlerR, CamandolaS, MattsonMP. 3-Hydroxybutyrate regulates energy metabolism and induces BDNF expression in cerebral cortical neurons. J Neurochem, 2016, 139(5):769-781
CrossRef Google scholar
[48]
Ming GL, Song H (2005) Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 28(223–250). https://doi.org/10.1146/annurev.neuro.28.051804.101459
[49]
MinhoM, EugeneH, WonilL, EunS, Deok-SangH, TaeL, MyungO. Coptidis Rhizoma Prevents Heat Stress-Induced Brain Damage and Cognitive Impairment in Mice. Nutrients, 2017, 9(10):1057-1074
CrossRef Google scholar
[50]
MoonM, HuhE, LeeW, SongEJ, HwangDS, LeeTH, OhMS. Coptidis Rhizoma Prevents Heat Stress-Induced Brain Damage and Cognitive Impairment in Mice. Nutrients, 2017, 9(10):1057-1074
CrossRef Google scholar
[51]
NanX, CampoyFJ, BirdA. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell, 1997, 88(4):471-481
CrossRef Google scholar
[52]
Newman JC, Verdin E (2017) β-Hydroxybutyrate: A Signaling Metabolite. Annu Rev Nutr 37(51–76). https://doi.org/10.1146/annurev-nutr-071816-064916
[53]
NikoletopoulouV, SidiropoulouK, KallergiE, DaleziosY, TavernarakisN. Modulation of Autophagy by BDNF Underlies Synaptic Plasticity. Cell Metab, 2017, 26(1):230-242.e235
CrossRef Google scholar
[54]
NishitohH. CHOP is a multifunctional transcription factor in the ER stress response. J Biochem, 2012, 151(3):217-219
CrossRef Google scholar
[55]
Ryan SM, Nolan YM (2016) Neuroinflammation negatively affects adult hippocampal neurogenesis and cognition: can exercise compensate? Neurosci Biobehav Rev 61(121–131). https://doi.org/10.1016/j.neubiorev.2015.12.004
[56]
SeyerB, DiwakarlaS, BurnsP, HallbergA, GrӧnbladhA, HallbergM, ChaiSY. Insulin-regulated aminopeptidase inhibitor-mediated increases in dendritic spine density are facilitated by glucose uptake. J Neurochem, 2020, 153(4):485-494
CrossRef Google scholar
[57]
ShimazuT, HirscheyMD, NewmanJ, HeW, ShirakawaK, Le MoanN, GrueterCA, LimH, SaundersLR, StevensRD, NewgardCB, FareseRV Jr, de CaboR, UlrichS, AkassoglouK, VerdinE. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science, 2013, 339(6116):211-214
CrossRef Google scholar
[58]
ShorsTJ, MiesegaesG, BeylinA, ZhaoM, RydelT, GouldE. Neurogenesis in the adult is involved in the formation of trace memories. Nature, 2001, 410(6826):372-376
CrossRef Google scholar
[59]
Sleiman SF, Henry J, Al-Haddad R, El Hayek L, Abou Haidar E, Stringer T, Ulja D, Karuppagounder SS, Holson EB, Ratan RR, Ninan I, Chao MV (2016) Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body β-hydroxybutyrate. Elife 5. https://doi.org/10.7554/eLife.15092
[60]
SongJ, ChristianKM, MingGL, SongH. Modification of hippocampal circuitry by adult neurogenesis. Dev Neurobiol, 2012, 72(7):1032-1043
CrossRef Google scholar
[61]
SprenkleNT, SimsSG, SánchezCL, MearesGP. Endoplasmic reticulum stress and inflammation in the central nervous system. Mol Neurodegener, 2017, 12(1):42
CrossRef Google scholar
[62]
SunW, YangJ, HongY, YuanH, WangJ, ZhangY, LuX, JinC, WuS, CaiY. Lanthanum Chloride Impairs Learning and Memory and Induces Dendritic Spine Abnormality by Down-Regulating Rac1/PAK Signaling Pathway in Hippocampus of Offspring Rats. Cell Mol Neurobiol, 2020, 40(3):459-475
CrossRef Google scholar
[63]
Tagawa R, Kawano Y, Minami A, Nishiumi S, Yano Y, Yoshida M, Kodama Y (2019) β-hydroxybutyrate protects hepatocytes against endoplasmic reticulum stress in a sirtuin 1-independent manner. Arch Biochem Biophys 663(220–227). https://doi.org/10.1016/j.abb.2019.01.020
[64]
Tendilla-Beltrán H, Antonio Vázquez-Roque R, Judith Vázquez-Hernández A, Garcés-Ramírez L, Flores G (2019) Exploring the Dendritic Spine Pathology in a Schizophrenia-related Neurodevelopmental Animal Model. Neuroscience 396(36–45). https://doi.org/10.1016/j.neuroscience.2018.11.006
[65]
TozukaY, FukudaS, NambaT, SekiT, HisatsuneT. GABAergic excitation promotes neuronal differentiation in adult hippocampal progenitor cells. Neuron, 2005, 47(6):803-815
CrossRef Google scholar
[66]
TronelS, BelnoueL, GrosjeanN, RevestJM, PiazzaPV, KoehlM, AbrousDN. Adult-born neurons are necessary for extended contextual discrimination. Hippocampus, 2012, 22(2):292-298
CrossRef Google scholar
[67]
VattemKM, WekRC. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc Natl Acad Sci U S A, 2004, 101(31):11269-11274
CrossRef Google scholar
[68]
WangY, FuW-Y, CheungK, HungK-W, ChenC, GengH, YungW-H, QuJY, FuAKY, IpNY. Astrocyte-secreted IL-33 mediates homeostatic synaptic plasticity in the adult hippocampus. Proc Natl Acad Sci USA, 2021, 118(1):e2020810118
CrossRef Google scholar
[69]
White MG, Luca LE, Nonner D, Saleh O, Hu B, Barrett EF, Barrett  JN (2007) Cellular mechanisms of neuronal damage from hyperthermia. Prog Brain Res 162(347–371). https://doi.org/10.1016/s0079-6123(06)62017-7
[70]
WinocurG, WojtowiczJM, SekeresM, SnyderJS, WangS. Inhibition of neurogenesis interferes with hippocampus-dependent memory function. Hippocampus, 2006, 16(3):296-304
CrossRef Google scholar
[71]
WuJ, ZhaoZ, KumarA, LipinskiMM, LoaneDJ, StoicaBA, FadenAI. Endoplasmic Reticulum Stress and Disrupted Neurogenesis in the Brain Are Associated with Cognitive Impairment and Depressive-Like Behavior after Spinal Cord Injury. J Neurotrauma, 2016, 33(21):1919-1935
CrossRef Google scholar
[72]
WuY, GongY, LuanY, LiY, LiuJ, YueZ, YuanB, SunJ, XieC, LiL, ZhenJ, JinX, ZhengY, WangX, XieL, WangW. BHBA treatment improves cognitive function by targeting pleiotropic mechanisms in transgenic mouse model of Alzheimer's disease. Faseb j, 2020, 34(1):1412-1429
CrossRef Google scholar
[73]
Xu F, Ma R, Zhang G, Wang S, Yin J, Wang E, Xiong E, Zhang Q, Li Y (2018) Estrogen and propofol combination therapy inhibits endoplasmic reticulum stress and remarkably attenuates cerebral ischemia-reperfusion injury and OGD injury in hippocampus. Biomed Pharmacother 108(1596–1606). https://doi.org/10.1016/j.biopha.2018.09.167
[74]
YanN, HeY, WenH, LaiF, YinD, CuiH. A Suzuki-Miyaura method for labelling proliferating cells containing incorporated BrdU. Analyst, 2018, 143(5):1224-1233
CrossRef Google scholar
[75]
Zarneshan SN, Fakhri S, Khan H (2022) Targeting Akt/CREB/BDNF signaling pathway by ginsenosides in neurodegenerative diseases: A mechanistic approach. Pharmacol Res 177(106099). https://doi.org/10.1016/j.phrs.2022.106099
[76]
Zhang H, Zhao C, Wang S, Huang Y, Wang H, Zhao J, Yang  N (2015) Anti-dsDNA antibodies induce inflammation via endoplasmic reticulum stress in human mesangial cells. J Transl Med 13(178). https://doi.org/10.1186/s12967-015-0536-7
[77]
Zhang J, Rong P, Zhang L, He H, Zhou T, Fan Y, Mo L, Zhao Q, Han Y, Li S, Wang Y, Yan W, Chen H, You Z. (2021) IL4-driven microglia modulate stress resilience through BDNF-dependent neurogenesis. Sci Adv. 7(12):eabb9888. https://doi.org/10.1126/sciadv.abb9888
Funding
Innovative Research Group Project of the National Natural Science Foundation of China(32272967); Shaanxi Provincial Regional Innovation Capability Guiding Plan Project(2020QFY10-04); National Key Research and Development Program of China(2018YFE0127000); Key Research and Development Projects of Shaanxi Province(2021NY-021)

Accesses

Citations

Detail

Sections
Recommended

/